#undef DEBUG #include <linux/kernel.h> #include <linux/string.h> #include <linux/pci_regs.h> #include <linux/module.h> #include <linux/ioport.h> #include <asm/prom.h> #include <asm/pci-bridge.h> #ifdef DEBUG #define DBG(fmt...) do { printk(fmt); } while(0) #else #define DBG(fmt...) do { } while(0) #endif #ifdef CONFIG_PPC64 #define PRu64 "%lx" #else #define PRu64 "%llx" #endif /* Max address size we deal with */ #define OF_MAX_ADDR_CELLS 4 #define OF_CHECK_COUNTS(na, ns) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS && \ (ns) > 0) /* Debug utility */ #ifdef DEBUG static void of_dump_addr(const char *s, u32 *addr, int na) { printk("%s", s); while(na--) printk(" %08x", *(addr++)); printk("\n"); } #else static void of_dump_addr(const char *s, u32 *addr, int na) { } #endif /* Read a big address */ static inline u64 of_read_addr(u32 *cell, int size) { u64 r = 0; while (size--) r = (r << 32) | *(cell++); return r; } /* Callbacks for bus specific translators */ struct of_bus { const char *name; const char *addresses; int (*match)(struct device_node *parent); void (*count_cells)(struct device_node *child, int *addrc, int *sizec); u64 (*map)(u32 *addr, u32 *range, int na, int ns, int pna); int (*translate)(u32 *addr, u64 offset, int na); unsigned int (*get_flags)(u32 *addr); }; /* * Default translator (generic bus) */ static void of_bus_default_count_cells(struct device_node *dev, int *addrc, int *sizec) { if (addrc) *addrc = prom_n_addr_cells(dev); if (sizec) *sizec = prom_n_size_cells(dev); } static u64 of_bus_default_map(u32 *addr, u32 *range, int na, int ns, int pna) { u64 cp, s, da; cp = of_read_addr(range, na); s = of_read_addr(range + na + pna, ns); da = of_read_addr(addr, na); DBG("OF: default map, cp="PRu64", s="PRu64", da="PRu64"\n", cp, s, da); if (da < cp || da >= (cp + s)) return OF_BAD_ADDR; return da - cp; } static int of_bus_default_translate(u32 *addr, u64 offset, int na) { u64 a = of_read_addr(addr, na); memset(addr, 0, na * 4); a += offset; if (na > 1) addr[na - 2] = a >> 32; addr[na - 1] = a & 0xffffffffu; return 0; } static unsigned int of_bus_default_get_flags(u32 *addr) { return IORESOURCE_MEM; } /* * PCI bus specific translator */ static int of_bus_pci_match(struct device_node *np) { return !strcmp(np->type, "pci"); } static void of_bus_pci_count_cells(struct device_node *np, int *addrc, int *sizec) { if (addrc) *addrc = 3; if (sizec) *sizec = 2; } static u64 of_bus_pci_map(u32 *addr, u32 *range, int na, int ns, int pna) { u64 cp, s, da; /* Check address type match */ if ((addr[0] ^ range[0]) & 0x03000000) return OF_BAD_ADDR; /* Read address values, skipping high cell */ cp = of_read_addr(range + 1, na - 1); s = of_read_addr(range + na + pna, ns); da = of_read_addr(addr + 1, na - 1); DBG("OF: PCI map, cp="PRu64", s="PRu64", da="PRu64"\n", cp, s, da); if (da < cp || da >= (cp + s)) return OF_BAD_ADDR; return da - cp; } static int of_bus_pci_translate(u32 *addr, u64 offset, int na) { return of_bus_default_translate(addr + 1, offset, na - 1); } static unsigned int of_bus_pci_get_flags(u32 *addr) { unsigned int flags = 0; u32 w = addr[0]; switch((w >> 24) & 0x03) { case 0x01: flags |= IORESOURCE_IO; case 0x02: /* 32 bits */ case 0x03: /* 64 bits */ flags |= IORESOURCE_MEM; } if (w & 0x40000000) flags |= IORESOURCE_PREFETCH; return flags; } /* * ISA bus specific translator */ static int of_bus_isa_match(struct device_node *np) { return !strcmp(np->name, "isa"); } static void of_bus_isa_count_cells(struct device_node *child, int *addrc, int *sizec) { if (addrc) *addrc = 2; if (sizec) *sizec = 1; } static u64 of_bus_isa_map(u32 *addr, u32 *range, int na, int ns, int pna) { u64 cp, s, da; /* Check address type match */ if ((addr[0] ^ range[0]) & 0x00000001) return OF_BAD_ADDR; /* Read address values, skipping high cell */ cp = of_read_addr(range + 1, na - 1); s = of_read_addr(range + na + pna, ns); da = of_read_addr(addr + 1, na - 1); DBG("OF: ISA map, cp="PRu64", s="PRu64", da="PRu64"\n", cp, s, da); if (da < cp || da >= (cp + s)) return OF_BAD_ADDR; return da - cp; } static int of_bus_isa_translate(u32 *addr, u64 offset, int na) { return of_bus_default_translate(addr + 1, offset, na - 1); } static unsigned int of_bus_isa_get_flags(u32 *addr) { unsigned int flags = 0; u32 w = addr[0]; if (w & 1) flags |= IORESOURCE_IO; else flags |= IORESOURCE_MEM; return flags; } /* * Array of bus specific translators */ static struct of_bus of_busses[] = { /* PCI */ { .name = "pci", .addresses = "assigned-addresses", .match = of_bus_pci_match, .count_cells = of_bus_pci_count_cells, .map = of_bus_pci_map, .translate = of_bus_pci_translate, .get_flags = of_bus_pci_get_flags, }, /* ISA */ { .name = "isa", .addresses = "reg", .match = of_bus_isa_match, .count_cells = of_bus_isa_count_cells, .map = of_bus_isa_map, .translate = of_bus_isa_translate, .get_flags = of_bus_isa_get_flags, }, /* Default */ { .name = "default", .addresses = "reg", .match = NULL, .count_cells = of_bus_default_count_cells, .map = of_bus_default_map, .translate = of_bus_default_translate, .get_flags = of_bus_default_get_flags, }, }; static struct of_bus *of_match_bus(struct device_node *np) { int i; for (i = 0; i < ARRAY_SIZE(of_busses); i ++) if (!of_busses[i].match || of_busses[i].match(np)) return &of_busses[i]; BUG(); return NULL; } static int of_translate_one(struct device_node *parent, struct of_bus *bus, struct of_bus *pbus, u32 *addr, int na, int ns, int pna) { u32 *ranges; unsigned int rlen; int rone; u64 offset = OF_BAD_ADDR; /* Normally, an absence of a "ranges" property means we are * crossing a non-translatable boundary, and thus the addresses * below the current not cannot be converted to CPU physical ones. * Unfortunately, while this is very clear in the spec, it's not * what Apple understood, and they do have things like /uni-n or * /ht nodes with no "ranges" property and a lot of perfectly * useable mapped devices below them. Thus we treat the absence of * "ranges" as equivalent to an empty "ranges" property which means * a 1:1 translation at that level. It's up to the caller not to try * to translate addresses that aren't supposed to be translated in * the first place. --BenH. */ ranges = (u32 *)get_property(parent, "ranges", &rlen); if (ranges == NULL || rlen == 0) { offset = of_read_addr(addr, na); memset(addr, 0, pna * 4); DBG("OF: no ranges, 1:1 translation\n"); goto finish; } DBG("OF: walking ranges...\n"); /* Now walk through the ranges */ rlen /= 4; rone = na + pna + ns; for (; rlen >= rone; rlen -= rone, ranges += rone) { offset = bus->map(addr, ranges, na, ns, pna); if (offset != OF_BAD_ADDR) break; } if (offset == OF_BAD_ADDR) { DBG("OF: not found !\n"); return 1; } memcpy(addr, ranges + na, 4 * pna); finish: of_dump_addr("OF: parent translation for:", addr, pna); DBG("OF: with offset: "PRu64"\n", offset); /* Translate it into parent bus space */ return pbus->translate(addr, offset, pna); } /* * Translate an address from the device-tree into a CPU physical address, * this walks up the tree and applies the various bus mappings on the * way. * * Note: We consider that crossing any level with #size-cells == 0 to mean * that translation is impossible (that is we are not dealing with a value * that can be mapped to a cpu physical address). This is not really specified * that way, but this is traditionally the way IBM at least do things */ u64 of_translate_address(struct device_node *dev, u32 *in_addr) { struct device_node *parent = NULL; struct of_bus *bus, *pbus; u32 addr[OF_MAX_ADDR_CELLS]; int na, ns, pna, pns; u64 result = OF_BAD_ADDR; DBG("OF: ** translation for device %s **\n", dev->full_name); /* Increase refcount at current level */ of_node_get(dev); /* Get parent & match bus type */ parent = of_get_parent(dev); if (parent == NULL) goto bail; bus = of_match_bus(parent); /* Cound address cells & copy address locally */ bus->count_cells(dev, &na, &ns); if (!OF_CHECK_COUNTS(na, ns)) { printk(KERN_ERR "prom_parse: Bad cell count for %s\n", dev->full_name); goto bail; } memcpy(addr, in_addr, na * 4); DBG("OF: bus is %s (na=%d, ns=%d) on %s\n", bus->name, na, ns, parent->full_name); of_dump_addr("OF: translating address:", addr, na); /* Translate */ for (;;) { /* Switch to parent bus */ of_node_put(dev); dev = parent; parent = of_get_parent(dev); /* If root, we have finished */ if (parent == NULL) { DBG("OF: reached root node\n"); result = of_read_addr(addr, na); break; } /* Get new parent bus and counts */ pbus = of_match_bus(parent); pbus->count_cells(dev, &pna, &pns); if (!OF_CHECK_COUNTS(pna, pns)) { printk(KERN_ERR "prom_parse: Bad cell count for %s\n", dev->full_name); break; } DBG("OF: parent bus is %s (na=%d, ns=%d) on %s\n", pbus->name, pna, pns, parent->full_name); /* Apply bus translation */ if (of_translate_one(dev, bus, pbus, addr, na, ns, pna)) break; /* Complete the move up one level */ na = pna; ns = pns; bus = pbus; of_dump_addr("OF: one level translation:", addr, na); } bail: of_node_put(parent); of_node_put(dev); return result; } EXPORT_SYMBOL(of_translate_address); u32 *of_get_address(struct device_node *dev, int index, u64 *size, unsigned int *flags) { u32 *prop; unsigned int psize; struct device_node *parent; struct of_bus *bus; int onesize, i, na, ns; /* Get parent & match bus type */ parent = of_get_parent(dev); if (parent == NULL) return NULL; bus = of_match_bus(parent); bus->count_cells(dev, &na, &ns); of_node_put(parent); if (!OF_CHECK_COUNTS(na, ns)) return NULL; /* Get "reg" or "assigned-addresses" property */ prop = (u32 *)get_property(dev, bus->addresses, &psize); if (prop == NULL) return NULL; psize /= 4; onesize = na + ns; for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) if (i == index) { if (size) *size = of_read_addr(prop + na, ns); if (flags) *flags = bus->get_flags(prop); return prop; } return NULL; } EXPORT_SYMBOL(of_get_address); u32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size, unsigned int *flags) { u32 *prop; unsigned int psize; struct device_node *parent; struct of_bus *bus; int onesize, i, na, ns; /* Get parent & match bus type */ parent = of_get_parent(dev); if (parent == NULL) return NULL; bus = of_match_bus(parent); if (strcmp(bus->name, "pci")) return NULL; bus->count_cells(dev, &na, &ns); of_node_put(parent); if (!OF_CHECK_COUNTS(na, ns)) return NULL; /* Get "reg" or "assigned-addresses" property */ prop = (u32 *)get_property(dev, bus->addresses, &psize); if (prop == NULL) return NULL; psize /= 4; onesize = na + ns; for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) if ((prop[0] & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) { if (size) *size = of_read_addr(prop + na, ns); if (flags) *flags = bus->get_flags(prop); return prop; } return NULL; } EXPORT_SYMBOL(of_get_pci_address); static int __of_address_to_resource(struct device_node *dev, u32 *addrp, u64 size, unsigned int flags, struct resource *r) { u64 taddr; if ((flags & (IORESOURCE_IO | IORESOURCE_MEM)) == 0) return -EINVAL; taddr = of_translate_address(dev, addrp); if (taddr == OF_BAD_ADDR) return -EINVAL; memset(r, 0, sizeof(struct resource)); if (flags & IORESOURCE_IO) { unsigned long port; port = pci_address_to_pio(taddr); if (port == (unsigned long)-1) return -EINVAL; r->start = port; r->end = port + size - 1; } else { r->start = taddr; r->end = taddr + size - 1; } r->flags = flags; r->name = dev->name; return 0; } int of_address_to_resource(struct device_node *dev, int index, struct resource *r) { u32 *addrp; u64 size; unsigned int flags; addrp = of_get_address(dev, index, &size, &flags); if (addrp == NULL) return -EINVAL; return __of_address_to_resource(dev, addrp, size, flags, r); } EXPORT_SYMBOL_GPL(of_address_to_resource); int of_pci_address_to_resource(struct device_node *dev, int bar, struct resource *r) { u32 *addrp; u64 size; unsigned int flags; addrp = of_get_pci_address(dev, bar, &size, &flags); if (addrp == NULL) return -EINVAL; return __of_address_to_resource(dev, addrp, size, flags, r); } EXPORT_SYMBOL_GPL(of_pci_address_to_resource);