/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * arch/sh64/kernel/traps.c * * Copyright (C) 2000, 2001 Paolo Alberelli * Copyright (C) 2003, 2004 Paul Mundt * Copyright (C) 2003, 2004 Richard Curnow * */ /* * 'Traps.c' handles hardware traps and faults after we have saved some * state in 'entry.S'. */ #include <linux/sched.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/errno.h> #include <linux/ptrace.h> #include <linux/timer.h> #include <linux/mm.h> #include <linux/smp.h> #include <linux/smp_lock.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/spinlock.h> #include <linux/kallsyms.h> #include <linux/interrupt.h> #include <linux/sysctl.h> #include <linux/module.h> #include <asm/system.h> #include <asm/uaccess.h> #include <asm/io.h> #include <asm/atomic.h> #include <asm/processor.h> #include <asm/pgtable.h> #undef DEBUG_EXCEPTION #ifdef DEBUG_EXCEPTION /* implemented in ../lib/dbg.c */ extern void show_excp_regs(char *fname, int trapnr, int signr, struct pt_regs *regs); #else #define show_excp_regs(a, b, c, d) #endif static void do_unhandled_exception(int trapnr, int signr, char *str, char *fn_name, unsigned long error_code, struct pt_regs *regs, struct task_struct *tsk); #define DO_ERROR(trapnr, signr, str, name, tsk) \ asmlinkage void do_##name(unsigned long error_code, struct pt_regs *regs) \ { \ do_unhandled_exception(trapnr, signr, str, __stringify(name), error_code, regs, current); \ } spinlock_t die_lock; void die(const char * str, struct pt_regs * regs, long err) { console_verbose(); spin_lock_irq(&die_lock); printk("%s: %lx\n", str, (err & 0xffffff)); show_regs(regs); spin_unlock_irq(&die_lock); do_exit(SIGSEGV); } static inline void die_if_kernel(const char * str, struct pt_regs * regs, long err) { if (!user_mode(regs)) die(str, regs, err); } static void die_if_no_fixup(const char * str, struct pt_regs * regs, long err) { if (!user_mode(regs)) { const struct exception_table_entry *fixup; fixup = search_exception_tables(regs->pc); if (fixup) { regs->pc = fixup->fixup; return; } die(str, regs, err); } } DO_ERROR(13, SIGILL, "illegal slot instruction", illegal_slot_inst, current) DO_ERROR(87, SIGSEGV, "address error (exec)", address_error_exec, current) /* Implement misaligned load/store handling for kernel (and optionally for user mode too). Limitation : only SHmedia mode code is handled - there is no handling at all for misaligned accesses occurring in SHcompact code yet. */ static int misaligned_fixup(struct pt_regs *regs); asmlinkage void do_address_error_load(unsigned long error_code, struct pt_regs *regs) { if (misaligned_fixup(regs) < 0) { do_unhandled_exception(7, SIGSEGV, "address error(load)", "do_address_error_load", error_code, regs, current); } return; } asmlinkage void do_address_error_store(unsigned long error_code, struct pt_regs *regs) { if (misaligned_fixup(regs) < 0) { do_unhandled_exception(8, SIGSEGV, "address error(store)", "do_address_error_store", error_code, regs, current); } return; } #if defined(CONFIG_SH64_ID2815_WORKAROUND) #define OPCODE_INVALID 0 #define OPCODE_USER_VALID 1 #define OPCODE_PRIV_VALID 2 /* getcon/putcon - requires checking which control register is referenced. */ #define OPCODE_CTRL_REG 3 /* Table of valid opcodes for SHmedia mode. Form a 10-bit value by concatenating the major/minor opcodes i.e. opcode[31:26,20:16]. The 6 MSBs of this value index into the following array. The 4 LSBs select the bit-pair in the entry (bits 1:0 correspond to LSBs==4'b0000 etc). */ static unsigned long shmedia_opcode_table[64] = { 0x55554044,0x54445055,0x15141514,0x14541414,0x00000000,0x10001000,0x01110055,0x04050015, 0x00000444,0xc0000000,0x44545515,0x40405555,0x55550015,0x10005555,0x55555505,0x04050000, 0x00000555,0x00000404,0x00040445,0x15151414,0x00000000,0x00000000,0x00000000,0x00000000, 0x00000055,0x40404444,0x00000404,0xc0009495,0x00000000,0x00000000,0x00000000,0x00000000, 0x55555555,0x55555555,0x55555555,0x55555555,0x55555555,0x55555555,0x55555555,0x55555555, 0x55555555,0x55555555,0x55555555,0x55555555,0x55555555,0x55555555,0x55555555,0x55555555, 0x80005050,0x04005055,0x55555555,0x55555555,0x55555555,0x55555555,0x55555555,0x55555555, 0x81055554,0x00000404,0x55555555,0x55555555,0x00000000,0x00000000,0x00000000,0x00000000 }; void do_reserved_inst(unsigned long error_code, struct pt_regs *regs) { /* Workaround SH5-101 cut2 silicon defect #2815 : in some situations, inter-mode branches from SHcompact -> SHmedia which should take ITLBMISS or EXECPROT exceptions at the target falsely take RESINST at the target instead. */ unsigned long opcode = 0x6ff4fff0; /* guaranteed reserved opcode */ unsigned long pc, aligned_pc; int get_user_error; int trapnr = 12; int signr = SIGILL; char *exception_name = "reserved_instruction"; pc = regs->pc; if ((pc & 3) == 1) { /* SHmedia : check for defect. This requires executable vmas to be readable too. */ aligned_pc = pc & ~3; if (!access_ok(VERIFY_READ, aligned_pc, sizeof(unsigned long))) { get_user_error = -EFAULT; } else { get_user_error = __get_user(opcode, (unsigned long *)aligned_pc); } if (get_user_error >= 0) { unsigned long index, shift; unsigned long major, minor, combined; unsigned long reserved_field; reserved_field = opcode & 0xf; /* These bits are currently reserved as zero in all valid opcodes */ major = (opcode >> 26) & 0x3f; minor = (opcode >> 16) & 0xf; combined = (major << 4) | minor; index = major; shift = minor << 1; if (reserved_field == 0) { int opcode_state = (shmedia_opcode_table[index] >> shift) & 0x3; switch (opcode_state) { case OPCODE_INVALID: /* Trap. */ break; case OPCODE_USER_VALID: /* Restart the instruction : the branch to the instruction will now be from an RTE not from SHcompact so the silicon defect won't be triggered. */ return; case OPCODE_PRIV_VALID: if (!user_mode(regs)) { /* Should only ever get here if a module has SHcompact code inside it. If so, the same fix up is needed. */ return; /* same reason */ } /* Otherwise, user mode trying to execute a privileged instruction - fall through to trap. */ break; case OPCODE_CTRL_REG: /* If in privileged mode, return as above. */ if (!user_mode(regs)) return; /* In user mode ... */ if (combined == 0x9f) { /* GETCON */ unsigned long regno = (opcode >> 20) & 0x3f; if (regno >= 62) { return; } /* Otherwise, reserved or privileged control register, => trap */ } else if (combined == 0x1bf) { /* PUTCON */ unsigned long regno = (opcode >> 4) & 0x3f; if (regno >= 62) { return; } /* Otherwise, reserved or privileged control register, => trap */ } else { /* Trap */ } break; default: /* Fall through to trap. */ break; } } /* fall through to normal resinst processing */ } else { /* Error trying to read opcode. This typically means a real fault, not a RESINST any more. So change the codes. */ trapnr = 87; exception_name = "address error (exec)"; signr = SIGSEGV; } } do_unhandled_exception(trapnr, signr, exception_name, "do_reserved_inst", error_code, regs, current); } #else /* CONFIG_SH64_ID2815_WORKAROUND */ /* If the workaround isn't needed, this is just a straightforward reserved instruction */ DO_ERROR(12, SIGILL, "reserved instruction", reserved_inst, current) #endif /* CONFIG_SH64_ID2815_WORKAROUND */ #include <asm/system.h> /* Called with interrupts disabled */ asmlinkage void do_exception_error(unsigned long ex, struct pt_regs *regs) { PLS(); show_excp_regs(__FUNCTION__, -1, -1, regs); die_if_kernel("exception", regs, ex); } int do_unknown_trapa(unsigned long scId, struct pt_regs *regs) { /* Syscall debug */ printk("System call ID error: [0x1#args:8 #syscall:16 0x%lx]\n", scId); die_if_kernel("unknown trapa", regs, scId); return -ENOSYS; } void show_stack(struct task_struct *tsk, unsigned long *sp) { #ifdef CONFIG_KALLSYMS extern void sh64_unwind(struct pt_regs *regs); struct pt_regs *regs; regs = tsk ? tsk->thread.kregs : NULL; sh64_unwind(regs); #else printk(KERN_ERR "Can't backtrace on sh64 without CONFIG_KALLSYMS\n"); #endif } void show_task(unsigned long *sp) { show_stack(NULL, sp); } void dump_stack(void) { show_task(NULL); } /* Needed by any user of WARN_ON in view of the defn in include/asm-sh/bug.h */ EXPORT_SYMBOL(dump_stack); static void do_unhandled_exception(int trapnr, int signr, char *str, char *fn_name, unsigned long error_code, struct pt_regs *regs, struct task_struct *tsk) { show_excp_regs(fn_name, trapnr, signr, regs); tsk->thread.error_code = error_code; tsk->thread.trap_no = trapnr; if (user_mode(regs)) force_sig(signr, tsk); die_if_no_fixup(str, regs, error_code); } static int read_opcode(unsigned long long pc, unsigned long *result_opcode, int from_user_mode) { int get_user_error; unsigned long aligned_pc; unsigned long opcode; if ((pc & 3) == 1) { /* SHmedia */ aligned_pc = pc & ~3; if (from_user_mode) { if (!access_ok(VERIFY_READ, aligned_pc, sizeof(unsigned long))) { get_user_error = -EFAULT; } else { get_user_error = __get_user(opcode, (unsigned long *)aligned_pc); *result_opcode = opcode; } return get_user_error; } else { /* If the fault was in the kernel, we can either read * this directly, or if not, we fault. */ *result_opcode = *(unsigned long *) aligned_pc; return 0; } } else if ((pc & 1) == 0) { /* SHcompact */ /* TODO : provide handling for this. We don't really support user-mode SHcompact yet, and for a kernel fault, this would have to come from a module built for SHcompact. */ return -EFAULT; } else { /* misaligned */ return -EFAULT; } } static int address_is_sign_extended(__u64 a) { __u64 b; #if (NEFF == 32) b = (__u64)(__s64)(__s32)(a & 0xffffffffUL); return (b == a) ? 1 : 0; #else #error "Sign extend check only works for NEFF==32" #endif } static int generate_and_check_address(struct pt_regs *regs, __u32 opcode, int displacement_not_indexed, int width_shift, __u64 *address) { /* return -1 for fault, 0 for OK */ __u64 base_address, addr; int basereg; basereg = (opcode >> 20) & 0x3f; base_address = regs->regs[basereg]; if (displacement_not_indexed) { __s64 displacement; displacement = (opcode >> 10) & 0x3ff; displacement = ((displacement << 54) >> 54); /* sign extend */ addr = (__u64)((__s64)base_address + (displacement << width_shift)); } else { __u64 offset; int offsetreg; offsetreg = (opcode >> 10) & 0x3f; offset = regs->regs[offsetreg]; addr = base_address + offset; } /* Check sign extended */ if (!address_is_sign_extended(addr)) { return -1; } #if defined(CONFIG_SH64_USER_MISALIGNED_FIXUP) /* Check accessible. For misaligned access in the kernel, assume the address is always accessible (and if not, just fault when the load/store gets done.) */ if (user_mode(regs)) { if (addr >= TASK_SIZE) { return -1; } /* Do access_ok check later - it depends on whether it's a load or a store. */ } #endif *address = addr; return 0; } /* Default value as for sh */ #if defined(CONFIG_SH64_USER_MISALIGNED_FIXUP) static int user_mode_unaligned_fixup_count = 10; static int user_mode_unaligned_fixup_enable = 1; #endif static int kernel_mode_unaligned_fixup_count = 32; static void misaligned_kernel_word_load(__u64 address, int do_sign_extend, __u64 *result) { unsigned short x; unsigned char *p, *q; p = (unsigned char *) (int) address; q = (unsigned char *) &x; q[0] = p[0]; q[1] = p[1]; if (do_sign_extend) { *result = (__u64)(__s64) *(short *) &x; } else { *result = (__u64) x; } } static void misaligned_kernel_word_store(__u64 address, __u64 value) { unsigned short x; unsigned char *p, *q; p = (unsigned char *) (int) address; q = (unsigned char *) &x; x = (__u16) value; p[0] = q[0]; p[1] = q[1]; } static int misaligned_load(struct pt_regs *regs, __u32 opcode, int displacement_not_indexed, int width_shift, int do_sign_extend) { /* Return -1 for a fault, 0 for OK */ int error; int destreg; __u64 address; error = generate_and_check_address(regs, opcode, displacement_not_indexed, width_shift, &address); if (error < 0) { return error; } destreg = (opcode >> 4) & 0x3f; #if defined(CONFIG_SH64_USER_MISALIGNED_FIXUP) if (user_mode(regs)) { __u64 buffer; if (!access_ok(VERIFY_READ, (unsigned long) address, 1UL<<width_shift)) { return -1; } if (__copy_user(&buffer, (const void *)(int)address, (1 << width_shift)) > 0) { return -1; /* fault */ } switch (width_shift) { case 1: if (do_sign_extend) { regs->regs[destreg] = (__u64)(__s64) *(__s16 *) &buffer; } else { regs->regs[destreg] = (__u64) *(__u16 *) &buffer; } break; case 2: regs->regs[destreg] = (__u64)(__s64) *(__s32 *) &buffer; break; case 3: regs->regs[destreg] = buffer; break; default: printk("Unexpected width_shift %d in misaligned_load, PC=%08lx\n", width_shift, (unsigned long) regs->pc); break; } } else #endif { /* kernel mode - we can take short cuts since if we fault, it's a genuine bug */ __u64 lo, hi; switch (width_shift) { case 1: misaligned_kernel_word_load(address, do_sign_extend, ®s->regs[destreg]); break; case 2: asm ("ldlo.l %1, 0, %0" : "=r" (lo) : "r" (address)); asm ("ldhi.l %1, 3, %0" : "=r" (hi) : "r" (address)); regs->regs[destreg] = lo | hi; break; case 3: asm ("ldlo.q %1, 0, %0" : "=r" (lo) : "r" (address)); asm ("ldhi.q %1, 7, %0" : "=r" (hi) : "r" (address)); regs->regs[destreg] = lo | hi; break; default: printk("Unexpected width_shift %d in misaligned_load, PC=%08lx\n", width_shift, (unsigned long) regs->pc); break; } } return 0; } static int misaligned_store(struct pt_regs *regs, __u32 opcode, int displacement_not_indexed, int width_shift) { /* Return -1 for a fault, 0 for OK */ int error; int srcreg; __u64 address; error = generate_and_check_address(regs, opcode, displacement_not_indexed, width_shift, &address); if (error < 0) { return error; } srcreg = (opcode >> 4) & 0x3f; #if defined(CONFIG_SH64_USER_MISALIGNED_FIXUP) if (user_mode(regs)) { __u64 buffer; if (!access_ok(VERIFY_WRITE, (unsigned long) address, 1UL<<width_shift)) { return -1; } switch (width_shift) { case 1: *(__u16 *) &buffer = (__u16) regs->regs[srcreg]; break; case 2: *(__u32 *) &buffer = (__u32) regs->regs[srcreg]; break; case 3: buffer = regs->regs[srcreg]; break; default: printk("Unexpected width_shift %d in misaligned_store, PC=%08lx\n", width_shift, (unsigned long) regs->pc); break; } if (__copy_user((void *)(int)address, &buffer, (1 << width_shift)) > 0) { return -1; /* fault */ } } else #endif { /* kernel mode - we can take short cuts since if we fault, it's a genuine bug */ __u64 val = regs->regs[srcreg]; switch (width_shift) { case 1: misaligned_kernel_word_store(address, val); break; case 2: asm ("stlo.l %1, 0, %0" : : "r" (val), "r" (address)); asm ("sthi.l %1, 3, %0" : : "r" (val), "r" (address)); break; case 3: asm ("stlo.q %1, 0, %0" : : "r" (val), "r" (address)); asm ("sthi.q %1, 7, %0" : : "r" (val), "r" (address)); break; default: printk("Unexpected width_shift %d in misaligned_store, PC=%08lx\n", width_shift, (unsigned long) regs->pc); break; } } return 0; } #if defined(CONFIG_SH64_USER_MISALIGNED_FIXUP) /* Never need to fix up misaligned FPU accesses within the kernel since that's a real error. */ static int misaligned_fpu_load(struct pt_regs *regs, __u32 opcode, int displacement_not_indexed, int width_shift, int do_paired_load) { /* Return -1 for a fault, 0 for OK */ int error; int destreg; __u64 address; error = generate_and_check_address(regs, opcode, displacement_not_indexed, width_shift, &address); if (error < 0) { return error; } destreg = (opcode >> 4) & 0x3f; if (user_mode(regs)) { __u64 buffer; __u32 buflo, bufhi; if (!access_ok(VERIFY_READ, (unsigned long) address, 1UL<<width_shift)) { return -1; } if (__copy_user(&buffer, (const void *)(int)address, (1 << width_shift)) > 0) { return -1; /* fault */ } /* 'current' may be the current owner of the FPU state, so context switch the registers into memory so they can be indexed by register number. */ if (last_task_used_math == current) { grab_fpu(); fpsave(¤t->thread.fpu.hard); release_fpu(); last_task_used_math = NULL; regs->sr |= SR_FD; } buflo = *(__u32*) &buffer; bufhi = *(1 + (__u32*) &buffer); switch (width_shift) { case 2: current->thread.fpu.hard.fp_regs[destreg] = buflo; break; case 3: if (do_paired_load) { current->thread.fpu.hard.fp_regs[destreg] = buflo; current->thread.fpu.hard.fp_regs[destreg+1] = bufhi; } else { #if defined(CONFIG_LITTLE_ENDIAN) current->thread.fpu.hard.fp_regs[destreg] = bufhi; current->thread.fpu.hard.fp_regs[destreg+1] = buflo; #else current->thread.fpu.hard.fp_regs[destreg] = buflo; current->thread.fpu.hard.fp_regs[destreg+1] = bufhi; #endif } break; default: printk("Unexpected width_shift %d in misaligned_fpu_load, PC=%08lx\n", width_shift, (unsigned long) regs->pc); break; } return 0; } else { die ("Misaligned FPU load inside kernel", regs, 0); return -1; } } static int misaligned_fpu_store(struct pt_regs *regs, __u32 opcode, int displacement_not_indexed, int width_shift, int do_paired_load) { /* Return -1 for a fault, 0 for OK */ int error; int srcreg; __u64 address; error = generate_and_check_address(regs, opcode, displacement_not_indexed, width_shift, &address); if (error < 0) { return error; } srcreg = (opcode >> 4) & 0x3f; if (user_mode(regs)) { __u64 buffer; /* Initialise these to NaNs. */ __u32 buflo=0xffffffffUL, bufhi=0xffffffffUL; if (!access_ok(VERIFY_WRITE, (unsigned long) address, 1UL<<width_shift)) { return -1; } /* 'current' may be the current owner of the FPU state, so context switch the registers into memory so they can be indexed by register number. */ if (last_task_used_math == current) { grab_fpu(); fpsave(¤t->thread.fpu.hard); release_fpu(); last_task_used_math = NULL; regs->sr |= SR_FD; } switch (width_shift) { case 2: buflo = current->thread.fpu.hard.fp_regs[srcreg]; break; case 3: if (do_paired_load) { buflo = current->thread.fpu.hard.fp_regs[srcreg]; bufhi = current->thread.fpu.hard.fp_regs[srcreg+1]; } else { #if defined(CONFIG_LITTLE_ENDIAN) bufhi = current->thread.fpu.hard.fp_regs[srcreg]; buflo = current->thread.fpu.hard.fp_regs[srcreg+1]; #else buflo = current->thread.fpu.hard.fp_regs[srcreg]; bufhi = current->thread.fpu.hard.fp_regs[srcreg+1]; #endif } break; default: printk("Unexpected width_shift %d in misaligned_fpu_store, PC=%08lx\n", width_shift, (unsigned long) regs->pc); break; } *(__u32*) &buffer = buflo; *(1 + (__u32*) &buffer) = bufhi; if (__copy_user((void *)(int)address, &buffer, (1 << width_shift)) > 0) { return -1; /* fault */ } return 0; } else { die ("Misaligned FPU load inside kernel", regs, 0); return -1; } } #endif static int misaligned_fixup(struct pt_regs *regs) { unsigned long opcode; int error; int major, minor; #if !defined(CONFIG_SH64_USER_MISALIGNED_FIXUP) /* Never fixup user mode misaligned accesses without this option enabled. */ return -1; #else if (!user_mode_unaligned_fixup_enable) return -1; #endif error = read_opcode(regs->pc, &opcode, user_mode(regs)); if (error < 0) { return error; } major = (opcode >> 26) & 0x3f; minor = (opcode >> 16) & 0xf; #if defined(CONFIG_SH64_USER_MISALIGNED_FIXUP) if (user_mode(regs) && (user_mode_unaligned_fixup_count > 0)) { --user_mode_unaligned_fixup_count; /* Only do 'count' worth of these reports, to remove a potential DoS against syslog */ printk("Fixing up unaligned userspace access in \"%s\" pid=%d pc=0x%08x ins=0x%08lx\n", current->comm, current->pid, (__u32)regs->pc, opcode); } else #endif if (!user_mode(regs) && (kernel_mode_unaligned_fixup_count > 0)) { --kernel_mode_unaligned_fixup_count; if (in_interrupt()) { printk("Fixing up unaligned kernelspace access in interrupt pc=0x%08x ins=0x%08lx\n", (__u32)regs->pc, opcode); } else { printk("Fixing up unaligned kernelspace access in \"%s\" pid=%d pc=0x%08x ins=0x%08lx\n", current->comm, current->pid, (__u32)regs->pc, opcode); } } switch (major) { case (0x84>>2): /* LD.W */ error = misaligned_load(regs, opcode, 1, 1, 1); break; case (0xb0>>2): /* LD.UW */ error = misaligned_load(regs, opcode, 1, 1, 0); break; case (0x88>>2): /* LD.L */ error = misaligned_load(regs, opcode, 1, 2, 1); break; case (0x8c>>2): /* LD.Q */ error = misaligned_load(regs, opcode, 1, 3, 0); break; case (0xa4>>2): /* ST.W */ error = misaligned_store(regs, opcode, 1, 1); break; case (0xa8>>2): /* ST.L */ error = misaligned_store(regs, opcode, 1, 2); break; case (0xac>>2): /* ST.Q */ error = misaligned_store(regs, opcode, 1, 3); break; case (0x40>>2): /* indexed loads */ switch (minor) { case 0x1: /* LDX.W */ error = misaligned_load(regs, opcode, 0, 1, 1); break; case 0x5: /* LDX.UW */ error = misaligned_load(regs, opcode, 0, 1, 0); break; case 0x2: /* LDX.L */ error = misaligned_load(regs, opcode, 0, 2, 1); break; case 0x3: /* LDX.Q */ error = misaligned_load(regs, opcode, 0, 3, 0); break; default: error = -1; break; } break; case (0x60>>2): /* indexed stores */ switch (minor) { case 0x1: /* STX.W */ error = misaligned_store(regs, opcode, 0, 1); break; case 0x2: /* STX.L */ error = misaligned_store(regs, opcode, 0, 2); break; case 0x3: /* STX.Q */ error = misaligned_store(regs, opcode, 0, 3); break; default: error = -1; break; } break; #if defined(CONFIG_SH64_USER_MISALIGNED_FIXUP) case (0x94>>2): /* FLD.S */ error = misaligned_fpu_load(regs, opcode, 1, 2, 0); break; case (0x98>>2): /* FLD.P */ error = misaligned_fpu_load(regs, opcode, 1, 3, 1); break; case (0x9c>>2): /* FLD.D */ error = misaligned_fpu_load(regs, opcode, 1, 3, 0); break; case (0x1c>>2): /* floating indexed loads */ switch (minor) { case 0x8: /* FLDX.S */ error = misaligned_fpu_load(regs, opcode, 0, 2, 0); break; case 0xd: /* FLDX.P */ error = misaligned_fpu_load(regs, opcode, 0, 3, 1); break; case 0x9: /* FLDX.D */ error = misaligned_fpu_load(regs, opcode, 0, 3, 0); break; default: error = -1; break; } break; case (0xb4>>2): /* FLD.S */ error = misaligned_fpu_store(regs, opcode, 1, 2, 0); break; case (0xb8>>2): /* FLD.P */ error = misaligned_fpu_store(regs, opcode, 1, 3, 1); break; case (0xbc>>2): /* FLD.D */ error = misaligned_fpu_store(regs, opcode, 1, 3, 0); break; case (0x3c>>2): /* floating indexed stores */ switch (minor) { case 0x8: /* FSTX.S */ error = misaligned_fpu_store(regs, opcode, 0, 2, 0); break; case 0xd: /* FSTX.P */ error = misaligned_fpu_store(regs, opcode, 0, 3, 1); break; case 0x9: /* FSTX.D */ error = misaligned_fpu_store(regs, opcode, 0, 3, 0); break; default: error = -1; break; } break; #endif default: /* Fault */ error = -1; break; } if (error < 0) { return error; } else { regs->pc += 4; /* Skip the instruction that's just been emulated */ return 0; } } static ctl_table unaligned_table[] = { {1, "kernel_reports", &kernel_mode_unaligned_fixup_count, sizeof(int), 0644, NULL, &proc_dointvec}, #if defined(CONFIG_SH64_USER_MISALIGNED_FIXUP) {2, "user_reports", &user_mode_unaligned_fixup_count, sizeof(int), 0644, NULL, &proc_dointvec}, {3, "user_enable", &user_mode_unaligned_fixup_enable, sizeof(int), 0644, NULL, &proc_dointvec}, #endif {0} }; static ctl_table unaligned_root[] = { {1, "unaligned_fixup", NULL, 0, 0555, unaligned_table}, {0} }; static ctl_table sh64_root[] = { {1, "sh64", NULL, 0, 0555, unaligned_root}, {0} }; static struct ctl_table_header *sysctl_header; static int __init init_sysctl(void) { sysctl_header = register_sysctl_table(sh64_root, 0); return 0; } __initcall(init_sysctl); asmlinkage void do_debug_interrupt(unsigned long code, struct pt_regs *regs) { u64 peek_real_address_q(u64 addr); u64 poke_real_address_q(u64 addr, u64 val); unsigned long long DM_EXP_CAUSE_PHY = 0x0c100010; unsigned long long exp_cause; /* It's not worth ioremapping the debug module registers for the amount of access we make to them - just go direct to their physical addresses. */ exp_cause = peek_real_address_q(DM_EXP_CAUSE_PHY); if (exp_cause & ~4) { printk("DM.EXP_CAUSE had unexpected bits set (=%08lx)\n", (unsigned long)(exp_cause & 0xffffffff)); } show_state(); /* Clear all DEBUGINT causes */ poke_real_address_q(DM_EXP_CAUSE_PHY, 0x0); }