/* smp.c: Sparc SMP support. * * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu) * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org) */ #include <asm/head.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/threads.h> #include <linux/smp.h> #include <linux/interrupt.h> #include <linux/kernel_stat.h> #include <linux/init.h> #include <linux/spinlock.h> #include <linux/mm.h> #include <linux/fs.h> #include <linux/seq_file.h> #include <linux/cache.h> #include <linux/delay.h> #include <asm/ptrace.h> #include <linux/atomic.h> #include <asm/irq.h> #include <asm/page.h> #include <asm/pgalloc.h> #include <asm/pgtable.h> #include <asm/oplib.h> #include <asm/cacheflush.h> #include <asm/tlbflush.h> #include <asm/cpudata.h> #include <asm/leon.h> #include "irq.h" volatile unsigned long cpu_callin_map[NR_CPUS] __cpuinitdata = {0,}; cpumask_t smp_commenced_mask = CPU_MASK_NONE; /* The only guaranteed locking primitive available on all Sparc * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically * places the current byte at the effective address into dest_reg and * places 0xff there afterwards. Pretty lame locking primitive * compared to the Alpha and the Intel no? Most Sparcs have 'swap' * instruction which is much better... */ void __cpuinit smp_store_cpu_info(int id) { int cpu_node; int mid; cpu_data(id).udelay_val = loops_per_jiffy; cpu_find_by_mid(id, &cpu_node); cpu_data(id).clock_tick = prom_getintdefault(cpu_node, "clock-frequency", 0); cpu_data(id).prom_node = cpu_node; mid = cpu_get_hwmid(cpu_node); if (mid < 0) { printk(KERN_NOTICE "No MID found for CPU%d at node 0x%08d", id, cpu_node); mid = 0; } cpu_data(id).mid = mid; } void __init smp_cpus_done(unsigned int max_cpus) { extern void smp4m_smp_done(void); extern void smp4d_smp_done(void); unsigned long bogosum = 0; int cpu, num = 0; for_each_online_cpu(cpu) { num++; bogosum += cpu_data(cpu).udelay_val; } printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n", num, bogosum/(500000/HZ), (bogosum/(5000/HZ))%100); switch(sparc_cpu_model) { case sun4: printk("SUN4\n"); BUG(); break; case sun4c: printk("SUN4C\n"); BUG(); break; case sun4m: smp4m_smp_done(); break; case sun4d: smp4d_smp_done(); break; case sparc_leon: leon_smp_done(); break; case sun4e: printk("SUN4E\n"); BUG(); break; case sun4u: printk("SUN4U\n"); BUG(); break; default: printk("UNKNOWN!\n"); BUG(); break; } } void cpu_panic(void) { printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id()); panic("SMP bolixed\n"); } struct linux_prom_registers smp_penguin_ctable __cpuinitdata = { 0 }; void smp_send_reschedule(int cpu) { /* * CPU model dependent way of implementing IPI generation targeting * a single CPU. The trap handler needs only to do trap entry/return * to call schedule. */ BTFIXUP_CALL(smp_ipi_resched)(cpu); } void smp_send_stop(void) { } void arch_send_call_function_single_ipi(int cpu) { /* trigger one IPI single call on one CPU */ BTFIXUP_CALL(smp_ipi_single)(cpu); } void arch_send_call_function_ipi_mask(const struct cpumask *mask) { int cpu; /* trigger IPI mask call on each CPU */ for_each_cpu(cpu, mask) BTFIXUP_CALL(smp_ipi_mask_one)(cpu); } void smp_resched_interrupt(void) { irq_enter(); scheduler_ipi(); local_cpu_data().irq_resched_count++; irq_exit(); /* re-schedule routine called by interrupt return code. */ } void smp_call_function_single_interrupt(void) { irq_enter(); generic_smp_call_function_single_interrupt(); local_cpu_data().irq_call_count++; irq_exit(); } void smp_call_function_interrupt(void) { irq_enter(); generic_smp_call_function_interrupt(); local_cpu_data().irq_call_count++; irq_exit(); } void smp_flush_cache_all(void) { xc0((smpfunc_t) BTFIXUP_CALL(local_flush_cache_all)); local_flush_cache_all(); } void smp_flush_tlb_all(void) { xc0((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_all)); local_flush_tlb_all(); } void smp_flush_cache_mm(struct mm_struct *mm) { if(mm->context != NO_CONTEXT) { cpumask_t cpu_mask; cpumask_copy(&cpu_mask, mm_cpumask(mm)); cpumask_clear_cpu(smp_processor_id(), &cpu_mask); if (!cpumask_empty(&cpu_mask)) xc1((smpfunc_t) BTFIXUP_CALL(local_flush_cache_mm), (unsigned long) mm); local_flush_cache_mm(mm); } } void smp_flush_tlb_mm(struct mm_struct *mm) { if(mm->context != NO_CONTEXT) { cpumask_t cpu_mask; cpumask_copy(&cpu_mask, mm_cpumask(mm)); cpumask_clear_cpu(smp_processor_id(), &cpu_mask); if (!cpumask_empty(&cpu_mask)) { xc1((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_mm), (unsigned long) mm); if(atomic_read(&mm->mm_users) == 1 && current->active_mm == mm) cpumask_copy(mm_cpumask(mm), cpumask_of(smp_processor_id())); } local_flush_tlb_mm(mm); } } void smp_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { struct mm_struct *mm = vma->vm_mm; if (mm->context != NO_CONTEXT) { cpumask_t cpu_mask; cpumask_copy(&cpu_mask, mm_cpumask(mm)); cpumask_clear_cpu(smp_processor_id(), &cpu_mask); if (!cpumask_empty(&cpu_mask)) xc3((smpfunc_t) BTFIXUP_CALL(local_flush_cache_range), (unsigned long) vma, start, end); local_flush_cache_range(vma, start, end); } } void smp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { struct mm_struct *mm = vma->vm_mm; if (mm->context != NO_CONTEXT) { cpumask_t cpu_mask; cpumask_copy(&cpu_mask, mm_cpumask(mm)); cpumask_clear_cpu(smp_processor_id(), &cpu_mask); if (!cpumask_empty(&cpu_mask)) xc3((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_range), (unsigned long) vma, start, end); local_flush_tlb_range(vma, start, end); } } void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page) { struct mm_struct *mm = vma->vm_mm; if(mm->context != NO_CONTEXT) { cpumask_t cpu_mask; cpumask_copy(&cpu_mask, mm_cpumask(mm)); cpumask_clear_cpu(smp_processor_id(), &cpu_mask); if (!cpumask_empty(&cpu_mask)) xc2((smpfunc_t) BTFIXUP_CALL(local_flush_cache_page), (unsigned long) vma, page); local_flush_cache_page(vma, page); } } void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) { struct mm_struct *mm = vma->vm_mm; if(mm->context != NO_CONTEXT) { cpumask_t cpu_mask; cpumask_copy(&cpu_mask, mm_cpumask(mm)); cpumask_clear_cpu(smp_processor_id(), &cpu_mask); if (!cpumask_empty(&cpu_mask)) xc2((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_page), (unsigned long) vma, page); local_flush_tlb_page(vma, page); } } void smp_flush_page_to_ram(unsigned long page) { /* Current theory is that those who call this are the one's * who have just dirtied their cache with the pages contents * in kernel space, therefore we only run this on local cpu. * * XXX This experiment failed, research further... -DaveM */ #if 1 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_to_ram), page); #endif local_flush_page_to_ram(page); } void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) { cpumask_t cpu_mask; cpumask_copy(&cpu_mask, mm_cpumask(mm)); cpumask_clear_cpu(smp_processor_id(), &cpu_mask); if (!cpumask_empty(&cpu_mask)) xc2((smpfunc_t) BTFIXUP_CALL(local_flush_sig_insns), (unsigned long) mm, insn_addr); local_flush_sig_insns(mm, insn_addr); } extern unsigned int lvl14_resolution; /* /proc/profile writes can call this, don't __init it please. */ static DEFINE_SPINLOCK(prof_setup_lock); int setup_profiling_timer(unsigned int multiplier) { int i; unsigned long flags; /* Prevent level14 ticker IRQ flooding. */ if((!multiplier) || (lvl14_resolution / multiplier) < 500) return -EINVAL; spin_lock_irqsave(&prof_setup_lock, flags); for_each_possible_cpu(i) { load_profile_irq(i, lvl14_resolution / multiplier); prof_multiplier(i) = multiplier; } spin_unlock_irqrestore(&prof_setup_lock, flags); return 0; } void __init smp_prepare_cpus(unsigned int max_cpus) { extern void __init smp4m_boot_cpus(void); extern void __init smp4d_boot_cpus(void); int i, cpuid, extra; printk("Entering SMP Mode...\n"); extra = 0; for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) { if (cpuid >= NR_CPUS) extra++; } /* i = number of cpus */ if (extra && max_cpus > i - extra) printk("Warning: NR_CPUS is too low to start all cpus\n"); smp_store_cpu_info(boot_cpu_id); switch(sparc_cpu_model) { case sun4: printk("SUN4\n"); BUG(); break; case sun4c: printk("SUN4C\n"); BUG(); break; case sun4m: smp4m_boot_cpus(); break; case sun4d: smp4d_boot_cpus(); break; case sparc_leon: leon_boot_cpus(); break; case sun4e: printk("SUN4E\n"); BUG(); break; case sun4u: printk("SUN4U\n"); BUG(); break; default: printk("UNKNOWN!\n"); BUG(); break; } } /* Set this up early so that things like the scheduler can init * properly. We use the same cpu mask for both the present and * possible cpu map. */ void __init smp_setup_cpu_possible_map(void) { int instance, mid; instance = 0; while (!cpu_find_by_instance(instance, NULL, &mid)) { if (mid < NR_CPUS) { set_cpu_possible(mid, true); set_cpu_present(mid, true); } instance++; } } void __init smp_prepare_boot_cpu(void) { int cpuid = hard_smp_processor_id(); if (cpuid >= NR_CPUS) { prom_printf("Serious problem, boot cpu id >= NR_CPUS\n"); prom_halt(); } if (cpuid != 0) printk("boot cpu id != 0, this could work but is untested\n"); current_thread_info()->cpu = cpuid; set_cpu_online(cpuid, true); set_cpu_possible(cpuid, true); } int __cpuinit __cpu_up(unsigned int cpu) { extern int __cpuinit smp4m_boot_one_cpu(int); extern int __cpuinit smp4d_boot_one_cpu(int); int ret=0; switch(sparc_cpu_model) { case sun4: printk("SUN4\n"); BUG(); break; case sun4c: printk("SUN4C\n"); BUG(); break; case sun4m: ret = smp4m_boot_one_cpu(cpu); break; case sun4d: ret = smp4d_boot_one_cpu(cpu); break; case sparc_leon: ret = leon_boot_one_cpu(cpu); break; case sun4e: printk("SUN4E\n"); BUG(); break; case sun4u: printk("SUN4U\n"); BUG(); break; default: printk("UNKNOWN!\n"); BUG(); break; } if (!ret) { cpumask_set_cpu(cpu, &smp_commenced_mask); while (!cpu_online(cpu)) mb(); } return ret; } void smp_bogo(struct seq_file *m) { int i; for_each_online_cpu(i) { seq_printf(m, "Cpu%dBogo\t: %lu.%02lu\n", i, cpu_data(i).udelay_val/(500000/HZ), (cpu_data(i).udelay_val/(5000/HZ))%100); } } void smp_info(struct seq_file *m) { int i; seq_printf(m, "State:\n"); for_each_online_cpu(i) seq_printf(m, "CPU%d\t\t: online\n", i); }