/* * arch/s390/kernel/setup.c * * S390 version * Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation * Author(s): Hartmut Penner (hp@de.ibm.com), * Martin Schwidefsky (schwidefsky@de.ibm.com) * * Derived from "arch/i386/kernel/setup.c" * Copyright (C) 1995, Linus Torvalds */ /* * This file handles the architecture-dependent parts of initialization */ #include <linux/errno.h> #include <linux/module.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/stddef.h> #include <linux/unistd.h> #include <linux/ptrace.h> #include <linux/slab.h> #include <linux/user.h> #include <linux/a.out.h> #include <linux/tty.h> #include <linux/ioport.h> #include <linux/delay.h> #include <linux/config.h> #include <linux/init.h> #include <linux/initrd.h> #include <linux/bootmem.h> #include <linux/root_dev.h> #include <linux/console.h> #include <linux/seq_file.h> #include <linux/kernel_stat.h> #include <linux/device.h> #include <asm/uaccess.h> #include <asm/system.h> #include <asm/smp.h> #include <asm/mmu_context.h> #include <asm/cpcmd.h> #include <asm/lowcore.h> #include <asm/irq.h> #include <asm/page.h> #include <asm/ptrace.h> /* * Machine setup.. */ unsigned int console_mode = 0; unsigned int console_devno = -1; unsigned int console_irq = -1; unsigned long memory_size = 0; unsigned long machine_flags = 0; struct { unsigned long addr, size, type; } memory_chunk[MEMORY_CHUNKS] = { { 0 } }; #define CHUNK_READ_WRITE 0 #define CHUNK_READ_ONLY 1 volatile int __cpu_logical_map[NR_CPUS]; /* logical cpu to cpu address */ unsigned long __initdata zholes_size[MAX_NR_ZONES]; static unsigned long __initdata memory_end; /* * Setup options */ extern int _text,_etext, _edata, _end; /* * This is set up by the setup-routine at boot-time * for S390 need to find out, what we have to setup * using address 0x10400 ... */ #include <asm/setup.h> static struct resource code_resource = { .name = "Kernel code", .start = (unsigned long) &_text, .end = (unsigned long) &_etext - 1, .flags = IORESOURCE_BUSY | IORESOURCE_MEM, }; static struct resource data_resource = { .name = "Kernel data", .start = (unsigned long) &_etext, .end = (unsigned long) &_edata - 1, .flags = IORESOURCE_BUSY | IORESOURCE_MEM, }; /* * cpu_init() initializes state that is per-CPU. */ void __devinit cpu_init (void) { int addr = hard_smp_processor_id(); /* * Store processor id in lowcore (used e.g. in timer_interrupt) */ asm volatile ("stidp %0": "=m" (S390_lowcore.cpu_data.cpu_id)); S390_lowcore.cpu_data.cpu_addr = addr; /* * Force FPU initialization: */ clear_thread_flag(TIF_USEDFPU); clear_used_math(); atomic_inc(&init_mm.mm_count); current->active_mm = &init_mm; if (current->mm) BUG(); enter_lazy_tlb(&init_mm, current); } /* * VM halt and poweroff setup routines */ char vmhalt_cmd[128] = ""; char vmpoff_cmd[128] = ""; static inline void strncpy_skip_quote(char *dst, char *src, int n) { int sx, dx; dx = 0; for (sx = 0; src[sx] != 0; sx++) { if (src[sx] == '"') continue; dst[dx++] = src[sx]; if (dx >= n) break; } } static int __init vmhalt_setup(char *str) { strncpy_skip_quote(vmhalt_cmd, str, 127); vmhalt_cmd[127] = 0; return 1; } __setup("vmhalt=", vmhalt_setup); static int __init vmpoff_setup(char *str) { strncpy_skip_quote(vmpoff_cmd, str, 127); vmpoff_cmd[127] = 0; return 1; } __setup("vmpoff=", vmpoff_setup); /* * condev= and conmode= setup parameter. */ static int __init condev_setup(char *str) { int vdev; vdev = simple_strtoul(str, &str, 0); if (vdev >= 0 && vdev < 65536) { console_devno = vdev; console_irq = -1; } return 1; } __setup("condev=", condev_setup); static int __init conmode_setup(char *str) { #if defined(CONFIG_SCLP_CONSOLE) if (strncmp(str, "hwc", 4) == 0 || strncmp(str, "sclp", 5) == 0) SET_CONSOLE_SCLP; #endif #if defined(CONFIG_TN3215_CONSOLE) if (strncmp(str, "3215", 5) == 0) SET_CONSOLE_3215; #endif #if defined(CONFIG_TN3270_CONSOLE) if (strncmp(str, "3270", 5) == 0) SET_CONSOLE_3270; #endif return 1; } __setup("conmode=", conmode_setup); static void __init conmode_default(void) { char query_buffer[1024]; char *ptr; if (MACHINE_IS_VM) { __cpcmd("QUERY CONSOLE", query_buffer, 1024, NULL); console_devno = simple_strtoul(query_buffer + 5, NULL, 16); ptr = strstr(query_buffer, "SUBCHANNEL ="); console_irq = simple_strtoul(ptr + 13, NULL, 16); __cpcmd("QUERY TERM", query_buffer, 1024, NULL); ptr = strstr(query_buffer, "CONMODE"); /* * Set the conmode to 3215 so that the device recognition * will set the cu_type of the console to 3215. If the * conmode is 3270 and we don't set it back then both * 3215 and the 3270 driver will try to access the console * device (3215 as console and 3270 as normal tty). */ __cpcmd("TERM CONMODE 3215", NULL, 0, NULL); if (ptr == NULL) { #if defined(CONFIG_SCLP_CONSOLE) SET_CONSOLE_SCLP; #endif return; } if (strncmp(ptr + 8, "3270", 4) == 0) { #if defined(CONFIG_TN3270_CONSOLE) SET_CONSOLE_3270; #elif defined(CONFIG_TN3215_CONSOLE) SET_CONSOLE_3215; #elif defined(CONFIG_SCLP_CONSOLE) SET_CONSOLE_SCLP; #endif } else if (strncmp(ptr + 8, "3215", 4) == 0) { #if defined(CONFIG_TN3215_CONSOLE) SET_CONSOLE_3215; #elif defined(CONFIG_TN3270_CONSOLE) SET_CONSOLE_3270; #elif defined(CONFIG_SCLP_CONSOLE) SET_CONSOLE_SCLP; #endif } } else if (MACHINE_IS_P390) { #if defined(CONFIG_TN3215_CONSOLE) SET_CONSOLE_3215; #elif defined(CONFIG_TN3270_CONSOLE) SET_CONSOLE_3270; #endif } else { #if defined(CONFIG_SCLP_CONSOLE) SET_CONSOLE_SCLP; #endif } } #ifdef CONFIG_SMP extern void machine_restart_smp(char *); extern void machine_halt_smp(void); extern void machine_power_off_smp(void); void (*_machine_restart)(char *command) = machine_restart_smp; void (*_machine_halt)(void) = machine_halt_smp; void (*_machine_power_off)(void) = machine_power_off_smp; #else /* * Reboot, halt and power_off routines for non SMP. */ extern void reipl(unsigned long devno); extern void reipl_diag(void); static void do_machine_restart_nonsmp(char * __unused) { reipl_diag(); if (MACHINE_IS_VM) cpcmd ("IPL", NULL, 0, NULL); else reipl (0x10000 | S390_lowcore.ipl_device); } static void do_machine_halt_nonsmp(void) { if (MACHINE_IS_VM && strlen(vmhalt_cmd) > 0) cpcmd(vmhalt_cmd, NULL, 0, NULL); signal_processor(smp_processor_id(), sigp_stop_and_store_status); } static void do_machine_power_off_nonsmp(void) { if (MACHINE_IS_VM && strlen(vmpoff_cmd) > 0) cpcmd(vmpoff_cmd, NULL, 0, NULL); signal_processor(smp_processor_id(), sigp_stop_and_store_status); } void (*_machine_restart)(char *command) = do_machine_restart_nonsmp; void (*_machine_halt)(void) = do_machine_halt_nonsmp; void (*_machine_power_off)(void) = do_machine_power_off_nonsmp; #endif /* * Reboot, halt and power_off stubs. They just call _machine_restart, * _machine_halt or _machine_power_off. */ void machine_restart(char *command) { console_unblank(); _machine_restart(command); } void machine_halt(void) { console_unblank(); _machine_halt(); } void machine_power_off(void) { console_unblank(); _machine_power_off(); } /* * Dummy power off function. */ void (*pm_power_off)(void) = machine_power_off; static void __init add_memory_hole(unsigned long start, unsigned long end) { unsigned long dma_pfn = MAX_DMA_ADDRESS >> PAGE_SHIFT; if (end <= dma_pfn) zholes_size[ZONE_DMA] += end - start + 1; else if (start > dma_pfn) zholes_size[ZONE_NORMAL] += end - start + 1; else { zholes_size[ZONE_DMA] += dma_pfn - start + 1; zholes_size[ZONE_NORMAL] += end - dma_pfn; } } static int __init early_parse_mem(char *p) { memory_end = memparse(p, &p); return 0; } early_param("mem", early_parse_mem); /* * "ipldelay=XXX[sm]" sets ipl delay in seconds or minutes */ static int __init early_parse_ipldelay(char *p) { unsigned long delay = 0; delay = simple_strtoul(p, &p, 0); switch (*p) { case 's': case 'S': delay *= 1000000; break; case 'm': case 'M': delay *= 60 * 1000000; } /* now wait for the requested amount of time */ udelay(delay); return 0; } early_param("ipldelay", early_parse_ipldelay); static void __init setup_lowcore(void) { struct _lowcore *lc; int lc_pages; /* * Setup lowcore for boot cpu */ lc_pages = sizeof(void *) == 8 ? 2 : 1; lc = (struct _lowcore *) __alloc_bootmem(lc_pages * PAGE_SIZE, lc_pages * PAGE_SIZE, 0); memset(lc, 0, lc_pages * PAGE_SIZE); lc->restart_psw.mask = PSW_BASE_BITS | PSW_DEFAULT_KEY; lc->restart_psw.addr = PSW_ADDR_AMODE | (unsigned long) restart_int_handler; lc->external_new_psw.mask = PSW_KERNEL_BITS; lc->external_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) ext_int_handler; lc->svc_new_psw.mask = PSW_KERNEL_BITS | PSW_MASK_IO | PSW_MASK_EXT; lc->svc_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) system_call; lc->program_new_psw.mask = PSW_KERNEL_BITS; lc->program_new_psw.addr = PSW_ADDR_AMODE | (unsigned long)pgm_check_handler; lc->mcck_new_psw.mask = PSW_KERNEL_BITS & ~PSW_MASK_MCHECK & ~PSW_MASK_DAT; lc->mcck_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) mcck_int_handler; lc->io_new_psw.mask = PSW_KERNEL_BITS; lc->io_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) io_int_handler; lc->ipl_device = S390_lowcore.ipl_device; lc->jiffy_timer = -1LL; lc->kernel_stack = ((unsigned long) &init_thread_union) + THREAD_SIZE; lc->async_stack = (unsigned long) __alloc_bootmem(ASYNC_SIZE, ASYNC_SIZE, 0) + ASYNC_SIZE; lc->panic_stack = (unsigned long) __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, 0) + PAGE_SIZE; lc->current_task = (unsigned long) init_thread_union.thread_info.task; lc->thread_info = (unsigned long) &init_thread_union; #ifndef CONFIG_64BIT if (MACHINE_HAS_IEEE) { lc->extended_save_area_addr = (__u32) __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, 0); /* enable extended save area */ ctl_set_bit(14, 29); } #endif set_prefix((u32)(unsigned long) lc); } static void __init setup_resources(void) { struct resource *res; int i; for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) { res = alloc_bootmem_low(sizeof(struct resource)); res->flags = IORESOURCE_BUSY | IORESOURCE_MEM; switch (memory_chunk[i].type) { case CHUNK_READ_WRITE: res->name = "System RAM"; break; case CHUNK_READ_ONLY: res->name = "System ROM"; res->flags |= IORESOURCE_READONLY; break; default: res->name = "reserved"; } res->start = memory_chunk[i].addr; res->end = memory_chunk[i].addr + memory_chunk[i].size - 1; request_resource(&iomem_resource, res); request_resource(res, &code_resource); request_resource(res, &data_resource); } } static void __init setup_memory(void) { unsigned long bootmap_size; unsigned long start_pfn, end_pfn, init_pfn; unsigned long last_rw_end; int i; /* * partially used pages are not usable - thus * we are rounding upwards: */ start_pfn = (__pa(&_end) + PAGE_SIZE - 1) >> PAGE_SHIFT; end_pfn = max_pfn = memory_end >> PAGE_SHIFT; /* Initialize storage key for kernel pages */ for (init_pfn = 0 ; init_pfn < start_pfn; init_pfn++) page_set_storage_key(init_pfn << PAGE_SHIFT, PAGE_DEFAULT_KEY); /* * Initialize the boot-time allocator (with low memory only): */ bootmap_size = init_bootmem(start_pfn, end_pfn); /* * Register RAM areas with the bootmem allocator. */ last_rw_end = start_pfn; for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) { unsigned long start_chunk, end_chunk; if (memory_chunk[i].type != CHUNK_READ_WRITE) continue; start_chunk = (memory_chunk[i].addr + PAGE_SIZE - 1); start_chunk >>= PAGE_SHIFT; end_chunk = (memory_chunk[i].addr + memory_chunk[i].size); end_chunk >>= PAGE_SHIFT; if (start_chunk < start_pfn) start_chunk = start_pfn; if (end_chunk > end_pfn) end_chunk = end_pfn; if (start_chunk < end_chunk) { /* Initialize storage key for RAM pages */ for (init_pfn = start_chunk ; init_pfn < end_chunk; init_pfn++) page_set_storage_key(init_pfn << PAGE_SHIFT, PAGE_DEFAULT_KEY); free_bootmem(start_chunk << PAGE_SHIFT, (end_chunk - start_chunk) << PAGE_SHIFT); if (last_rw_end < start_chunk) add_memory_hole(last_rw_end, start_chunk - 1); last_rw_end = end_chunk; } } psw_set_key(PAGE_DEFAULT_KEY); if (last_rw_end < end_pfn - 1) add_memory_hole(last_rw_end, end_pfn - 1); /* * Reserve the bootmem bitmap itself as well. We do this in two * steps (first step was init_bootmem()) because this catches * the (very unlikely) case of us accidentally initializing the * bootmem allocator with an invalid RAM area. */ reserve_bootmem(start_pfn << PAGE_SHIFT, bootmap_size); #ifdef CONFIG_BLK_DEV_INITRD if (INITRD_START) { if (INITRD_START + INITRD_SIZE <= memory_end) { reserve_bootmem(INITRD_START, INITRD_SIZE); initrd_start = INITRD_START; initrd_end = initrd_start + INITRD_SIZE; } else { printk("initrd extends beyond end of memory " "(0x%08lx > 0x%08lx)\ndisabling initrd\n", initrd_start + INITRD_SIZE, memory_end); initrd_start = initrd_end = 0; } } #endif } /* * Setup function called from init/main.c just after the banner * was printed. */ void __init setup_arch(char **cmdline_p) { /* * print what head.S has found out about the machine */ #ifndef CONFIG_64BIT printk((MACHINE_IS_VM) ? "We are running under VM (31 bit mode)\n" : "We are running native (31 bit mode)\n"); printk((MACHINE_HAS_IEEE) ? "This machine has an IEEE fpu\n" : "This machine has no IEEE fpu\n"); #else /* CONFIG_64BIT */ printk((MACHINE_IS_VM) ? "We are running under VM (64 bit mode)\n" : "We are running native (64 bit mode)\n"); #endif /* CONFIG_64BIT */ /* Save unparsed command line copy for /proc/cmdline */ strlcpy(saved_command_line, COMMAND_LINE, COMMAND_LINE_SIZE); *cmdline_p = COMMAND_LINE; *(*cmdline_p + COMMAND_LINE_SIZE - 1) = '\0'; ROOT_DEV = Root_RAM0; init_mm.start_code = PAGE_OFFSET; init_mm.end_code = (unsigned long) &_etext; init_mm.end_data = (unsigned long) &_edata; init_mm.brk = (unsigned long) &_end; memory_end = memory_size; parse_early_param(); #ifndef CONFIG_64BIT memory_end &= ~0x400000UL; /* * We need some free virtual space to be able to do vmalloc. * On a machine with 2GB memory we make sure that we have at * least 128 MB free space for vmalloc. */ if (memory_end > 1920*1024*1024) memory_end = 1920*1024*1024; #else /* CONFIG_64BIT */ memory_end &= ~0x200000UL; #endif /* CONFIG_64BIT */ setup_memory(); setup_resources(); setup_lowcore(); cpu_init(); __cpu_logical_map[0] = S390_lowcore.cpu_data.cpu_addr; smp_setup_cpu_possible_map(); /* * Create kernel page tables and switch to virtual addressing. */ paging_init(); /* Setup default console */ conmode_default(); } void print_cpu_info(struct cpuinfo_S390 *cpuinfo) { printk("cpu %d " #ifdef CONFIG_SMP "phys_idx=%d " #endif "vers=%02X ident=%06X machine=%04X unused=%04X\n", cpuinfo->cpu_nr, #ifdef CONFIG_SMP cpuinfo->cpu_addr, #endif cpuinfo->cpu_id.version, cpuinfo->cpu_id.ident, cpuinfo->cpu_id.machine, cpuinfo->cpu_id.unused); } /* * show_cpuinfo - Get information on one CPU for use by procfs. */ static int show_cpuinfo(struct seq_file *m, void *v) { struct cpuinfo_S390 *cpuinfo; unsigned long n = (unsigned long) v - 1; preempt_disable(); if (!n) { seq_printf(m, "vendor_id : IBM/S390\n" "# processors : %i\n" "bogomips per cpu: %lu.%02lu\n", num_online_cpus(), loops_per_jiffy/(500000/HZ), (loops_per_jiffy/(5000/HZ))%100); } if (cpu_online(n)) { #ifdef CONFIG_SMP if (smp_processor_id() == n) cpuinfo = &S390_lowcore.cpu_data; else cpuinfo = &lowcore_ptr[n]->cpu_data; #else cpuinfo = &S390_lowcore.cpu_data; #endif seq_printf(m, "processor %li: " "version = %02X, " "identification = %06X, " "machine = %04X\n", n, cpuinfo->cpu_id.version, cpuinfo->cpu_id.ident, cpuinfo->cpu_id.machine); } preempt_enable(); return 0; } static void *c_start(struct seq_file *m, loff_t *pos) { return *pos < NR_CPUS ? (void *)((unsigned long) *pos + 1) : NULL; } static void *c_next(struct seq_file *m, void *v, loff_t *pos) { ++*pos; return c_start(m, pos); } static void c_stop(struct seq_file *m, void *v) { } struct seq_operations cpuinfo_op = { .start = c_start, .next = c_next, .stop = c_stop, .show = show_cpuinfo, }; #define DEFINE_IPL_ATTR(_name, _format, _value) \ static ssize_t ipl_##_name##_show(struct subsystem *subsys, \ char *page) \ { \ return sprintf(page, _format, _value); \ } \ static struct subsys_attribute ipl_##_name##_attr = \ __ATTR(_name, S_IRUGO, ipl_##_name##_show, NULL); DEFINE_IPL_ATTR(wwpn, "0x%016llx\n", (unsigned long long) IPL_PARMBLOCK_START->fcp.wwpn); DEFINE_IPL_ATTR(lun, "0x%016llx\n", (unsigned long long) IPL_PARMBLOCK_START->fcp.lun); DEFINE_IPL_ATTR(bootprog, "%lld\n", (unsigned long long) IPL_PARMBLOCK_START->fcp.bootprog); DEFINE_IPL_ATTR(br_lba, "%lld\n", (unsigned long long) IPL_PARMBLOCK_START->fcp.br_lba); enum ipl_type_type { ipl_type_unknown, ipl_type_ccw, ipl_type_fcp, }; static enum ipl_type_type get_ipl_type(void) { struct ipl_parameter_block *ipl = IPL_PARMBLOCK_START; if (!IPL_DEVNO_VALID) return ipl_type_unknown; if (!IPL_PARMBLOCK_VALID) return ipl_type_ccw; if (ipl->hdr.header.version > IPL_MAX_SUPPORTED_VERSION) return ipl_type_unknown; if (ipl->fcp.pbt != IPL_TYPE_FCP) return ipl_type_unknown; return ipl_type_fcp; } static ssize_t ipl_type_show(struct subsystem *subsys, char *page) { switch (get_ipl_type()) { case ipl_type_ccw: return sprintf(page, "ccw\n"); case ipl_type_fcp: return sprintf(page, "fcp\n"); default: return sprintf(page, "unknown\n"); } } static struct subsys_attribute ipl_type_attr = __ATTR_RO(ipl_type); static ssize_t ipl_device_show(struct subsystem *subsys, char *page) { struct ipl_parameter_block *ipl = IPL_PARMBLOCK_START; switch (get_ipl_type()) { case ipl_type_ccw: return sprintf(page, "0.0.%04x\n", ipl_devno); case ipl_type_fcp: return sprintf(page, "0.0.%04x\n", ipl->fcp.devno); default: return 0; } } static struct subsys_attribute ipl_device_attr = __ATTR(device, S_IRUGO, ipl_device_show, NULL); static struct attribute *ipl_fcp_attrs[] = { &ipl_type_attr.attr, &ipl_device_attr.attr, &ipl_wwpn_attr.attr, &ipl_lun_attr.attr, &ipl_bootprog_attr.attr, &ipl_br_lba_attr.attr, NULL, }; static struct attribute_group ipl_fcp_attr_group = { .attrs = ipl_fcp_attrs, }; static struct attribute *ipl_ccw_attrs[] = { &ipl_type_attr.attr, &ipl_device_attr.attr, NULL, }; static struct attribute_group ipl_ccw_attr_group = { .attrs = ipl_ccw_attrs, }; static struct attribute *ipl_unknown_attrs[] = { &ipl_type_attr.attr, NULL, }; static struct attribute_group ipl_unknown_attr_group = { .attrs = ipl_unknown_attrs, }; static ssize_t ipl_parameter_read(struct kobject *kobj, char *buf, loff_t off, size_t count) { unsigned int size = IPL_PARMBLOCK_SIZE; if (off > size) return 0; if (off + count > size) count = size - off; memcpy(buf, (void *) IPL_PARMBLOCK_START + off, count); return count; } static struct bin_attribute ipl_parameter_attr = { .attr = { .name = "binary_parameter", .mode = S_IRUGO, .owner = THIS_MODULE, }, .size = PAGE_SIZE, .read = &ipl_parameter_read, }; static ssize_t ipl_scp_data_read(struct kobject *kobj, char *buf, loff_t off, size_t count) { unsigned int size = IPL_PARMBLOCK_START->fcp.scp_data_len; void *scp_data = &IPL_PARMBLOCK_START->fcp.scp_data; if (off > size) return 0; if (off + count > size) count = size - off; memcpy(buf, scp_data + off, count); return count; } static struct bin_attribute ipl_scp_data_attr = { .attr = { .name = "scp_data", .mode = S_IRUGO, .owner = THIS_MODULE, }, .size = PAGE_SIZE, .read = &ipl_scp_data_read, }; static decl_subsys(ipl, NULL, NULL); static int __init ipl_device_sysfs_register(void) { int rc; rc = firmware_register(&ipl_subsys); if (rc) return rc; switch (get_ipl_type()) { case ipl_type_ccw: sysfs_create_group(&ipl_subsys.kset.kobj, &ipl_ccw_attr_group); break; case ipl_type_fcp: sysfs_create_group(&ipl_subsys.kset.kobj, &ipl_fcp_attr_group); sysfs_create_bin_file(&ipl_subsys.kset.kobj, &ipl_parameter_attr); sysfs_create_bin_file(&ipl_subsys.kset.kobj, &ipl_scp_data_attr); break; default: sysfs_create_group(&ipl_subsys.kset.kobj, &ipl_unknown_attr_group); break; } return 0; } __initcall(ipl_device_sysfs_register);