/* * linux/arch/sh/kernel/setup.c * * Copyright (C) 1999 Niibe Yutaka * Copyright (C) 2002, 2003 Paul Mundt */ /* * This file handles the architecture-dependent parts of initialization */ #include <linux/screen_info.h> #include <linux/ioport.h> #include <linux/init.h> #include <linux/initrd.h> #include <linux/bootmem.h> #include <linux/console.h> #include <linux/seq_file.h> #include <linux/root_dev.h> #include <linux/utsname.h> #include <linux/cpu.h> #include <linux/pfn.h> #include <linux/fs.h> #include <asm/uaccess.h> #include <asm/io.h> #include <asm/sections.h> #include <asm/irq.h> #include <asm/setup.h> #include <asm/clock.h> #ifdef CONFIG_SH_KGDB #include <asm/kgdb.h> static int kgdb_parse_options(char *options); #endif extern void * __rd_start, * __rd_end; /* * Machine setup.. */ /* * Initialize loops_per_jiffy as 10000000 (1000MIPS). * This value will be used at the very early stage of serial setup. * The bigger value means no problem. */ struct sh_cpuinfo boot_cpu_data = { CPU_SH_NONE, 10000000, }; #ifdef CONFIG_VT struct screen_info screen_info; #endif #if defined(CONFIG_SH_UNKNOWN) struct sh_machine_vector sh_mv; #endif extern int root_mountflags; #define MV_NAME_SIZE 32 static struct sh_machine_vector* __init get_mv_byname(const char* name); /* * This is set up by the setup-routine at boot-time */ #define PARAM ((unsigned char *)empty_zero_page) #define MOUNT_ROOT_RDONLY (*(unsigned long *) (PARAM+0x000)) #define RAMDISK_FLAGS (*(unsigned long *) (PARAM+0x004)) #define ORIG_ROOT_DEV (*(unsigned long *) (PARAM+0x008)) #define LOADER_TYPE (*(unsigned long *) (PARAM+0x00c)) #define INITRD_START (*(unsigned long *) (PARAM+0x010)) #define INITRD_SIZE (*(unsigned long *) (PARAM+0x014)) /* ... */ #define COMMAND_LINE ((char *) (PARAM+0x100)) #define RAMDISK_IMAGE_START_MASK 0x07FF #define RAMDISK_PROMPT_FLAG 0x8000 #define RAMDISK_LOAD_FLAG 0x4000 static char command_line[COMMAND_LINE_SIZE] = { 0, }; static struct resource code_resource = { .name = "Kernel code", }; static struct resource data_resource = { .name = "Kernel data", }; unsigned long memory_start, memory_end; static inline void parse_cmdline (char ** cmdline_p, char mv_name[MV_NAME_SIZE], struct sh_machine_vector** mvp, unsigned long *mv_io_base) { char c = ' ', *to = command_line, *from = COMMAND_LINE; int len = 0; /* Save unparsed command line copy for /proc/cmdline */ memcpy(saved_command_line, COMMAND_LINE, COMMAND_LINE_SIZE); saved_command_line[COMMAND_LINE_SIZE-1] = '\0'; memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START; memory_end = memory_start + __MEMORY_SIZE; for (;;) { /* * "mem=XXX[kKmM]" defines a size of memory. */ if (c == ' ' && !memcmp(from, "mem=", 4)) { if (to != command_line) to--; { unsigned long mem_size; mem_size = memparse(from+4, &from); memory_end = memory_start + mem_size; } } if (c == ' ' && !memcmp(from, "sh_mv=", 6)) { char* mv_end; char* mv_comma; int mv_len; if (to != command_line) to--; from += 6; mv_end = strchr(from, ' '); if (mv_end == NULL) mv_end = from + strlen(from); mv_comma = strchr(from, ','); if ((mv_comma != NULL) && (mv_comma < mv_end)) { int ints[3]; get_options(mv_comma+1, ARRAY_SIZE(ints), ints); *mv_io_base = ints[1]; mv_len = mv_comma - from; } else { mv_len = mv_end - from; } if (mv_len > (MV_NAME_SIZE-1)) mv_len = MV_NAME_SIZE-1; memcpy(mv_name, from, mv_len); mv_name[mv_len] = '\0'; from = mv_end; *mvp = get_mv_byname(mv_name); } c = *(from++); if (!c) break; if (COMMAND_LINE_SIZE <= ++len) break; *(to++) = c; } *to = '\0'; *cmdline_p = command_line; } static int __init sh_mv_setup(char **cmdline_p) { #ifdef CONFIG_SH_UNKNOWN extern struct sh_machine_vector mv_unknown; #endif struct sh_machine_vector *mv = NULL; char mv_name[MV_NAME_SIZE] = ""; unsigned long mv_io_base = 0; parse_cmdline(cmdline_p, mv_name, &mv, &mv_io_base); #ifdef CONFIG_SH_UNKNOWN if (mv == NULL) { mv = &mv_unknown; if (*mv_name != '\0') { printk("Warning: Unsupported machine %s, using unknown\n", mv_name); } } sh_mv = *mv; #endif /* * Manually walk the vec, fill in anything that the board hasn't yet * by hand, wrapping to the generic implementation. */ #define mv_set(elem) do { \ if (!sh_mv.mv_##elem) \ sh_mv.mv_##elem = generic_##elem; \ } while (0) mv_set(inb); mv_set(inw); mv_set(inl); mv_set(outb); mv_set(outw); mv_set(outl); mv_set(inb_p); mv_set(inw_p); mv_set(inl_p); mv_set(outb_p); mv_set(outw_p); mv_set(outl_p); mv_set(insb); mv_set(insw); mv_set(insl); mv_set(outsb); mv_set(outsw); mv_set(outsl); mv_set(readb); mv_set(readw); mv_set(readl); mv_set(writeb); mv_set(writew); mv_set(writel); mv_set(ioport_map); mv_set(ioport_unmap); mv_set(irq_demux); #ifdef CONFIG_SH_UNKNOWN __set_io_port_base(mv_io_base); #endif if (!sh_mv.mv_nr_irqs) sh_mv.mv_nr_irqs = NR_IRQS; return 0; } void __init setup_arch(char **cmdline_p) { unsigned long bootmap_size; unsigned long start_pfn, max_pfn, max_low_pfn; #ifdef CONFIG_CMDLINE_BOOL strcpy(COMMAND_LINE, CONFIG_CMDLINE); #endif ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV); #ifdef CONFIG_BLK_DEV_RAM rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK; rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0); rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0); #endif if (!MOUNT_ROOT_RDONLY) root_mountflags &= ~MS_RDONLY; init_mm.start_code = (unsigned long) _text; init_mm.end_code = (unsigned long) _etext; init_mm.end_data = (unsigned long) _edata; init_mm.brk = (unsigned long) _end; code_resource.start = (unsigned long)virt_to_phys(_text); code_resource.end = (unsigned long)virt_to_phys(_etext)-1; data_resource.start = (unsigned long)virt_to_phys(_etext); data_resource.end = (unsigned long)virt_to_phys(_edata)-1; sh_mv_setup(cmdline_p); /* * Find the highest page frame number we have available */ max_pfn = PFN_DOWN(__pa(memory_end)); /* * Determine low and high memory ranges: */ max_low_pfn = max_pfn; /* * Partially used pages are not usable - thus * we are rounding upwards: */ start_pfn = PFN_UP(__pa(_end)); /* * Find a proper area for the bootmem bitmap. After this * bootstrap step all allocations (until the page allocator * is intact) must be done via bootmem_alloc(). */ bootmap_size = init_bootmem_node(NODE_DATA(0), start_pfn, __MEMORY_START>>PAGE_SHIFT, max_low_pfn); /* * Register fully available low RAM pages with the bootmem allocator. */ { unsigned long curr_pfn, last_pfn, pages; /* * We are rounding up the start address of usable memory: */ curr_pfn = PFN_UP(__MEMORY_START); /* * ... and at the end of the usable range downwards: */ last_pfn = PFN_DOWN(__pa(memory_end)); if (last_pfn > max_low_pfn) last_pfn = max_low_pfn; pages = last_pfn - curr_pfn; free_bootmem_node(NODE_DATA(0), PFN_PHYS(curr_pfn), PFN_PHYS(pages)); } /* * Reserve the kernel text and * Reserve the bootmem bitmap. We do this in two steps (first step * was init_bootmem()), because this catches the (definitely buggy) * case of us accidentally initializing the bootmem allocator with * an invalid RAM area. */ reserve_bootmem_node(NODE_DATA(0), __MEMORY_START+PAGE_SIZE, (PFN_PHYS(start_pfn)+bootmap_size+PAGE_SIZE-1)-__MEMORY_START); /* * reserve physical page 0 - it's a special BIOS page on many boxes, * enabling clean reboots, SMP operation, laptop functions. */ reserve_bootmem_node(NODE_DATA(0), __MEMORY_START, PAGE_SIZE); #ifdef CONFIG_BLK_DEV_INITRD ROOT_DEV = MKDEV(RAMDISK_MAJOR, 0); if (&__rd_start != &__rd_end) { LOADER_TYPE = 1; INITRD_START = PHYSADDR((unsigned long)&__rd_start) - __MEMORY_START; INITRD_SIZE = (unsigned long)&__rd_end - (unsigned long)&__rd_start; } if (LOADER_TYPE && INITRD_START) { if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) { reserve_bootmem_node(NODE_DATA(0), INITRD_START + __MEMORY_START, INITRD_SIZE); initrd_start = INITRD_START + PAGE_OFFSET + __MEMORY_START; initrd_end = initrd_start + INITRD_SIZE; } else { printk("initrd extends beyond end of memory " "(0x%08lx > 0x%08lx)\ndisabling initrd\n", INITRD_START + INITRD_SIZE, max_low_pfn << PAGE_SHIFT); initrd_start = 0; } } #endif #ifdef CONFIG_DUMMY_CONSOLE conswitchp = &dummy_con; #endif /* Perform the machine specific initialisation */ if (likely(sh_mv.mv_setup)) sh_mv.mv_setup(cmdline_p); paging_init(); } struct sh_machine_vector* __init get_mv_byname(const char* name) { extern long __machvec_start, __machvec_end; struct sh_machine_vector *all_vecs = (struct sh_machine_vector *)&__machvec_start; int i, n = ((unsigned long)&__machvec_end - (unsigned long)&__machvec_start)/ sizeof(struct sh_machine_vector); for (i = 0; i < n; ++i) { struct sh_machine_vector *mv = &all_vecs[i]; if (mv == NULL) continue; if (strcasecmp(name, get_system_type()) == 0) { return mv; } } return NULL; } static struct cpu cpu[NR_CPUS]; static int __init topology_init(void) { int cpu_id; for_each_possible_cpu(cpu_id) register_cpu(&cpu[cpu_id], cpu_id); return 0; } subsys_initcall(topology_init); static const char *cpu_name[] = { [CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619", [CPU_SH7604] = "SH7604", [CPU_SH7300] = "SH7300", [CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706", [CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708", [CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710", [CPU_SH7729] = "SH7729", [CPU_SH7750] = "SH7750", [CPU_SH7750S] = "SH7750S", [CPU_SH7750R] = "SH7750R", [CPU_SH7751] = "SH7751", [CPU_SH7751R] = "SH7751R", [CPU_SH7760] = "SH7760", [CPU_SH73180] = "SH73180", [CPU_ST40RA] = "ST40RA", [CPU_ST40GX1] = "ST40GX1", [CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501", [CPU_SH7770] = "SH7770", [CPU_SH7780] = "SH7780", [CPU_SH7781] = "SH7781", [CPU_SH7343] = "SH7343", [CPU_SH7785] = "SH7785", [CPU_SH7722] = "SH7722", [CPU_SH_NONE] = "Unknown" }; const char *get_cpu_subtype(void) { return cpu_name[boot_cpu_data.type]; } #ifdef CONFIG_PROC_FS /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */ static const char *cpu_flags[] = { "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr", "ptea", "llsc", "l2", NULL }; static void show_cpuflags(struct seq_file *m) { unsigned long i; seq_printf(m, "cpu flags\t:"); if (!cpu_data->flags) { seq_printf(m, " %s\n", cpu_flags[0]); return; } for (i = 0; cpu_flags[i]; i++) if ((cpu_data->flags & (1 << i))) seq_printf(m, " %s", cpu_flags[i+1]); seq_printf(m, "\n"); } static void show_cacheinfo(struct seq_file *m, const char *type, struct cache_info info) { unsigned int cache_size; cache_size = info.ways * info.sets * info.linesz; seq_printf(m, "%s size\t: %2dKiB (%d-way)\n", type, cache_size >> 10, info.ways); } /* * Get CPU information for use by the procfs. */ static int show_cpuinfo(struct seq_file *m, void *v) { unsigned int cpu = smp_processor_id(); if (!cpu && cpu_online(cpu)) seq_printf(m, "machine\t\t: %s\n", get_system_type()); seq_printf(m, "processor\t: %d\n", cpu); seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine); seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype()); show_cpuflags(m); seq_printf(m, "cache type\t: "); /* * Check for what type of cache we have, we support both the * unified cache on the SH-2 and SH-3, as well as the harvard * style cache on the SH-4. */ if (boot_cpu_data.icache.flags & SH_CACHE_COMBINED) { seq_printf(m, "unified\n"); show_cacheinfo(m, "cache", boot_cpu_data.icache); } else { seq_printf(m, "split (harvard)\n"); show_cacheinfo(m, "icache", boot_cpu_data.icache); show_cacheinfo(m, "dcache", boot_cpu_data.dcache); } /* Optional secondary cache */ if (boot_cpu_data.flags & CPU_HAS_L2_CACHE) show_cacheinfo(m, "scache", boot_cpu_data.scache); seq_printf(m, "bogomips\t: %lu.%02lu\n", boot_cpu_data.loops_per_jiffy/(500000/HZ), (boot_cpu_data.loops_per_jiffy/(5000/HZ)) % 100); return show_clocks(m); } static void *c_start(struct seq_file *m, loff_t *pos) { return *pos < NR_CPUS ? cpu_data + *pos : NULL; } static void *c_next(struct seq_file *m, void *v, loff_t *pos) { ++*pos; return c_start(m, pos); } static void c_stop(struct seq_file *m, void *v) { } struct seq_operations cpuinfo_op = { .start = c_start, .next = c_next, .stop = c_stop, .show = show_cpuinfo, }; #endif /* CONFIG_PROC_FS */ #ifdef CONFIG_SH_KGDB /* * Parse command-line kgdb options. By default KGDB is enabled, * entered on error (or other action) using default serial info. * The command-line option can include a serial port specification * and an action to override default or configured behavior. */ struct kgdb_sermap kgdb_sci_sermap = { "ttySC", 5, kgdb_sci_setup, NULL }; struct kgdb_sermap *kgdb_serlist = &kgdb_sci_sermap; struct kgdb_sermap *kgdb_porttype = &kgdb_sci_sermap; void kgdb_register_sermap(struct kgdb_sermap *map) { struct kgdb_sermap *last; for (last = kgdb_serlist; last->next; last = last->next) ; last->next = map; if (!map->namelen) { map->namelen = strlen(map->name); } } static int __init kgdb_parse_options(char *options) { char c; int baud; /* Check for port spec (or use default) */ /* Determine port type and instance */ if (!memcmp(options, "tty", 3)) { struct kgdb_sermap *map = kgdb_serlist; while (map && memcmp(options, map->name, map->namelen)) map = map->next; if (!map) { KGDB_PRINTK("unknown port spec in %s\n", options); return -1; } kgdb_porttype = map; kgdb_serial_setup = map->setup_fn; kgdb_portnum = options[map->namelen] - '0'; options += map->namelen + 1; options = (*options == ',') ? options+1 : options; /* Read optional parameters (baud/parity/bits) */ baud = simple_strtoul(options, &options, 10); if (baud != 0) { kgdb_baud = baud; c = toupper(*options); if (c == 'E' || c == 'O' || c == 'N') { kgdb_parity = c; options++; } c = *options; if (c == '7' || c == '8') { kgdb_bits = c; options++; } options = (*options == ',') ? options+1 : options; } } /* Check for action specification */ if (!memcmp(options, "halt", 4)) { kgdb_halt = 1; options += 4; } else if (!memcmp(options, "disabled", 8)) { kgdb_enabled = 0; options += 8; } if (*options) { KGDB_PRINTK("ignored unknown options: %s\n", options); return 0; } return 1; } __setup("kgdb=", kgdb_parse_options); #endif /* CONFIG_SH_KGDB */