/* * S390 version * Copyright IBM Corp. 1999 * Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com) * * Derived from "include/asm-i386/bitops.h" * Copyright (C) 1992, Linus Torvalds * */ #ifndef _S390_BITOPS_H #define _S390_BITOPS_H #ifndef _LINUX_BITOPS_H #error only can be included directly #endif #include /* * 32 bit bitops format: * bit 0 is the LSB of *addr; bit 31 is the MSB of *addr; * bit 32 is the LSB of *(addr+4). That combined with the * big endian byte order on S390 give the following bit * order in memory: * 1f 1e 1d 1c 1b 1a 19 18 17 16 15 14 13 12 11 10 \ * 0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00 * after that follows the next long with bit numbers * 3f 3e 3d 3c 3b 3a 39 38 37 36 35 34 33 32 31 30 * 2f 2e 2d 2c 2b 2a 29 28 27 26 25 24 23 22 21 20 * The reason for this bit ordering is the fact that * in the architecture independent code bits operations * of the form "flags |= (1 << bitnr)" are used INTERMIXED * with operation of the form "set_bit(bitnr, flags)". * * 64 bit bitops format: * bit 0 is the LSB of *addr; bit 63 is the MSB of *addr; * bit 64 is the LSB of *(addr+8). That combined with the * big endian byte order on S390 give the following bit * order in memory: * 3f 3e 3d 3c 3b 3a 39 38 37 36 35 34 33 32 31 30 * 2f 2e 2d 2c 2b 2a 29 28 27 26 25 24 23 22 21 20 * 1f 1e 1d 1c 1b 1a 19 18 17 16 15 14 13 12 11 10 * 0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00 * after that follows the next long with bit numbers * 7f 7e 7d 7c 7b 7a 79 78 77 76 75 74 73 72 71 70 * 6f 6e 6d 6c 6b 6a 69 68 67 66 65 64 63 62 61 60 * 5f 5e 5d 5c 5b 5a 59 58 57 56 55 54 53 52 51 50 * 4f 4e 4d 4c 4b 4a 49 48 47 46 45 44 43 42 41 40 * The reason for this bit ordering is the fact that * in the architecture independent code bits operations * of the form "flags |= (1 << bitnr)" are used INTERMIXED * with operation of the form "set_bit(bitnr, flags)". */ /* bitmap tables from arch/s390/kernel/bitmap.c */ extern const char _oi_bitmap[]; extern const char _ni_bitmap[]; extern const char _zb_findmap[]; extern const char _sb_findmap[]; #ifndef CONFIG_64BIT #define __BITOPS_OR "or" #define __BITOPS_AND "nr" #define __BITOPS_XOR "xr" #define __BITOPS_LOOP(__old, __new, __addr, __val, __op_string) \ asm volatile( \ " l %0,%2\n" \ "0: lr %1,%0\n" \ __op_string " %1,%3\n" \ " cs %0,%1,%2\n" \ " jl 0b" \ : "=&d" (__old), "=&d" (__new), \ "=Q" (*(unsigned long *) __addr) \ : "d" (__val), "Q" (*(unsigned long *) __addr) \ : "cc"); #else /* CONFIG_64BIT */ #define __BITOPS_OR "ogr" #define __BITOPS_AND "ngr" #define __BITOPS_XOR "xgr" #define __BITOPS_LOOP(__old, __new, __addr, __val, __op_string) \ asm volatile( \ " lg %0,%2\n" \ "0: lgr %1,%0\n" \ __op_string " %1,%3\n" \ " csg %0,%1,%2\n" \ " jl 0b" \ : "=&d" (__old), "=&d" (__new), \ "=Q" (*(unsigned long *) __addr) \ : "d" (__val), "Q" (*(unsigned long *) __addr) \ : "cc"); #endif /* CONFIG_64BIT */ #define __BITOPS_WORDS(bits) (((bits) + BITS_PER_LONG - 1) / BITS_PER_LONG) #define __BITOPS_BARRIER() asm volatile("" : : : "memory") #ifdef CONFIG_SMP /* * SMP safe set_bit routine based on compare and swap (CS) */ static inline void set_bit_cs(unsigned long nr, volatile unsigned long *ptr) { unsigned long addr, old, new, mask; addr = (unsigned long) ptr; /* calculate address for CS */ addr += (nr ^ (nr & (BITS_PER_LONG - 1))) >> 3; /* make OR mask */ mask = 1UL << (nr & (BITS_PER_LONG - 1)); /* Do the atomic update. */ __BITOPS_LOOP(old, new, addr, mask, __BITOPS_OR); } /* * SMP safe clear_bit routine based on compare and swap (CS) */ static inline void clear_bit_cs(unsigned long nr, volatile unsigned long *ptr) { unsigned long addr, old, new, mask; addr = (unsigned long) ptr; /* calculate address for CS */ addr += (nr ^ (nr & (BITS_PER_LONG - 1))) >> 3; /* make AND mask */ mask = ~(1UL << (nr & (BITS_PER_LONG - 1))); /* Do the atomic update. */ __BITOPS_LOOP(old, new, addr, mask, __BITOPS_AND); } /* * SMP safe change_bit routine based on compare and swap (CS) */ static inline void change_bit_cs(unsigned long nr, volatile unsigned long *ptr) { unsigned long addr, old, new, mask; addr = (unsigned long) ptr; /* calculate address for CS */ addr += (nr ^ (nr & (BITS_PER_LONG - 1))) >> 3; /* make XOR mask */ mask = 1UL << (nr & (BITS_PER_LONG - 1)); /* Do the atomic update. */ __BITOPS_LOOP(old, new, addr, mask, __BITOPS_XOR); } /* * SMP safe test_and_set_bit routine based on compare and swap (CS) */ static inline int test_and_set_bit_cs(unsigned long nr, volatile unsigned long *ptr) { unsigned long addr, old, new, mask; addr = (unsigned long) ptr; /* calculate address for CS */ addr += (nr ^ (nr & (BITS_PER_LONG - 1))) >> 3; /* make OR/test mask */ mask = 1UL << (nr & (BITS_PER_LONG - 1)); /* Do the atomic update. */ __BITOPS_LOOP(old, new, addr, mask, __BITOPS_OR); __BITOPS_BARRIER(); return (old & mask) != 0; } /* * SMP safe test_and_clear_bit routine based on compare and swap (CS) */ static inline int test_and_clear_bit_cs(unsigned long nr, volatile unsigned long *ptr) { unsigned long addr, old, new, mask; addr = (unsigned long) ptr; /* calculate address for CS */ addr += (nr ^ (nr & (BITS_PER_LONG - 1))) >> 3; /* make AND/test mask */ mask = ~(1UL << (nr & (BITS_PER_LONG - 1))); /* Do the atomic update. */ __BITOPS_LOOP(old, new, addr, mask, __BITOPS_AND); __BITOPS_BARRIER(); return (old ^ new) != 0; } /* * SMP safe test_and_change_bit routine based on compare and swap (CS) */ static inline int test_and_change_bit_cs(unsigned long nr, volatile unsigned long *ptr) { unsigned long addr, old, new, mask; addr = (unsigned long) ptr; /* calculate address for CS */ addr += (nr ^ (nr & (BITS_PER_LONG - 1))) >> 3; /* make XOR/test mask */ mask = 1UL << (nr & (BITS_PER_LONG - 1)); /* Do the atomic update. */ __BITOPS_LOOP(old, new, addr, mask, __BITOPS_XOR); __BITOPS_BARRIER(); return (old & mask) != 0; } #endif /* CONFIG_SMP */ /* * fast, non-SMP set_bit routine */ static inline void __set_bit(unsigned long nr, volatile unsigned long *ptr) { unsigned long addr; addr = (unsigned long) ptr + ((nr ^ (BITS_PER_LONG - 8)) >> 3); asm volatile( " oc %O0(1,%R0),%1" : "=Q" (*(char *) addr) : "Q" (_oi_bitmap[nr & 7]) : "cc" ); } static inline void __constant_set_bit(const unsigned long nr, volatile unsigned long *ptr) { unsigned long addr; addr = ((unsigned long) ptr) + ((nr ^ (BITS_PER_LONG - 8)) >> 3); *(unsigned char *) addr |= 1 << (nr & 7); } #define set_bit_simple(nr,addr) \ (__builtin_constant_p((nr)) ? \ __constant_set_bit((nr),(addr)) : \ __set_bit((nr),(addr)) ) /* * fast, non-SMP clear_bit routine */ static inline void __clear_bit(unsigned long nr, volatile unsigned long *ptr) { unsigned long addr; addr = (unsigned long) ptr + ((nr ^ (BITS_PER_LONG - 8)) >> 3); asm volatile( " nc %O0(1,%R0),%1" : "=Q" (*(char *) addr) : "Q" (_ni_bitmap[nr & 7]) : "cc" ); } static inline void __constant_clear_bit(const unsigned long nr, volatile unsigned long *ptr) { unsigned long addr; addr = ((unsigned long) ptr) + ((nr ^ (BITS_PER_LONG - 8)) >> 3); *(unsigned char *) addr &= ~(1 << (nr & 7)); } #define clear_bit_simple(nr,addr) \ (__builtin_constant_p((nr)) ? \ __constant_clear_bit((nr),(addr)) : \ __clear_bit((nr),(addr)) ) /* * fast, non-SMP change_bit routine */ static inline void __change_bit(unsigned long nr, volatile unsigned long *ptr) { unsigned long addr; addr = (unsigned long) ptr + ((nr ^ (BITS_PER_LONG - 8)) >> 3); asm volatile( " xc %O0(1,%R0),%1" : "=Q" (*(char *) addr) : "Q" (_oi_bitmap[nr & 7]) : "cc" ); } static inline void __constant_change_bit(const unsigned long nr, volatile unsigned long *ptr) { unsigned long addr; addr = ((unsigned long) ptr) + ((nr ^ (BITS_PER_LONG - 8)) >> 3); *(unsigned char *) addr ^= 1 << (nr & 7); } #define change_bit_simple(nr,addr) \ (__builtin_constant_p((nr)) ? \ __constant_change_bit((nr),(addr)) : \ __change_bit((nr),(addr)) ) /* * fast, non-SMP test_and_set_bit routine */ static inline int test_and_set_bit_simple(unsigned long nr, volatile unsigned long *ptr) { unsigned long addr; unsigned char ch; addr = (unsigned long) ptr + ((nr ^ (BITS_PER_LONG - 8)) >> 3); ch = *(unsigned char *) addr; asm volatile( " oc %O0(1,%R0),%1" : "=Q" (*(char *) addr) : "Q" (_oi_bitmap[nr & 7]) : "cc", "memory"); return (ch >> (nr & 7)) & 1; } #define __test_and_set_bit(X,Y) test_and_set_bit_simple(X,Y) /* * fast, non-SMP test_and_clear_bit routine */ static inline int test_and_clear_bit_simple(unsigned long nr, volatile unsigned long *ptr) { unsigned long addr; unsigned char ch; addr = (unsigned long) ptr + ((nr ^ (BITS_PER_LONG - 8)) >> 3); ch = *(unsigned char *) addr; asm volatile( " nc %O0(1,%R0),%1" : "=Q" (*(char *) addr) : "Q" (_ni_bitmap[nr & 7]) : "cc", "memory"); return (ch >> (nr & 7)) & 1; } #define __test_and_clear_bit(X,Y) test_and_clear_bit_simple(X,Y) /* * fast, non-SMP test_and_change_bit routine */ static inline int test_and_change_bit_simple(unsigned long nr, volatile unsigned long *ptr) { unsigned long addr; unsigned char ch; addr = (unsigned long) ptr + ((nr ^ (BITS_PER_LONG - 8)) >> 3); ch = *(unsigned char *) addr; asm volatile( " xc %O0(1,%R0),%1" : "=Q" (*(char *) addr) : "Q" (_oi_bitmap[nr & 7]) : "cc", "memory"); return (ch >> (nr & 7)) & 1; } #define __test_and_change_bit(X,Y) test_and_change_bit_simple(X,Y) #ifdef CONFIG_SMP #define set_bit set_bit_cs #define clear_bit clear_bit_cs #define change_bit change_bit_cs #define test_and_set_bit test_and_set_bit_cs #define test_and_clear_bit test_and_clear_bit_cs #define test_and_change_bit test_and_change_bit_cs #else #define set_bit set_bit_simple #define clear_bit clear_bit_simple #define change_bit change_bit_simple #define test_and_set_bit test_and_set_bit_simple #define test_and_clear_bit test_and_clear_bit_simple #define test_and_change_bit test_and_change_bit_simple #endif /* * This routine doesn't need to be atomic. */ static inline int __test_bit(unsigned long nr, const volatile unsigned long *ptr) { unsigned long addr; unsigned char ch; addr = (unsigned long) ptr + ((nr ^ (BITS_PER_LONG - 8)) >> 3); ch = *(volatile unsigned char *) addr; return (ch >> (nr & 7)) & 1; } static inline int __constant_test_bit(unsigned long nr, const volatile unsigned long *addr) { return (((volatile char *) addr) [(nr^(BITS_PER_LONG-8))>>3] & (1<<(nr&7))) != 0; } #define test_bit(nr,addr) \ (__builtin_constant_p((nr)) ? \ __constant_test_bit((nr),(addr)) : \ __test_bit((nr),(addr)) ) /* * Optimized find bit helper functions. */ /** * __ffz_word_loop - find byte offset of first long != -1UL * @addr: pointer to array of unsigned long * @size: size of the array in bits */ static inline unsigned long __ffz_word_loop(const unsigned long *addr, unsigned long size) { typedef struct { long _[__BITOPS_WORDS(size)]; } addrtype; unsigned long bytes = 0; asm volatile( #ifndef CONFIG_64BIT " ahi %1,-1\n" " sra %1,5\n" " jz 1f\n" "0: c %2,0(%0,%3)\n" " jne 1f\n" " la %0,4(%0)\n" " brct %1,0b\n" "1:\n" #else " aghi %1,-1\n" " srag %1,%1,6\n" " jz 1f\n" "0: cg %2,0(%0,%3)\n" " jne 1f\n" " la %0,8(%0)\n" " brct %1,0b\n" "1:\n" #endif : "+&a" (bytes), "+&d" (size) : "d" (-1UL), "a" (addr), "m" (*(addrtype *) addr) : "cc" ); return bytes; } /** * __ffs_word_loop - find byte offset of first long != 0UL * @addr: pointer to array of unsigned long * @size: size of the array in bits */ static inline unsigned long __ffs_word_loop(const unsigned long *addr, unsigned long size) { typedef struct { long _[__BITOPS_WORDS(size)]; } addrtype; unsigned long bytes = 0; asm volatile( #ifndef CONFIG_64BIT " ahi %1,-1\n" " sra %1,5\n" " jz 1f\n" "0: c %2,0(%0,%3)\n" " jne 1f\n" " la %0,4(%0)\n" " brct %1,0b\n" "1:\n" #else " aghi %1,-1\n" " srag %1,%1,6\n" " jz 1f\n" "0: cg %2,0(%0,%3)\n" " jne 1f\n" " la %0,8(%0)\n" " brct %1,0b\n" "1:\n" #endif : "+&a" (bytes), "+&a" (size) : "d" (0UL), "a" (addr), "m" (*(addrtype *) addr) : "cc" ); return bytes; } /** * __ffz_word - add number of the first unset bit * @nr: base value the bit number is added to * @word: the word that is searched for unset bits */ static inline unsigned long __ffz_word(unsigned long nr, unsigned long word) { #ifdef CONFIG_64BIT if ((word & 0xffffffff) == 0xffffffff) { word >>= 32; nr += 32; } #endif if ((word & 0xffff) == 0xffff) { word >>= 16; nr += 16; } if ((word & 0xff) == 0xff) { word >>= 8; nr += 8; } return nr + _zb_findmap[(unsigned char) word]; } /** * __ffs_word - add number of the first set bit * @nr: base value the bit number is added to * @word: the word that is searched for set bits */ static inline unsigned long __ffs_word(unsigned long nr, unsigned long word) { #ifdef CONFIG_64BIT if ((word & 0xffffffff) == 0) { word >>= 32; nr += 32; } #endif if ((word & 0xffff) == 0) { word >>= 16; nr += 16; } if ((word & 0xff) == 0) { word >>= 8; nr += 8; } return nr + _sb_findmap[(unsigned char) word]; } /** * __load_ulong_be - load big endian unsigned long * @p: pointer to array of unsigned long * @offset: byte offset of source value in the array */ static inline unsigned long __load_ulong_be(const unsigned long *p, unsigned long offset) { p = (unsigned long *)((unsigned long) p + offset); return *p; } /** * __load_ulong_le - load little endian unsigned long * @p: pointer to array of unsigned long * @offset: byte offset of source value in the array */ static inline unsigned long __load_ulong_le(const unsigned long *p, unsigned long offset) { unsigned long word; p = (unsigned long *)((unsigned long) p + offset); #ifndef CONFIG_64BIT asm volatile( " ic %0,%O1(%R1)\n" " icm %0,2,%O1+1(%R1)\n" " icm %0,4,%O1+2(%R1)\n" " icm %0,8,%O1+3(%R1)" : "=&d" (word) : "Q" (*p) : "cc"); #else asm volatile( " lrvg %0,%1" : "=d" (word) : "m" (*p) ); #endif return word; } /* * The various find bit functions. */ /* * ffz - find first zero in word. * @word: The word to search * * Undefined if no zero exists, so code should check against ~0UL first. */ static inline unsigned long ffz(unsigned long word) { return __ffz_word(0, word); } /** * __ffs - find first bit in word. * @word: The word to search * * Undefined if no bit exists, so code should check against 0 first. */ static inline unsigned long __ffs (unsigned long word) { return __ffs_word(0, word); } /** * ffs - find first bit set * @x: the word to search * * This is defined the same way as * the libc and compiler builtin ffs routines, therefore * differs in spirit from the above ffz (man ffs). */ static inline int ffs(int x) { if (!x) return 0; return __ffs_word(1, x); } /** * find_first_zero_bit - find the first zero bit in a memory region * @addr: The address to start the search at * @size: The maximum size to search * * Returns the bit-number of the first zero bit, not the number of the byte * containing a bit. */ static inline unsigned long find_first_zero_bit(const unsigned long *addr, unsigned long size) { unsigned long bytes, bits; if (!size) return 0; bytes = __ffz_word_loop(addr, size); bits = __ffz_word(bytes*8, __load_ulong_be(addr, bytes)); return (bits < size) ? bits : size; } #define find_first_zero_bit find_first_zero_bit /** * find_first_bit - find the first set bit in a memory region * @addr: The address to start the search at * @size: The maximum size to search * * Returns the bit-number of the first set bit, not the number of the byte * containing a bit. */ static inline unsigned long find_first_bit(const unsigned long * addr, unsigned long size) { unsigned long bytes, bits; if (!size) return 0; bytes = __ffs_word_loop(addr, size); bits = __ffs_word(bytes*8, __load_ulong_be(addr, bytes)); return (bits < size) ? bits : size; } #define find_first_bit find_first_bit /* * Big endian variant whichs starts bit counting from left using * the flogr (find leftmost one) instruction. */ static inline unsigned long __flo_word(unsigned long nr, unsigned long val) { register unsigned long bit asm("2") = val; register unsigned long out asm("3"); asm volatile ( " .insn rre,0xb9830000,%[bit],%[bit]\n" : [bit] "+d" (bit), [out] "=d" (out) : : "cc"); return nr + bit; } /* * 64 bit special left bitops format: * order in memory: * 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f * 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f * 20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f * 30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f * after that follows the next long with bit numbers * 40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f * 50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f * 60 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f * 70 71 72 73 74 75 76 77 78 79 7a 7b 7c 7d 7e 7f * The reason for this bit ordering is the fact that * the hardware sets bits in a bitmap starting at bit 0 * and we don't want to scan the bitmap from the 'wrong * end'. */ static inline unsigned long find_first_bit_left(const unsigned long *addr, unsigned long size) { unsigned long bytes, bits; if (!size) return 0; bytes = __ffs_word_loop(addr, size); bits = __flo_word(bytes * 8, __load_ulong_be(addr, bytes)); return (bits < size) ? bits : size; } static inline int find_next_bit_left(const unsigned long *addr, unsigned long size, unsigned long offset) { const unsigned long *p; unsigned long bit, set; if (offset >= size) return size; bit = offset & (BITS_PER_LONG - 1); offset -= bit; size -= offset; p = addr + offset / BITS_PER_LONG; if (bit) { set = __flo_word(0, *p & (~0UL << bit)); if (set >= size) return size + offset; if (set < BITS_PER_LONG) return set + offset; offset += BITS_PER_LONG; size -= BITS_PER_LONG; p++; } return offset + find_first_bit_left(p, size); } #define for_each_set_bit_left(bit, addr, size) \ for ((bit) = find_first_bit_left((addr), (size)); \ (bit) < (size); \ (bit) = find_next_bit_left((addr), (size), (bit) + 1)) /* same as for_each_set_bit() but use bit as value to start with */ #define for_each_set_bit_left_cont(bit, addr, size) \ for ((bit) = find_next_bit_left((addr), (size), (bit)); \ (bit) < (size); \ (bit) = find_next_bit_left((addr), (size), (bit) + 1)) /** * find_next_zero_bit - find the first zero bit in a memory region * @addr: The address to base the search on * @offset: The bitnumber to start searching at * @size: The maximum size to search */ static inline int find_next_zero_bit (const unsigned long * addr, unsigned long size, unsigned long offset) { const unsigned long *p; unsigned long bit, set; if (offset >= size) return size; bit = offset & (BITS_PER_LONG - 1); offset -= bit; size -= offset; p = addr + offset / BITS_PER_LONG; if (bit) { /* * __ffz_word returns BITS_PER_LONG * if no zero bit is present in the word. */ set = __ffz_word(bit, *p >> bit); if (set >= size) return size + offset; if (set < BITS_PER_LONG) return set + offset; offset += BITS_PER_LONG; size -= BITS_PER_LONG; p++; } return offset + find_first_zero_bit(p, size); } #define find_next_zero_bit find_next_zero_bit /** * find_next_bit - find the first set bit in a memory region * @addr: The address to base the search on * @offset: The bitnumber to start searching at * @size: The maximum size to search */ static inline int find_next_bit (const unsigned long * addr, unsigned long size, unsigned long offset) { const unsigned long *p; unsigned long bit, set; if (offset >= size) return size; bit = offset & (BITS_PER_LONG - 1); offset -= bit; size -= offset; p = addr + offset / BITS_PER_LONG; if (bit) { /* * __ffs_word returns BITS_PER_LONG * if no one bit is present in the word. */ set = __ffs_word(0, *p & (~0UL << bit)); if (set >= size) return size + offset; if (set < BITS_PER_LONG) return set + offset; offset += BITS_PER_LONG; size -= BITS_PER_LONG; p++; } return offset + find_first_bit(p, size); } #define find_next_bit find_next_bit /* * Every architecture must define this function. It's the fastest * way of searching a 140-bit bitmap where the first 100 bits are * unlikely to be set. It's guaranteed that at least one of the 140 * bits is cleared. */ static inline int sched_find_first_bit(unsigned long *b) { return find_first_bit(b, 140); } #include #include #include #include #include /* * ATTENTION: intel byte ordering convention for ext2 and minix !! * bit 0 is the LSB of addr; bit 31 is the MSB of addr; * bit 32 is the LSB of (addr+4). * That combined with the little endian byte order of Intel gives the * following bit order in memory: * 07 06 05 04 03 02 01 00 15 14 13 12 11 10 09 08 \ * 23 22 21 20 19 18 17 16 31 30 29 28 27 26 25 24 */ static inline int find_first_zero_bit_le(void *vaddr, unsigned int size) { unsigned long bytes, bits; if (!size) return 0; bytes = __ffz_word_loop(vaddr, size); bits = __ffz_word(bytes*8, __load_ulong_le(vaddr, bytes)); return (bits < size) ? bits : size; } #define find_first_zero_bit_le find_first_zero_bit_le static inline int find_next_zero_bit_le(void *vaddr, unsigned long size, unsigned long offset) { unsigned long *addr = vaddr, *p; unsigned long bit, set; if (offset >= size) return size; bit = offset & (BITS_PER_LONG - 1); offset -= bit; size -= offset; p = addr + offset / BITS_PER_LONG; if (bit) { /* * s390 version of ffz returns BITS_PER_LONG * if no zero bit is present in the word. */ set = __ffz_word(bit, __load_ulong_le(p, 0) >> bit); if (set >= size) return size + offset; if (set < BITS_PER_LONG) return set + offset; offset += BITS_PER_LONG; size -= BITS_PER_LONG; p++; } return offset + find_first_zero_bit_le(p, size); } #define find_next_zero_bit_le find_next_zero_bit_le static inline unsigned long find_first_bit_le(void *vaddr, unsigned long size) { unsigned long bytes, bits; if (!size) return 0; bytes = __ffs_word_loop(vaddr, size); bits = __ffs_word(bytes*8, __load_ulong_le(vaddr, bytes)); return (bits < size) ? bits : size; } #define find_first_bit_le find_first_bit_le static inline int find_next_bit_le(void *vaddr, unsigned long size, unsigned long offset) { unsigned long *addr = vaddr, *p; unsigned long bit, set; if (offset >= size) return size; bit = offset & (BITS_PER_LONG - 1); offset -= bit; size -= offset; p = addr + offset / BITS_PER_LONG; if (bit) { /* * s390 version of ffz returns BITS_PER_LONG * if no zero bit is present in the word. */ set = __ffs_word(0, __load_ulong_le(p, 0) & (~0UL << bit)); if (set >= size) return size + offset; if (set < BITS_PER_LONG) return set + offset; offset += BITS_PER_LONG; size -= BITS_PER_LONG; p++; } return offset + find_first_bit_le(p, size); } #define find_next_bit_le find_next_bit_le #include #include #endif /* _S390_BITOPS_H */