/* * viking.h: Defines specific to the GNU/Viking MBUS module. * This is SRMMU stuff. * * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) */ #ifndef _SPARC_VIKING_H #define _SPARC_VIKING_H #include <asm/asi.h> #include <asm/mxcc.h> #include <asm/pgtsrmmu.h> /* Bits in the SRMMU control register for GNU/Viking modules. * * ----------------------------------------------------------- * |impl-vers| RSV |TC|AC|SP|BM|PC|MBM|SB|IC|DC|PSO|RSV|NF|ME| * ----------------------------------------------------------- * 31 24 23-17 16 15 14 13 12 11 10 9 8 7 6-2 1 0 * * TC: Tablewalk Cacheable -- 0 = Twalks are not cacheable in E-cache * 1 = Twalks are cacheable in E-cache * * GNU/Viking will only cache tablewalks in the E-cache (mxcc) if present * and never caches them internally (or so states the docs). Therefore * for machines lacking an E-cache (ie. in MBUS mode) this bit must * remain cleared. * * AC: Alternate Cacheable -- 0 = Passthru physical accesses not cacheable * 1 = Passthru physical accesses cacheable * * This indicates whether accesses are cacheable when no cachable bit * is present in the pte when the processor is in boot-mode or the * access does not need pte's for translation (ie. pass-thru ASI's). * "Cachable" is only referring to E-cache (if present) and not the * on chip split I/D caches of the GNU/Viking. * * SP: SnooP Enable -- 0 = bus snooping off, 1 = bus snooping on * * This enables snooping on the GNU/Viking bus. This must be on * for the hardware cache consistency mechanisms of the GNU/Viking * to work at all. On non-mxcc GNU/Viking modules the split I/D * caches will snoop regardless of whether they are enabled, this * takes care of the case where the I or D or both caches are turned * off yet still contain valid data. Note also that this bit does * not affect GNU/Viking store-buffer snoops, those happen if the * store-buffer is enabled no matter what. * * BM: Boot Mode -- 0 = not in boot mode, 1 = in boot mode * * This indicates whether the GNU/Viking is in boot-mode or not, * if it is then all instruction fetch physical addresses are * computed as 0xff0000000 + low 28 bits of requested address. * GNU/Viking boot-mode does not affect data accesses. Also, * in boot mode instruction accesses bypass the split on chip I/D * caches, they may be cached by the GNU/MXCC if present and enabled. * * MBM: MBus Mode -- 0 = not in MBus mode, 1 = in MBus mode * * This indicated the GNU/Viking configuration present. If in * MBUS mode, the GNU/Viking lacks a GNU/MXCC E-cache. If it is * not then the GNU/Viking is on a module VBUS connected directly * to a GNU/MXCC cache controller. The GNU/MXCC can be thus connected * to either an GNU/MBUS (sun4m) or the packet-switched GNU/XBus (sun4d). * * SB: StoreBuffer enable -- 0 = store buffer off, 1 = store buffer on * * The GNU/Viking store buffer allows the chip to continue execution * after a store even if the data cannot be placed in one of the * caches during that cycle. If disabled, all stores operations * occur synchronously. * * IC: Instruction Cache -- 0 = off, 1 = on * DC: Data Cache -- 0 = off, 1 = 0n * * These bits enable the on-cpu GNU/Viking split I/D caches. Note, * as mentioned above, these caches will snoop the bus in GNU/MBUS * configurations even when disabled to avoid data corruption. * * NF: No Fault -- 0 = faults generate traps, 1 = faults don't trap * ME: MMU enable -- 0 = mmu not translating, 1 = mmu translating * */ #define VIKING_MMUENABLE 0x00000001 #define VIKING_NOFAULT 0x00000002 #define VIKING_PSO 0x00000080 #define VIKING_DCENABLE 0x00000100 /* Enable data cache */ #define VIKING_ICENABLE 0x00000200 /* Enable instruction cache */ #define VIKING_SBENABLE 0x00000400 /* Enable store buffer */ #define VIKING_MMODE 0x00000800 /* MBUS mode */ #define VIKING_PCENABLE 0x00001000 /* Enable parity checking */ #define VIKING_BMODE 0x00002000 #define VIKING_SPENABLE 0x00004000 /* Enable bus cache snooping */ #define VIKING_ACENABLE 0x00008000 /* Enable alternate caching */ #define VIKING_TCENABLE 0x00010000 /* Enable table-walks to be cached */ #define VIKING_DPENABLE 0x00040000 /* Enable the data prefetcher */ /* * GNU/Viking Breakpoint Action Register fields. */ #define VIKING_ACTION_MIX 0x00001000 /* Enable multiple instructions */ /* * GNU/Viking Cache Tags. */ #define VIKING_PTAG_VALID 0x01000000 /* Cache block is valid */ #define VIKING_PTAG_DIRTY 0x00010000 /* Block has been modified */ #define VIKING_PTAG_SHARED 0x00000100 /* Shared with some other cache */ #ifndef __ASSEMBLY__ static inline void viking_flush_icache(void) { __asm__ __volatile__("sta %%g0, [%%g0] %0\n\t" : /* no outputs */ : "i" (ASI_M_IC_FLCLEAR) : "memory"); } static inline void viking_flush_dcache(void) { __asm__ __volatile__("sta %%g0, [%%g0] %0\n\t" : /* no outputs */ : "i" (ASI_M_DC_FLCLEAR) : "memory"); } static inline void viking_unlock_icache(void) { __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : /* no outputs */ : "r" (0x80000000), "i" (ASI_M_IC_FLCLEAR) : "memory"); } static inline void viking_unlock_dcache(void) { __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : /* no outputs */ : "r" (0x80000000), "i" (ASI_M_DC_FLCLEAR) : "memory"); } static inline void viking_set_bpreg(unsigned long regval) { __asm__ __volatile__("sta %0, [%%g0] %1\n\t" : /* no outputs */ : "r" (regval), "i" (ASI_M_ACTION) : "memory"); } static inline unsigned long viking_get_bpreg(void) { unsigned long regval; __asm__ __volatile__("lda [%%g0] %1, %0\n\t" : "=r" (regval) : "i" (ASI_M_ACTION)); return regval; } static inline void viking_get_dcache_ptag(int set, int block, unsigned long *data) { unsigned long ptag = ((set & 0x7f) << 5) | ((block & 0x3) << 26) | 0x80000000; unsigned long info, page; __asm__ __volatile__ ("ldda [%2] %3, %%g2\n\t" "or %%g0, %%g2, %0\n\t" "or %%g0, %%g3, %1\n\t" : "=r" (info), "=r" (page) : "r" (ptag), "i" (ASI_M_DATAC_TAG) : "g2", "g3"); data[0] = info; data[1] = page; } static inline void viking_mxcc_turn_off_parity(unsigned long *mregp, unsigned long *mxcc_cregp) { unsigned long mreg = *mregp; unsigned long mxcc_creg = *mxcc_cregp; mreg &= ~(VIKING_PCENABLE); mxcc_creg &= ~(MXCC_CTL_PARE); __asm__ __volatile__ ("set 1f, %%g2\n\t" "andcc %%g2, 4, %%g0\n\t" "bne 2f\n\t" " nop\n" "1:\n\t" "sta %0, [%%g0] %3\n\t" "sta %1, [%2] %4\n\t" "b 1f\n\t" " nop\n\t" "nop\n" "2:\n\t" "sta %0, [%%g0] %3\n\t" "sta %1, [%2] %4\n" "1:\n\t" : /* no output */ : "r" (mreg), "r" (mxcc_creg), "r" (MXCC_CREG), "i" (ASI_M_MMUREGS), "i" (ASI_M_MXCC) : "g2", "memory", "cc"); *mregp = mreg; *mxcc_cregp = mxcc_creg; } static inline unsigned long viking_hwprobe(unsigned long vaddr) { unsigned long val; vaddr &= PAGE_MASK; /* Probe all MMU entries. */ __asm__ __volatile__("lda [%1] %2, %0\n\t" : "=r" (val) : "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE)); if (!val) return 0; /* Probe region. */ __asm__ __volatile__("lda [%1] %2, %0\n\t" : "=r" (val) : "r" (vaddr | 0x200), "i" (ASI_M_FLUSH_PROBE)); if ((val & SRMMU_ET_MASK) == SRMMU_ET_PTE) { vaddr &= ~SRMMU_PGDIR_MASK; vaddr >>= PAGE_SHIFT; return val | (vaddr << 8); } /* Probe segment. */ __asm__ __volatile__("lda [%1] %2, %0\n\t" : "=r" (val) : "r" (vaddr | 0x100), "i" (ASI_M_FLUSH_PROBE)); if ((val & SRMMU_ET_MASK) == SRMMU_ET_PTE) { vaddr &= ~SRMMU_REAL_PMD_MASK; vaddr >>= PAGE_SHIFT; return val | (vaddr << 8); } /* Probe page. */ __asm__ __volatile__("lda [%1] %2, %0\n\t" : "=r" (val) : "r" (vaddr), "i" (ASI_M_FLUSH_PROBE)); return val; } #endif /* !__ASSEMBLY__ */ #endif /* !(_SPARC_VIKING_H) */