/* * Copyright (c) 2005-2006 Michael Ellerman, IBM Corporation * * Description: * This file contains all the routines to build a flattened device * tree for a legacy iSeries machine. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #undef DEBUG #include #include #include #include #include #include #include #include #include #include /* ETH_ALEN */ #include #include #include #include #include #include #include #include #include #include #include #include #include "processor_vpd.h" #include "call_hpt.h" #include "call_pci.h" #include "pci.h" #ifdef DEBUG #define DBG(fmt...) udbg_printf(fmt) #else #define DBG(fmt...) #endif extern char __dt_strings_start[]; extern char __dt_strings_end[]; struct blob { unsigned char data[PAGE_SIZE * 2]; unsigned long next; }; struct iseries_flat_dt { struct boot_param_header header; u64 reserve_map[2]; struct blob *dt; }; static struct iseries_flat_dt *iseries_dt; static struct iseries_flat_dt * __init dt_init(void) { struct iseries_flat_dt *dt; unsigned long str_len; str_len = __dt_strings_end - __dt_strings_start; dt = (struct iseries_flat_dt *)ALIGN(klimit, 8); dt->header.off_mem_rsvmap = offsetof(struct iseries_flat_dt, reserve_map); dt->header.off_dt_strings = ALIGN(sizeof(*dt), 8); dt->header.off_dt_struct = dt->header.off_dt_strings + ALIGN(str_len, 8); dt->dt = (struct blob *)((unsigned long)dt + dt->header.off_dt_struct); klimit = ALIGN((unsigned long)(dt->dt) + sizeof(struct blob), 8); dt->header.totalsize = klimit - (unsigned long)dt; dt->header.dt_strings_size = str_len; /* There is no notion of hardware cpu id on iSeries */ dt->header.boot_cpuid_phys = smp_processor_id(); dt->dt->next = (unsigned long)&dt->dt->data; memcpy((char *)dt + dt->header.off_dt_strings, __dt_strings_start, str_len); dt->header.magic = OF_DT_HEADER; dt->header.version = 0x10; dt->header.last_comp_version = 0x10; dt->reserve_map[0] = 0; dt->reserve_map[1] = 0; return dt; } static void __init dt_check_blob(struct blob *b) { if (b->next >= (unsigned long)&b->next) { DBG("Ran out of space in flat device tree blob!\n"); BUG(); } } static void __init dt_push_u32(struct iseries_flat_dt *dt, u32 value) { *((u32*)dt->dt->next) = value; dt->dt->next += sizeof(u32); dt_check_blob(dt->dt); } #ifdef notyet static void __init dt_push_u64(struct iseries_flat_dt *dt, u64 value) { *((u64*)dt->dt->next) = value; dt->dt->next += sizeof(u64); dt_check_blob(dt->dt); } #endif static unsigned long __init dt_push_bytes(struct blob *blob, char *data, int len) { unsigned long start = blob->next - (unsigned long)blob->data; memcpy((char *)blob->next, data, len); blob->next = _ALIGN(blob->next + len, 4); dt_check_blob(blob); return start; } static void __init dt_start_node(struct iseries_flat_dt *dt, char *name) { dt_push_u32(dt, OF_DT_BEGIN_NODE); dt_push_bytes(dt->dt, name, strlen(name) + 1); } #define dt_end_node(dt) dt_push_u32(dt, OF_DT_END_NODE) static void __init dt_prop(struct iseries_flat_dt *dt, char *name, char *data, int len) { unsigned long offset; dt_push_u32(dt, OF_DT_PROP); /* Length of the data */ dt_push_u32(dt, len); offset = name - __dt_strings_start; /* The offset of the properties name in the string blob. */ dt_push_u32(dt, (u32)offset); /* The actual data. */ dt_push_bytes(dt->dt, data, len); } static void __init dt_prop_str(struct iseries_flat_dt *dt, char *name, char *data) { dt_prop(dt, name, data, strlen(data) + 1); /* + 1 for NULL */ } static void __init dt_prop_u32(struct iseries_flat_dt *dt, char *name, u32 data) { dt_prop(dt, name, (char *)&data, sizeof(u32)); } static void __init dt_prop_u64(struct iseries_flat_dt *dt, char *name, u64 data) { dt_prop(dt, name, (char *)&data, sizeof(u64)); } static void __init dt_prop_u64_list(struct iseries_flat_dt *dt, char *name, u64 *data, int n) { dt_prop(dt, name, (char *)data, sizeof(u64) * n); } static void __init dt_prop_u32_list(struct iseries_flat_dt *dt, char *name, u32 *data, int n) { dt_prop(dt, name, (char *)data, sizeof(u32) * n); } #ifdef notyet static void __init dt_prop_empty(struct iseries_flat_dt *dt, char *name) { dt_prop(dt, name, NULL, 0); } #endif static void __init dt_cpus(struct iseries_flat_dt *dt) { unsigned char buf[32]; unsigned char *p; unsigned int i, index; struct IoHriProcessorVpd *d; u32 pft_size[2]; /* yuck */ snprintf(buf, 32, "PowerPC,%s", cur_cpu_spec->cpu_name); p = strchr(buf, ' '); if (!p) p = buf + strlen(buf); dt_start_node(dt, "cpus"); dt_prop_u32(dt, "#address-cells", 1); dt_prop_u32(dt, "#size-cells", 0); pft_size[0] = 0; /* NUMA CEC cookie, 0 for non NUMA */ pft_size[1] = __ilog2(HvCallHpt_getHptPages() * HW_PAGE_SIZE); for (i = 0; i < NR_CPUS; i++) { if (lppaca[i].dyn_proc_status >= 2) continue; snprintf(p, 32 - (p - buf), "@%d", i); dt_start_node(dt, buf); dt_prop_str(dt, "device_type", "cpu"); index = lppaca[i].dyn_hv_phys_proc_index; d = &xIoHriProcessorVpd[index]; dt_prop_u32(dt, "i-cache-size", d->xInstCacheSize * 1024); dt_prop_u32(dt, "i-cache-line-size", d->xInstCacheOperandSize); dt_prop_u32(dt, "d-cache-size", d->xDataL1CacheSizeKB * 1024); dt_prop_u32(dt, "d-cache-line-size", d->xDataCacheOperandSize); /* magic conversions to Hz copied from old code */ dt_prop_u32(dt, "clock-frequency", ((1UL << 34) * 1000000) / d->xProcFreq); dt_prop_u32(dt, "timebase-frequency", ((1UL << 32) * 1000000) / d->xTimeBaseFreq); dt_prop_u32(dt, "reg", i); dt_prop_u32_list(dt, "ibm,pft-size", pft_size, 2); dt_end_node(dt); } dt_end_node(dt); } static void __init dt_model(struct iseries_flat_dt *dt) { char buf[16] = "IBM,"; /* "IBM," + mfgId[2:3] + systemSerial[1:5] */ strne2a(buf + 4, xItExtVpdPanel.mfgID + 2, 2); strne2a(buf + 6, xItExtVpdPanel.systemSerial + 1, 5); buf[11] = '\0'; dt_prop_str(dt, "system-id", buf); /* "IBM," + machineType[0:4] */ strne2a(buf + 4, xItExtVpdPanel.machineType, 4); buf[8] = '\0'; dt_prop_str(dt, "model", buf); dt_prop_str(dt, "compatible", "IBM,iSeries"); } static void __init dt_vdevices(struct iseries_flat_dt *dt) { u32 reg = 0; HvLpIndexMap vlan_map; int i; char buf[32]; dt_start_node(dt, "vdevice"); dt_prop_str(dt, "device_type", "vdevice"); dt_prop_str(dt, "compatible", "IBM,iSeries-vdevice"); dt_prop_u32(dt, "#address-cells", 1); dt_prop_u32(dt, "#size-cells", 0); snprintf(buf, sizeof(buf), "vty@%08x", reg); dt_start_node(dt, buf); dt_prop_str(dt, "device_type", "serial"); dt_prop_u32(dt, "reg", reg); dt_end_node(dt); reg++; snprintf(buf, sizeof(buf), "v-scsi@%08x", reg); dt_start_node(dt, buf); dt_prop_str(dt, "device_type", "vscsi"); dt_prop_str(dt, "compatible", "IBM,v-scsi"); dt_prop_u32(dt, "reg", reg); dt_end_node(dt); reg++; vlan_map = HvLpConfig_getVirtualLanIndexMap(); for (i = 0; i < HVMAXARCHITECTEDVIRTUALLANS; i++) { unsigned char mac_addr[ETH_ALEN]; if ((vlan_map & (0x8000 >> i)) == 0) continue; snprintf(buf, 32, "l-lan@%08x", reg + i); dt_start_node(dt, buf); dt_prop_str(dt, "device_type", "network"); dt_prop_str(dt, "compatible", "IBM,iSeries-l-lan"); dt_prop_u32(dt, "reg", reg + i); dt_prop_u32(dt, "linux,unit_address", i); mac_addr[0] = 0x02; mac_addr[1] = 0x01; mac_addr[2] = 0xff; mac_addr[3] = i; mac_addr[4] = 0xff; mac_addr[5] = HvLpConfig_getLpIndex_outline(); dt_prop(dt, "local-mac-address", (char *)mac_addr, ETH_ALEN); dt_prop(dt, "mac-address", (char *)mac_addr, ETH_ALEN); dt_prop_u32(dt, "max-frame-size", 9000); dt_prop_u32(dt, "address-bits", 48); dt_end_node(dt); } reg += HVMAXARCHITECTEDVIRTUALLANS; for (i = 0; i < HVMAXARCHITECTEDVIRTUALDISKS; i++) { snprintf(buf, 32, "viodasd@%08x", reg + i); dt_start_node(dt, buf); dt_prop_str(dt, "device_type", "block"); dt_prop_str(dt, "compatible", "IBM,iSeries-viodasd"); dt_prop_u32(dt, "reg", reg + i); dt_prop_u32(dt, "linux,unit_address", i); dt_end_node(dt); } reg += HVMAXARCHITECTEDVIRTUALDISKS; for (i = 0; i < HVMAXARCHITECTEDVIRTUALCDROMS; i++) { snprintf(buf, 32, "viocd@%08x", reg + i); dt_start_node(dt, buf); dt_prop_str(dt, "device_type", "block"); dt_prop_str(dt, "compatible", "IBM,iSeries-viocd"); dt_prop_u32(dt, "reg", reg + i); dt_prop_u32(dt, "linux,unit_address", i); dt_end_node(dt); } reg += HVMAXARCHITECTEDVIRTUALCDROMS; for (i = 0; i < HVMAXARCHITECTEDVIRTUALTAPES; i++) { snprintf(buf, 32, "viotape@%08x", reg + i); dt_start_node(dt, buf); dt_prop_str(dt, "device_type", "byte"); dt_prop_str(dt, "compatible", "IBM,iSeries-viotape"); dt_prop_u32(dt, "reg", reg + i); dt_prop_u32(dt, "linux,unit_address", i); dt_end_node(dt); } dt_end_node(dt); } struct pci_class_name { u16 code; char *name; char *type; }; static struct pci_class_name __initdata pci_class_name[] = { { PCI_CLASS_NETWORK_ETHERNET, "ethernet", "network" }, }; static struct pci_class_name * __init dt_find_pci_class_name(u16 class_code) { struct pci_class_name *cp; for (cp = pci_class_name; cp < &pci_class_name[ARRAY_SIZE(pci_class_name)]; cp++) if (cp->code == class_code) return cp; return NULL; } /* * This assumes that the node slot is always on the primary bus! */ static void __init scan_bridge_slot(struct iseries_flat_dt *dt, HvBusNumber bus, struct HvCallPci_BridgeInfo *bridge_info) { HvSubBusNumber sub_bus = bridge_info->subBusNumber; u16 vendor_id; u16 device_id; u32 class_id; int err; char buf[32]; u32 reg[5]; int id_sel = ISERIES_GET_DEVICE_FROM_SUBBUS(sub_bus); int function = ISERIES_GET_FUNCTION_FROM_SUBBUS(sub_bus); HvAgentId eads_id_sel = ISERIES_PCI_AGENTID(id_sel, function); u8 devfn; struct pci_class_name *cp; /* * Connect all functions of any device found. */ for (id_sel = 1; id_sel <= bridge_info->maxAgents; id_sel++) { for (function = 0; function < 8; function++) { HvAgentId agent_id = ISERIES_PCI_AGENTID(id_sel, function); err = HvCallXm_connectBusUnit(bus, sub_bus, agent_id, 0); if (err) { if (err != 0x302) printk(KERN_DEBUG "connectBusUnit(%x, %x, %x) " "== %x\n", bus, sub_bus, agent_id, err); continue; } err = HvCallPci_configLoad16(bus, sub_bus, agent_id, PCI_VENDOR_ID, &vendor_id); if (err) { printk(KERN_DEBUG "ReadVendor(%x, %x, %x) == %x\n", bus, sub_bus, agent_id, err); continue; } err = HvCallPci_configLoad16(bus, sub_bus, agent_id, PCI_DEVICE_ID, &device_id); if (err) { printk(KERN_DEBUG "ReadDevice(%x, %x, %x) == %x\n", bus, sub_bus, agent_id, err); continue; } err = HvCallPci_configLoad32(bus, sub_bus, agent_id, PCI_CLASS_REVISION , &class_id); if (err) { printk(KERN_DEBUG "ReadClass(%x, %x, %x) == %x\n", bus, sub_bus, agent_id, err); continue; } devfn = PCI_DEVFN(ISERIES_ENCODE_DEVICE(eads_id_sel), function); cp = dt_find_pci_class_name(class_id >> 16); if (cp && cp->name) strncpy(buf, cp->name, sizeof(buf) - 1); else snprintf(buf, sizeof(buf), "pci%x,%x", vendor_id, device_id); buf[sizeof(buf) - 1] = '\0'; snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "@%x", PCI_SLOT(devfn)); buf[sizeof(buf) - 1] = '\0'; if (function != 0) snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ",%x", function); dt_start_node(dt, buf); reg[0] = (bus << 16) | (devfn << 8); reg[1] = 0; reg[2] = 0; reg[3] = 0; reg[4] = 0; dt_prop_u32_list(dt, "reg", reg, 5); if (cp && (cp->type || cp->name)) dt_prop_str(dt, "device_type", cp->type ? cp->type : cp->name); dt_prop_u32(dt, "vendor-id", vendor_id); dt_prop_u32(dt, "device-id", device_id); dt_prop_u32(dt, "class-code", class_id >> 8); dt_prop_u32(dt, "revision-id", class_id & 0xff); dt_prop_u32(dt, "linux,subbus", sub_bus); dt_prop_u32(dt, "linux,agent-id", agent_id); dt_prop_u32(dt, "linux,logical-slot-number", bridge_info->logicalSlotNumber); dt_end_node(dt); } } } static void __init scan_bridge(struct iseries_flat_dt *dt, HvBusNumber bus, HvSubBusNumber sub_bus, int id_sel) { struct HvCallPci_BridgeInfo bridge_info; HvAgentId agent_id; int function; int ret; /* Note: hvSubBus and irq is always be 0 at this level! */ for (function = 0; function < 8; ++function) { agent_id = ISERIES_PCI_AGENTID(id_sel, function); ret = HvCallXm_connectBusUnit(bus, sub_bus, agent_id, 0); if (ret != 0) { if (ret != 0xb) printk(KERN_DEBUG "connectBusUnit(%x, %x, %x) " "== %x\n", bus, sub_bus, agent_id, ret); continue; } printk("found device at bus %d idsel %d func %d (AgentId %x)\n", bus, id_sel, function, agent_id); ret = HvCallPci_getBusUnitInfo(bus, sub_bus, agent_id, iseries_hv_addr(&bridge_info), sizeof(struct HvCallPci_BridgeInfo)); if (ret != 0) continue; printk("bridge info: type %x subbus %x " "maxAgents %x maxsubbus %x logslot %x\n", bridge_info.busUnitInfo.deviceType, bridge_info.subBusNumber, bridge_info.maxAgents, bridge_info.maxSubBusNumber, bridge_info.logicalSlotNumber); if (bridge_info.busUnitInfo.deviceType == HvCallPci_BridgeDevice) scan_bridge_slot(dt, bus, &bridge_info); else printk("PCI: Invalid Bridge Configuration(0x%02X)", bridge_info.busUnitInfo.deviceType); } } static void __init scan_phb(struct iseries_flat_dt *dt, HvBusNumber bus) { struct HvCallPci_DeviceInfo dev_info; const HvSubBusNumber sub_bus = 0; /* EADs is always 0. */ int err; int id_sel; const int max_agents = 8; /* * Probe for EADs Bridges */ for (id_sel = 1; id_sel < max_agents; ++id_sel) { err = HvCallPci_getDeviceInfo(bus, sub_bus, id_sel, iseries_hv_addr(&dev_info), sizeof(struct HvCallPci_DeviceInfo)); if (err) { if (err != 0x302) printk(KERN_DEBUG "getDeviceInfo(%x, %x, %x) " "== %x\n", bus, sub_bus, id_sel, err); continue; } if (dev_info.deviceType != HvCallPci_NodeDevice) { printk(KERN_DEBUG "PCI: Invalid System Configuration" "(0x%02X) for bus 0x%02x id 0x%02x.\n", dev_info.deviceType, bus, id_sel); continue; } scan_bridge(dt, bus, sub_bus, id_sel); } } static void __init dt_pci_devices(struct iseries_flat_dt *dt) { HvBusNumber bus; char buf[32]; u32 buses[2]; int phb_num = 0; /* Check all possible buses. */ for (bus = 0; bus < 256; bus++) { int err = HvCallXm_testBus(bus); if (err) { /* * Check for Unexpected Return code, a clue that * something has gone wrong. */ if (err != 0x0301) printk(KERN_ERR "Unexpected Return on Probe" "(0x%02X): 0x%04X", bus, err); continue; } printk("bus %d appears to exist\n", bus); snprintf(buf, 32, "pci@%d", phb_num); dt_start_node(dt, buf); dt_prop_str(dt, "device_type", "pci"); dt_prop_str(dt, "compatible", "IBM,iSeries-Logical-PHB"); dt_prop_u32(dt, "#address-cells", 3); dt_prop_u32(dt, "#size-cells", 2); buses[0] = buses[1] = bus; dt_prop_u32_list(dt, "bus-range", buses, 2); scan_phb(dt, bus); dt_end_node(dt); phb_num++; } } static void dt_finish(struct iseries_flat_dt *dt) { dt_push_u32(dt, OF_DT_END); } void * __init build_flat_dt(unsigned long phys_mem_size) { u64 tmp[2]; iseries_dt = dt_init(); dt_start_node(iseries_dt, ""); dt_prop_u32(iseries_dt, "#address-cells", 2); dt_prop_u32(iseries_dt, "#size-cells", 2); dt_model(iseries_dt); /* /memory */ dt_start_node(iseries_dt, "memory@0"); dt_prop_str(iseries_dt, "name", "memory"); dt_prop_str(iseries_dt, "device_type", "memory"); tmp[0] = 0; tmp[1] = phys_mem_size; dt_prop_u64_list(iseries_dt, "reg", tmp, 2); dt_end_node(iseries_dt); /* /chosen */ dt_start_node(iseries_dt, "chosen"); dt_prop_str(iseries_dt, "bootargs", cmd_line); dt_end_node(iseries_dt); dt_cpus(iseries_dt); dt_vdevices(iseries_dt); dt_pci_devices(iseries_dt); dt_end_node(iseries_dt); dt_finish(iseries_dt); return iseries_dt; }