/* * arch/s390/kernel/process.c * * S390 version * Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation * Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com), * Hartmut Penner (hp@de.ibm.com), * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com), * * Derived from "arch/i386/kernel/process.c" * Copyright (C) 1995, Linus Torvalds */ /* * This file handles the architecture-dependent parts of process handling.. */ #include <linux/config.h> #include <linux/compiler.h> #include <linux/cpu.h> #include <linux/errno.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/smp.h> #include <linux/smp_lock.h> #include <linux/stddef.h> #include <linux/unistd.h> #include <linux/ptrace.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <linux/user.h> #include <linux/a.out.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/reboot.h> #include <linux/init.h> #include <linux/module.h> #include <linux/notifier.h> #include <asm/uaccess.h> #include <asm/pgtable.h> #include <asm/system.h> #include <asm/io.h> #include <asm/processor.h> #include <asm/irq.h> #include <asm/timer.h> asmlinkage void ret_from_fork(void) __asm__("ret_from_fork"); /* * Return saved PC of a blocked thread. used in kernel/sched. * resume in entry.S does not create a new stack frame, it * just stores the registers %r6-%r15 to the frame given by * schedule. We want to return the address of the caller of * schedule, so we have to walk the backchain one time to * find the frame schedule() store its return address. */ unsigned long thread_saved_pc(struct task_struct *tsk) { struct stack_frame *sf; sf = (struct stack_frame *) tsk->thread.ksp; sf = (struct stack_frame *) sf->back_chain; return sf->gprs[8]; } /* * Need to know about CPUs going idle? */ static struct notifier_block *idle_chain; int register_idle_notifier(struct notifier_block *nb) { return notifier_chain_register(&idle_chain, nb); } EXPORT_SYMBOL(register_idle_notifier); int unregister_idle_notifier(struct notifier_block *nb) { return notifier_chain_unregister(&idle_chain, nb); } EXPORT_SYMBOL(unregister_idle_notifier); void do_monitor_call(struct pt_regs *regs, long interruption_code) { /* disable monitor call class 0 */ __ctl_clear_bit(8, 15); notifier_call_chain(&idle_chain, CPU_NOT_IDLE, (void *)(long) smp_processor_id()); } extern void s390_handle_mcck(void); /* * The idle loop on a S390... */ void default_idle(void) { int cpu, rc; /* CPU is going idle. */ cpu = smp_processor_id(); local_irq_disable(); if (need_resched()) { local_irq_enable(); return; } rc = notifier_call_chain(&idle_chain, CPU_IDLE, (void *)(long) cpu); if (rc != NOTIFY_OK && rc != NOTIFY_DONE) BUG(); if (rc != NOTIFY_OK) { local_irq_enable(); return; } /* enable monitor call class 0 */ __ctl_set_bit(8, 15); #ifdef CONFIG_HOTPLUG_CPU if (cpu_is_offline(cpu)) cpu_die(); #endif local_mcck_disable(); if (test_thread_flag(TIF_MCCK_PENDING)) { local_mcck_enable(); local_irq_enable(); s390_handle_mcck(); return; } /* Wait for external, I/O or machine check interrupt. */ __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_WAIT | PSW_MASK_IO | PSW_MASK_EXT); } void cpu_idle(void) { for (;;) { while (!need_resched()) default_idle(); preempt_enable_no_resched(); schedule(); preempt_disable(); } } void show_regs(struct pt_regs *regs) { struct task_struct *tsk = current; printk("CPU: %d %s\n", tsk->thread_info->cpu, print_tainted()); printk("Process %s (pid: %d, task: %p, ksp: %p)\n", current->comm, current->pid, (void *) tsk, (void *) tsk->thread.ksp); show_registers(regs); /* Show stack backtrace if pt_regs is from kernel mode */ if (!(regs->psw.mask & PSW_MASK_PSTATE)) show_trace(0,(unsigned long *) regs->gprs[15]); } extern void kernel_thread_starter(void); __asm__(".align 4\n" "kernel_thread_starter:\n" " la 2,0(10)\n" " basr 14,9\n" " la 2,0\n" " br 11\n"); int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) { struct pt_regs regs; memset(®s, 0, sizeof(regs)); regs.psw.mask = PSW_KERNEL_BITS | PSW_MASK_IO | PSW_MASK_EXT; regs.psw.addr = (unsigned long) kernel_thread_starter | PSW_ADDR_AMODE; regs.gprs[9] = (unsigned long) fn; regs.gprs[10] = (unsigned long) arg; regs.gprs[11] = (unsigned long) do_exit; regs.orig_gpr2 = -1; /* Ok, create the new process.. */ return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); } /* * Free current thread data structures etc.. */ void exit_thread(void) { } void flush_thread(void) { clear_used_math(); clear_tsk_thread_flag(current, TIF_USEDFPU); } void release_thread(struct task_struct *dead_task) { } int copy_thread(int nr, unsigned long clone_flags, unsigned long new_stackp, unsigned long unused, struct task_struct * p, struct pt_regs * regs) { struct fake_frame { struct stack_frame sf; struct pt_regs childregs; } *frame; frame = ((struct fake_frame *) (THREAD_SIZE + (unsigned long) p->thread_info)) - 1; p->thread.ksp = (unsigned long) frame; /* Store access registers to kernel stack of new process. */ frame->childregs = *regs; frame->childregs.gprs[2] = 0; /* child returns 0 on fork. */ frame->childregs.gprs[15] = new_stackp; frame->sf.back_chain = 0; /* new return point is ret_from_fork */ frame->sf.gprs[8] = (unsigned long) ret_from_fork; /* fake return stack for resume(), don't go back to schedule */ frame->sf.gprs[9] = (unsigned long) frame; /* Save access registers to new thread structure. */ save_access_regs(&p->thread.acrs[0]); #ifndef CONFIG_64BIT /* * save fprs to current->thread.fp_regs to merge them with * the emulated registers and then copy the result to the child. */ save_fp_regs(¤t->thread.fp_regs); memcpy(&p->thread.fp_regs, ¤t->thread.fp_regs, sizeof(s390_fp_regs)); p->thread.user_seg = __pa((unsigned long) p->mm->pgd) | _SEGMENT_TABLE; /* Set a new TLS ? */ if (clone_flags & CLONE_SETTLS) p->thread.acrs[0] = regs->gprs[6]; #else /* CONFIG_64BIT */ /* Save the fpu registers to new thread structure. */ save_fp_regs(&p->thread.fp_regs); p->thread.user_seg = __pa((unsigned long) p->mm->pgd) | _REGION_TABLE; /* Set a new TLS ? */ if (clone_flags & CLONE_SETTLS) { if (test_thread_flag(TIF_31BIT)) { p->thread.acrs[0] = (unsigned int) regs->gprs[6]; } else { p->thread.acrs[0] = (unsigned int)(regs->gprs[6] >> 32); p->thread.acrs[1] = (unsigned int) regs->gprs[6]; } } #endif /* CONFIG_64BIT */ /* start new process with ar4 pointing to the correct address space */ p->thread.mm_segment = get_fs(); /* Don't copy debug registers */ memset(&p->thread.per_info,0,sizeof(p->thread.per_info)); return 0; } asmlinkage long sys_fork(struct pt_regs regs) { return do_fork(SIGCHLD, regs.gprs[15], ®s, 0, NULL, NULL); } asmlinkage long sys_clone(struct pt_regs regs) { unsigned long clone_flags; unsigned long newsp; int __user *parent_tidptr, *child_tidptr; clone_flags = regs.gprs[3]; newsp = regs.orig_gpr2; parent_tidptr = (int __user *) regs.gprs[4]; child_tidptr = (int __user *) regs.gprs[5]; if (!newsp) newsp = regs.gprs[15]; return do_fork(clone_flags, newsp, ®s, 0, parent_tidptr, child_tidptr); } /* * This is trivial, and on the face of it looks like it * could equally well be done in user mode. * * Not so, for quite unobvious reasons - register pressure. * In user mode vfork() cannot have a stack frame, and if * done by calling the "clone()" system call directly, you * do not have enough call-clobbered registers to hold all * the information you need. */ asmlinkage long sys_vfork(struct pt_regs regs) { return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.gprs[15], ®s, 0, NULL, NULL); } /* * sys_execve() executes a new program. */ asmlinkage long sys_execve(struct pt_regs regs) { int error; char * filename; filename = getname((char __user *) regs.orig_gpr2); error = PTR_ERR(filename); if (IS_ERR(filename)) goto out; error = do_execve(filename, (char __user * __user *) regs.gprs[3], (char __user * __user *) regs.gprs[4], ®s); if (error == 0) { task_lock(current); current->ptrace &= ~PT_DTRACE; task_unlock(current); current->thread.fp_regs.fpc = 0; if (MACHINE_HAS_IEEE) asm volatile("sfpc %0,%0" : : "d" (0)); } putname(filename); out: return error; } /* * fill in the FPU structure for a core dump. */ int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs) { #ifndef CONFIG_64BIT /* * save fprs to current->thread.fp_regs to merge them with * the emulated registers and then copy the result to the dump. */ save_fp_regs(¤t->thread.fp_regs); memcpy(fpregs, ¤t->thread.fp_regs, sizeof(s390_fp_regs)); #else /* CONFIG_64BIT */ save_fp_regs(fpregs); #endif /* CONFIG_64BIT */ return 1; } unsigned long get_wchan(struct task_struct *p) { struct stack_frame *sf, *low, *high; unsigned long return_address; int count; if (!p || p == current || p->state == TASK_RUNNING || !p->thread_info) return 0; low = (struct stack_frame *) p->thread_info; high = (struct stack_frame *) ((unsigned long) p->thread_info + THREAD_SIZE) - 1; sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN); if (sf <= low || sf > high) return 0; for (count = 0; count < 16; count++) { sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN); if (sf <= low || sf > high) return 0; return_address = sf->gprs[8] & PSW_ADDR_INSN; if (!in_sched_functions(return_address)) return return_address; } return 0; }