/* * Copyright (C) 2001,2002,2003 Broadcom Corporation * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include <linux/sched.h> #include <asm/mipsregs.h> #include <asm/sibyte/sb1250.h> #include <asm/sibyte/sb1250_regs.h> #if !defined(CONFIG_SIBYTE_BUS_WATCHER) || defined(CONFIG_SIBYTE_BW_TRACE) #include <asm/io.h> #include <asm/sibyte/sb1250_scd.h> #endif /* * We'd like to dump the L2_ECC_TAG register on errors, but errata make * that unsafe... So for now we don't. (BCM1250/BCM112x erratum SOC-48.) */ #undef DUMP_L2_ECC_TAG_ON_ERROR /* SB1 definitions */ /* XXX should come from config1 XXX */ #define SB1_CACHE_INDEX_MASK 0x1fe0 #define CP0_ERRCTL_RECOVERABLE (1 << 31) #define CP0_ERRCTL_DCACHE (1 << 30) #define CP0_ERRCTL_ICACHE (1 << 29) #define CP0_ERRCTL_MULTIBUS (1 << 23) #define CP0_ERRCTL_MC_TLB (1 << 15) #define CP0_ERRCTL_MC_TIMEOUT (1 << 14) #define CP0_CERRI_TAG_PARITY (1 << 29) #define CP0_CERRI_DATA_PARITY (1 << 28) #define CP0_CERRI_EXTERNAL (1 << 26) #define CP0_CERRI_IDX_VALID(c) (!((c) & CP0_CERRI_EXTERNAL)) #define CP0_CERRI_DATA (CP0_CERRI_DATA_PARITY) #define CP0_CERRD_MULTIPLE (1 << 31) #define CP0_CERRD_TAG_STATE (1 << 30) #define CP0_CERRD_TAG_ADDRESS (1 << 29) #define CP0_CERRD_DATA_SBE (1 << 28) #define CP0_CERRD_DATA_DBE (1 << 27) #define CP0_CERRD_EXTERNAL (1 << 26) #define CP0_CERRD_LOAD (1 << 25) #define CP0_CERRD_STORE (1 << 24) #define CP0_CERRD_FILLWB (1 << 23) #define CP0_CERRD_COHERENCY (1 << 22) #define CP0_CERRD_DUPTAG (1 << 21) #define CP0_CERRD_DPA_VALID(c) (!((c) & CP0_CERRD_EXTERNAL)) #define CP0_CERRD_IDX_VALID(c) \ (((c) & (CP0_CERRD_LOAD | CP0_CERRD_STORE)) ? (!((c) & CP0_CERRD_EXTERNAL)) : 0) #define CP0_CERRD_CAUSES \ (CP0_CERRD_LOAD | CP0_CERRD_STORE | CP0_CERRD_FILLWB | CP0_CERRD_COHERENCY | CP0_CERRD_DUPTAG) #define CP0_CERRD_TYPES \ (CP0_CERRD_TAG_STATE | CP0_CERRD_TAG_ADDRESS | CP0_CERRD_DATA_SBE | CP0_CERRD_DATA_DBE | CP0_CERRD_EXTERNAL) #define CP0_CERRD_DATA (CP0_CERRD_DATA_SBE | CP0_CERRD_DATA_DBE) static uint32_t extract_ic(unsigned short addr, int data); static uint32_t extract_dc(unsigned short addr, int data); static inline void breakout_errctl(unsigned int val) { if (val & CP0_ERRCTL_RECOVERABLE) printk(" recoverable"); if (val & CP0_ERRCTL_DCACHE) printk(" dcache"); if (val & CP0_ERRCTL_ICACHE) printk(" icache"); if (val & CP0_ERRCTL_MULTIBUS) printk(" multiple-buserr"); printk("\n"); } static inline void breakout_cerri(unsigned int val) { if (val & CP0_CERRI_TAG_PARITY) printk(" tag-parity"); if (val & CP0_CERRI_DATA_PARITY) printk(" data-parity"); if (val & CP0_CERRI_EXTERNAL) printk(" external"); printk("\n"); } static inline void breakout_cerrd(unsigned int val) { switch (val & CP0_CERRD_CAUSES) { case CP0_CERRD_LOAD: printk(" load,"); break; case CP0_CERRD_STORE: printk(" store,"); break; case CP0_CERRD_FILLWB: printk(" fill/wb,"); break; case CP0_CERRD_COHERENCY: printk(" coherency,"); break; case CP0_CERRD_DUPTAG: printk(" duptags,"); break; default: printk(" NO CAUSE,"); break; } if (!(val & CP0_CERRD_TYPES)) printk(" NO TYPE"); else { if (val & CP0_CERRD_MULTIPLE) printk(" multi-err"); if (val & CP0_CERRD_TAG_STATE) printk(" tag-state"); if (val & CP0_CERRD_TAG_ADDRESS) printk(" tag-address"); if (val & CP0_CERRD_DATA_SBE) printk(" data-SBE"); if (val & CP0_CERRD_DATA_DBE) printk(" data-DBE"); if (val & CP0_CERRD_EXTERNAL) printk(" external"); } printk("\n"); } #ifndef CONFIG_SIBYTE_BUS_WATCHER static void check_bus_watcher(void) { uint32_t status, l2_err, memio_err; #ifdef DUMP_L2_ECC_TAG_ON_ERROR uint64_t l2_tag; #endif /* Destructive read, clears register and interrupt */ status = csr_in32(IOADDR(A_SCD_BUS_ERR_STATUS)); /* Bit 31 is always on, but there's no #define for that */ if (status & ~(1UL << 31)) { l2_err = csr_in32(IOADDR(A_BUS_L2_ERRORS)); #ifdef DUMP_L2_ECC_TAG_ON_ERROR l2_tag = in64(IO_SPACE_BASE | A_L2_ECC_TAG); #endif memio_err = csr_in32(IOADDR(A_BUS_MEM_IO_ERRORS)); printk("Bus watcher error counters: %08x %08x\n", l2_err, memio_err); printk("\nLast recorded signature:\n"); printk("Request %02x from %d, answered by %d with Dcode %d\n", (unsigned int)(G_SCD_BERR_TID(status) & 0x3f), (int)(G_SCD_BERR_TID(status) >> 6), (int)G_SCD_BERR_RID(status), (int)G_SCD_BERR_DCODE(status)); #ifdef DUMP_L2_ECC_TAG_ON_ERROR printk("Last L2 tag w/ bad ECC: %016llx\n", l2_tag); #endif } else { printk("Bus watcher indicates no error\n"); } } #else extern void check_bus_watcher(void); #endif asmlinkage void sb1_cache_error(void) { uint32_t errctl, cerr_i, cerr_d, dpalo, dpahi, eepc, res; unsigned long long cerr_dpa; #ifdef CONFIG_SIBYTE_BW_TRACE /* Freeze the trace buffer now */ #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80) csr_out32(M_BCM1480_SCD_TRACE_CFG_FREEZE, IO_SPACE_BASE | A_SCD_TRACE_CFG); #else csr_out32(M_SCD_TRACE_CFG_FREEZE, IO_SPACE_BASE | A_SCD_TRACE_CFG); #endif printk("Trace buffer frozen\n"); #endif printk("Cache error exception on CPU %x:\n", (read_c0_prid() >> 25) & 0x7); __asm__ __volatile__ ( " .set push\n\t" " .set mips64\n\t" " .set noat\n\t" " mfc0 %0, $26\n\t" " mfc0 %1, $27\n\t" " mfc0 %2, $27, 1\n\t" " dmfc0 $1, $27, 3\n\t" " dsrl32 %3, $1, 0 \n\t" " sll %4, $1, 0 \n\t" " mfc0 %5, $30\n\t" " .set pop" : "=r" (errctl), "=r" (cerr_i), "=r" (cerr_d), "=r" (dpahi), "=r" (dpalo), "=r" (eepc)); cerr_dpa = (((uint64_t)dpahi) << 32) | dpalo; printk(" c0_errorepc == %08x\n", eepc); printk(" c0_errctl == %08x", errctl); breakout_errctl(errctl); if (errctl & CP0_ERRCTL_ICACHE) { printk(" c0_cerr_i == %08x", cerr_i); breakout_cerri(cerr_i); if (CP0_CERRI_IDX_VALID(cerr_i)) { /* Check index of EPC, allowing for delay slot */ if (((eepc & SB1_CACHE_INDEX_MASK) != (cerr_i & SB1_CACHE_INDEX_MASK)) && ((eepc & SB1_CACHE_INDEX_MASK) != ((cerr_i & SB1_CACHE_INDEX_MASK) - 4))) printk(" cerr_i idx doesn't match eepc\n"); else { res = extract_ic(cerr_i & SB1_CACHE_INDEX_MASK, (cerr_i & CP0_CERRI_DATA) != 0); if (!(res & cerr_i)) printk("...didn't see indicated icache problem\n"); } } } if (errctl & CP0_ERRCTL_DCACHE) { printk(" c0_cerr_d == %08x", cerr_d); breakout_cerrd(cerr_d); if (CP0_CERRD_DPA_VALID(cerr_d)) { printk(" c0_cerr_dpa == %010llx\n", cerr_dpa); if (!CP0_CERRD_IDX_VALID(cerr_d)) { res = extract_dc(cerr_dpa & SB1_CACHE_INDEX_MASK, (cerr_d & CP0_CERRD_DATA) != 0); if (!(res & cerr_d)) printk("...didn't see indicated dcache problem\n"); } else { if ((cerr_dpa & SB1_CACHE_INDEX_MASK) != (cerr_d & SB1_CACHE_INDEX_MASK)) printk(" cerr_d idx doesn't match cerr_dpa\n"); else { res = extract_dc(cerr_d & SB1_CACHE_INDEX_MASK, (cerr_d & CP0_CERRD_DATA) != 0); if (!(res & cerr_d)) printk("...didn't see indicated problem\n"); } } } } check_bus_watcher(); /* * Calling panic() when a fatal cache error occurs scrambles the * state of the system (and the cache), making it difficult to * investigate after the fact. However, if you just stall the CPU, * the other CPU may keep on running, which is typically very * undesirable. */ #ifdef CONFIG_SB1_CERR_STALL while (1) ; #else panic("unhandled cache error"); #endif } /* Parity lookup table. */ static const uint8_t parity[256] = { 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0 }; /* Masks to select bits for Hamming parity, mask_72_64[i] for bit[i] */ static const uint64_t mask_72_64[8] = { 0x0738C808099264FFULL, 0x38C808099264FF07ULL, 0xC808099264FF0738ULL, 0x08099264FF0738C8ULL, 0x099264FF0738C808ULL, 0x9264FF0738C80809ULL, 0x64FF0738C8080992ULL, 0xFF0738C808099264ULL }; /* Calculate the parity on a range of bits */ static char range_parity(uint64_t dword, int max, int min) { char parity = 0; int i; dword >>= min; for (i=max-min; i>=0; i--) { if (dword & 0x1) parity = !parity; dword >>= 1; } return parity; } /* Calculate the 4-bit even byte-parity for an instruction */ static unsigned char inst_parity(uint32_t word) { int i, j; char parity = 0; for (j=0; j<4; j++) { char byte_parity = 0; for (i=0; i<8; i++) { if (word & 0x80000000) byte_parity = !byte_parity; word <<= 1; } parity <<= 1; parity |= byte_parity; } return parity; } static uint32_t extract_ic(unsigned short addr, int data) { unsigned short way; int valid; uint32_t taghi, taglolo, taglohi; unsigned long long taglo, va; uint64_t tlo_tmp; uint8_t lru; int res = 0; printk("Icache index 0x%04x ", addr); for (way = 0; way < 4; way++) { /* Index-load-tag-I */ __asm__ __volatile__ ( " .set push \n\t" " .set noreorder \n\t" " .set mips64 \n\t" " .set noat \n\t" " cache 4, 0(%3) \n\t" " mfc0 %0, $29 \n\t" " dmfc0 $1, $28 \n\t" " dsrl32 %1, $1, 0 \n\t" " sll %2, $1, 0 \n\t" " .set pop" : "=r" (taghi), "=r" (taglohi), "=r" (taglolo) : "r" ((way << 13) | addr)); taglo = ((unsigned long long)taglohi << 32) | taglolo; if (way == 0) { lru = (taghi >> 14) & 0xff; printk("[Bank %d Set 0x%02x] LRU > %d %d %d %d > MRU\n", ((addr >> 5) & 0x3), /* bank */ ((addr >> 7) & 0x3f), /* index */ (lru & 0x3), ((lru >> 2) & 0x3), ((lru >> 4) & 0x3), ((lru >> 6) & 0x3)); } va = (taglo & 0xC0000FFFFFFFE000ULL) | addr; if ((taglo & (1 << 31)) && (((taglo >> 62) & 0x3) == 3)) va |= 0x3FFFF00000000000ULL; valid = ((taghi >> 29) & 1); if (valid) { tlo_tmp = taglo & 0xfff3ff; if (((taglo >> 10) & 1) ^ range_parity(tlo_tmp, 23, 0)) { printk(" ** bad parity in VTag0/G/ASID\n"); res |= CP0_CERRI_TAG_PARITY; } if (((taglo >> 11) & 1) ^ range_parity(taglo, 63, 24)) { printk(" ** bad parity in R/VTag1\n"); res |= CP0_CERRI_TAG_PARITY; } } if (valid ^ ((taghi >> 27) & 1)) { printk(" ** bad parity for valid bit\n"); res |= CP0_CERRI_TAG_PARITY; } printk(" %d [VA %016llx] [Vld? %d] raw tags: %08X-%016llX\n", way, va, valid, taghi, taglo); if (data) { uint32_t datahi, insta, instb; uint8_t predecode; int offset; /* (hit all banks and ways) */ for (offset = 0; offset < 4; offset++) { /* Index-load-data-I */ __asm__ __volatile__ ( " .set push\n\t" " .set noreorder\n\t" " .set mips64\n\t" " .set noat\n\t" " cache 6, 0(%3) \n\t" " mfc0 %0, $29, 1\n\t" " dmfc0 $1, $28, 1\n\t" " dsrl32 %1, $1, 0 \n\t" " sll %2, $1, 0 \n\t" " .set pop \n" : "=r" (datahi), "=r" (insta), "=r" (instb) : "r" ((way << 13) | addr | (offset << 3))); predecode = (datahi >> 8) & 0xff; if (((datahi >> 16) & 1) != (uint32_t)range_parity(predecode, 7, 0)) { printk(" ** bad parity in predecode\n"); res |= CP0_CERRI_DATA_PARITY; } /* XXXKW should/could check predecode bits themselves */ if (((datahi >> 4) & 0xf) ^ inst_parity(insta)) { printk(" ** bad parity in instruction a\n"); res |= CP0_CERRI_DATA_PARITY; } if ((datahi & 0xf) ^ inst_parity(instb)) { printk(" ** bad parity in instruction b\n"); res |= CP0_CERRI_DATA_PARITY; } printk(" %05X-%08X%08X", datahi, insta, instb); } printk("\n"); } } return res; } /* Compute the ECC for a data doubleword */ static uint8_t dc_ecc(uint64_t dword) { uint64_t t; uint32_t w; uint8_t p; int i; p = 0; for (i = 7; i >= 0; i--) { p <<= 1; t = dword & mask_72_64[i]; w = (uint32_t)(t >> 32); p ^= (parity[w>>24] ^ parity[(w>>16) & 0xFF] ^ parity[(w>>8) & 0xFF] ^ parity[w & 0xFF]); w = (uint32_t)(t & 0xFFFFFFFF); p ^= (parity[w>>24] ^ parity[(w>>16) & 0xFF] ^ parity[(w>>8) & 0xFF] ^ parity[w & 0xFF]); } return p; } struct dc_state { unsigned char val; char *name; }; static struct dc_state dc_states[] = { { 0x00, "INVALID" }, { 0x0f, "COH-SHD" }, { 0x13, "NCO-E-C" }, { 0x19, "NCO-E-D" }, { 0x16, "COH-E-C" }, { 0x1c, "COH-E-D" }, { 0xff, "*ERROR*" } }; #define DC_TAG_VALID(state) \ (((state) == 0x0) || ((state) == 0xf) || ((state) == 0x13) || \ ((state) == 0x19) || ((state) == 0x16) || ((state) == 0x1c)) static char *dc_state_str(unsigned char state) { struct dc_state *dsc = dc_states; while (dsc->val != 0xff) { if (dsc->val == state) break; dsc++; } return dsc->name; } static uint32_t extract_dc(unsigned short addr, int data) { int valid, way; unsigned char state; uint32_t taghi, taglolo, taglohi; unsigned long long taglo, pa; uint8_t ecc, lru; int res = 0; printk("Dcache index 0x%04x ", addr); for (way = 0; way < 4; way++) { __asm__ __volatile__ ( " .set push\n\t" " .set noreorder\n\t" " .set mips64\n\t" " .set noat\n\t" " cache 5, 0(%3)\n\t" /* Index-load-tag-D */ " mfc0 %0, $29, 2\n\t" " dmfc0 $1, $28, 2\n\t" " dsrl32 %1, $1, 0\n\t" " sll %2, $1, 0\n\t" " .set pop" : "=r" (taghi), "=r" (taglohi), "=r" (taglolo) : "r" ((way << 13) | addr)); taglo = ((unsigned long long)taglohi << 32) | taglolo; pa = (taglo & 0xFFFFFFE000ULL) | addr; if (way == 0) { lru = (taghi >> 14) & 0xff; printk("[Bank %d Set 0x%02x] LRU > %d %d %d %d > MRU\n", ((addr >> 11) & 0x2) | ((addr >> 5) & 1), /* bank */ ((addr >> 6) & 0x3f), /* index */ (lru & 0x3), ((lru >> 2) & 0x3), ((lru >> 4) & 0x3), ((lru >> 6) & 0x3)); } state = (taghi >> 25) & 0x1f; valid = DC_TAG_VALID(state); printk(" %d [PA %010llx] [state %s (%02x)] raw tags: %08X-%016llX\n", way, pa, dc_state_str(state), state, taghi, taglo); if (valid) { if (((taglo >> 11) & 1) ^ range_parity(taglo, 39, 26)) { printk(" ** bad parity in PTag1\n"); res |= CP0_CERRD_TAG_ADDRESS; } if (((taglo >> 10) & 1) ^ range_parity(taglo, 25, 13)) { printk(" ** bad parity in PTag0\n"); res |= CP0_CERRD_TAG_ADDRESS; } } else { res |= CP0_CERRD_TAG_STATE; } if (data) { uint32_t datalohi, datalolo, datahi; unsigned long long datalo; int offset; char bad_ecc = 0; for (offset = 0; offset < 4; offset++) { /* Index-load-data-D */ __asm__ __volatile__ ( " .set push\n\t" " .set noreorder\n\t" " .set mips64\n\t" " .set noat\n\t" " cache 7, 0(%3)\n\t" /* Index-load-data-D */ " mfc0 %0, $29, 3\n\t" " dmfc0 $1, $28, 3\n\t" " dsrl32 %1, $1, 0 \n\t" " sll %2, $1, 0 \n\t" " .set pop" : "=r" (datahi), "=r" (datalohi), "=r" (datalolo) : "r" ((way << 13) | addr | (offset << 3))); datalo = ((unsigned long long)datalohi << 32) | datalolo; ecc = dc_ecc(datalo); if (ecc != datahi) { int bits = 0; bad_ecc |= 1 << (3-offset); ecc ^= datahi; while (ecc) { if (ecc & 1) bits++; ecc >>= 1; } res |= (bits == 1) ? CP0_CERRD_DATA_SBE : CP0_CERRD_DATA_DBE; } printk(" %02X-%016llX", datahi, datalo); } printk("\n"); if (bad_ecc) printk(" dwords w/ bad ECC: %d %d %d %d\n", !!(bad_ecc & 8), !!(bad_ecc & 4), !!(bad_ecc & 2), !!(bad_ecc & 1)); } } return res; }