/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2004-2008 Cavium Networks */ #include #include #include #include #include #include DEFINE_RWLOCK(octeon_irq_ciu0_rwlock); DEFINE_RWLOCK(octeon_irq_ciu1_rwlock); static int octeon_coreid_for_cpu(int cpu) { #ifdef CONFIG_SMP return cpu_logical_map(cpu); #else return cvmx_get_core_num(); #endif } static void octeon_irq_core_ack(unsigned int irq) { unsigned int bit = irq - OCTEON_IRQ_SW0; /* * We don't need to disable IRQs to make these atomic since * they are already disabled earlier in the low level * interrupt code. */ clear_c0_status(0x100 << bit); /* The two user interrupts must be cleared manually. */ if (bit < 2) clear_c0_cause(0x100 << bit); } static void octeon_irq_core_eoi(unsigned int irq) { struct irq_desc *desc = irq_desc + irq; unsigned int bit = irq - OCTEON_IRQ_SW0; /* * If an IRQ is being processed while we are disabling it the * handler will attempt to unmask the interrupt after it has * been disabled. */ if (desc->status & IRQ_DISABLED) return; /* * We don't need to disable IRQs to make these atomic since * they are already disabled earlier in the low level * interrupt code. */ set_c0_status(0x100 << bit); } static void octeon_irq_core_enable(unsigned int irq) { unsigned long flags; unsigned int bit = irq - OCTEON_IRQ_SW0; /* * We need to disable interrupts to make sure our updates are * atomic. */ local_irq_save(flags); set_c0_status(0x100 << bit); local_irq_restore(flags); } static void octeon_irq_core_disable_local(unsigned int irq) { unsigned long flags; unsigned int bit = irq - OCTEON_IRQ_SW0; /* * We need to disable interrupts to make sure our updates are * atomic. */ local_irq_save(flags); clear_c0_status(0x100 << bit); local_irq_restore(flags); } static void octeon_irq_core_disable(unsigned int irq) { #ifdef CONFIG_SMP on_each_cpu((void (*)(void *)) octeon_irq_core_disable_local, (void *) (long) irq, 1); #else octeon_irq_core_disable_local(irq); #endif } static struct irq_chip octeon_irq_chip_core = { .name = "Core", .enable = octeon_irq_core_enable, .disable = octeon_irq_core_disable, .ack = octeon_irq_core_ack, .eoi = octeon_irq_core_eoi, }; static void octeon_irq_ciu0_ack(unsigned int irq) { /* * In order to avoid any locking accessing the CIU, we * acknowledge CIU interrupts by disabling all of them. This * way we can use a per core register and avoid any out of * core locking requirements. This has the side affect that * CIU interrupts can't be processed recursively. * * We don't need to disable IRQs to make these atomic since * they are already disabled earlier in the low level * interrupt code. */ clear_c0_status(0x100 << 2); } static void octeon_irq_ciu0_eoi(unsigned int irq) { /* * Enable all CIU interrupts again. We don't need to disable * IRQs to make these atomic since they are already disabled * earlier in the low level interrupt code. */ set_c0_status(0x100 << 2); } static void octeon_irq_ciu0_enable(unsigned int irq) { int coreid = cvmx_get_core_num(); unsigned long flags; uint64_t en0; int bit = irq - OCTEON_IRQ_WORKQ0; /* Bit 0-63 of EN0 */ /* * A read lock is used here to make sure only one core is ever * updating the CIU enable bits at a time. During an enable * the cores don't interfere with each other. During a disable * the write lock stops any enables that might cause a * problem. */ read_lock_irqsave(&octeon_irq_ciu0_rwlock, flags); en0 = cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)); en0 |= 1ull << bit; cvmx_write_csr(CVMX_CIU_INTX_EN0(coreid * 2), en0); cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)); read_unlock_irqrestore(&octeon_irq_ciu0_rwlock, flags); } static void octeon_irq_ciu0_disable(unsigned int irq) { int bit = irq - OCTEON_IRQ_WORKQ0; /* Bit 0-63 of EN0 */ unsigned long flags; uint64_t en0; int cpu; write_lock_irqsave(&octeon_irq_ciu0_rwlock, flags); for_each_online_cpu(cpu) { int coreid = octeon_coreid_for_cpu(cpu); en0 = cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)); en0 &= ~(1ull << bit); cvmx_write_csr(CVMX_CIU_INTX_EN0(coreid * 2), en0); } /* * We need to do a read after the last update to make sure all * of them are done. */ cvmx_read_csr(CVMX_CIU_INTX_EN0(cvmx_get_core_num() * 2)); write_unlock_irqrestore(&octeon_irq_ciu0_rwlock, flags); } /* * Enable the irq on the current core for chips that have the EN*_W1{S,C} * registers. */ static void octeon_irq_ciu0_enable_v2(unsigned int irq) { int index = cvmx_get_core_num() * 2; u64 mask = 1ull << (irq - OCTEON_IRQ_WORKQ0); cvmx_write_csr(CVMX_CIU_INTX_EN0_W1S(index), mask); } /* * Disable the irq on the current core for chips that have the EN*_W1{S,C} * registers. */ static void octeon_irq_ciu0_ack_v2(unsigned int irq) { int index = cvmx_get_core_num() * 2; u64 mask = 1ull << (irq - OCTEON_IRQ_WORKQ0); cvmx_write_csr(CVMX_CIU_INTX_EN0_W1C(index), mask); } /* * CIU timer type interrupts must be acknoleged by writing a '1' bit * to their sum0 bit. */ static void octeon_irq_ciu0_timer_ack(unsigned int irq) { int index = cvmx_get_core_num() * 2; uint64_t mask = 1ull << (irq - OCTEON_IRQ_WORKQ0); cvmx_write_csr(CVMX_CIU_INTX_SUM0(index), mask); } static void octeon_irq_ciu0_timer_ack_v1(unsigned int irq) { octeon_irq_ciu0_timer_ack(irq); octeon_irq_ciu0_ack(irq); } static void octeon_irq_ciu0_timer_ack_v2(unsigned int irq) { octeon_irq_ciu0_timer_ack(irq); octeon_irq_ciu0_ack_v2(irq); } /* * Enable the irq on the current core for chips that have the EN*_W1{S,C} * registers. */ static void octeon_irq_ciu0_eoi_v2(unsigned int irq) { struct irq_desc *desc = irq_desc + irq; int index = cvmx_get_core_num() * 2; u64 mask = 1ull << (irq - OCTEON_IRQ_WORKQ0); if ((desc->status & IRQ_DISABLED) == 0) cvmx_write_csr(CVMX_CIU_INTX_EN0_W1S(index), mask); } /* * Disable the irq on the all cores for chips that have the EN*_W1{S,C} * registers. */ static void octeon_irq_ciu0_disable_all_v2(unsigned int irq) { u64 mask = 1ull << (irq - OCTEON_IRQ_WORKQ0); int index; int cpu; for_each_online_cpu(cpu) { index = octeon_coreid_for_cpu(cpu) * 2; cvmx_write_csr(CVMX_CIU_INTX_EN0_W1C(index), mask); } } #ifdef CONFIG_SMP static int octeon_irq_ciu0_set_affinity(unsigned int irq, const struct cpumask *dest) { int cpu; unsigned long flags; int bit = irq - OCTEON_IRQ_WORKQ0; /* Bit 0-63 of EN0 */ write_lock_irqsave(&octeon_irq_ciu0_rwlock, flags); for_each_online_cpu(cpu) { int coreid = octeon_coreid_for_cpu(cpu); uint64_t en0 = cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)); if (cpumask_test_cpu(cpu, dest)) en0 |= 1ull << bit; else en0 &= ~(1ull << bit); cvmx_write_csr(CVMX_CIU_INTX_EN0(coreid * 2), en0); } /* * We need to do a read after the last update to make sure all * of them are done. */ cvmx_read_csr(CVMX_CIU_INTX_EN0(cvmx_get_core_num() * 2)); write_unlock_irqrestore(&octeon_irq_ciu0_rwlock, flags); return 0; } /* * Set affinity for the irq for chips that have the EN*_W1{S,C} * registers. */ static int octeon_irq_ciu0_set_affinity_v2(unsigned int irq, const struct cpumask *dest) { int cpu; int index; u64 mask = 1ull << (irq - OCTEON_IRQ_WORKQ0); for_each_online_cpu(cpu) { index = octeon_coreid_for_cpu(cpu) * 2; if (cpumask_test_cpu(cpu, dest)) cvmx_write_csr(CVMX_CIU_INTX_EN0_W1S(index), mask); else cvmx_write_csr(CVMX_CIU_INTX_EN0_W1C(index), mask); } return 0; } #endif /* * Newer octeon chips have support for lockless CIU operation. */ static struct irq_chip octeon_irq_chip_ciu0_v2 = { .name = "CIU0", .enable = octeon_irq_ciu0_enable_v2, .disable = octeon_irq_ciu0_disable_all_v2, .ack = octeon_irq_ciu0_ack_v2, .eoi = octeon_irq_ciu0_eoi_v2, #ifdef CONFIG_SMP .set_affinity = octeon_irq_ciu0_set_affinity_v2, #endif }; static struct irq_chip octeon_irq_chip_ciu0 = { .name = "CIU0", .enable = octeon_irq_ciu0_enable, .disable = octeon_irq_ciu0_disable, .ack = octeon_irq_ciu0_ack, .eoi = octeon_irq_ciu0_eoi, #ifdef CONFIG_SMP .set_affinity = octeon_irq_ciu0_set_affinity, #endif }; static struct irq_chip octeon_irq_chip_ciu0_timer_v2 = { .name = "CIU0-T", .enable = octeon_irq_ciu0_enable_v2, .disable = octeon_irq_ciu0_disable_all_v2, .ack = octeon_irq_ciu0_timer_ack_v2, .eoi = octeon_irq_ciu0_eoi_v2, #ifdef CONFIG_SMP .set_affinity = octeon_irq_ciu0_set_affinity_v2, #endif }; static struct irq_chip octeon_irq_chip_ciu0_timer = { .name = "CIU0-T", .enable = octeon_irq_ciu0_enable, .disable = octeon_irq_ciu0_disable, .ack = octeon_irq_ciu0_timer_ack_v1, .eoi = octeon_irq_ciu0_eoi, #ifdef CONFIG_SMP .set_affinity = octeon_irq_ciu0_set_affinity, #endif }; static void octeon_irq_ciu1_ack(unsigned int irq) { /* * In order to avoid any locking accessing the CIU, we * acknowledge CIU interrupts by disabling all of them. This * way we can use a per core register and avoid any out of * core locking requirements. This has the side affect that * CIU interrupts can't be processed recursively. We don't * need to disable IRQs to make these atomic since they are * already disabled earlier in the low level interrupt code. */ clear_c0_status(0x100 << 3); } static void octeon_irq_ciu1_eoi(unsigned int irq) { /* * Enable all CIU interrupts again. We don't need to disable * IRQs to make these atomic since they are already disabled * earlier in the low level interrupt code. */ set_c0_status(0x100 << 3); } static void octeon_irq_ciu1_enable(unsigned int irq) { int coreid = cvmx_get_core_num(); unsigned long flags; uint64_t en1; int bit = irq - OCTEON_IRQ_WDOG0; /* Bit 0-63 of EN1 */ /* * A read lock is used here to make sure only one core is ever * updating the CIU enable bits at a time. During an enable * the cores don't interfere with each other. During a disable * the write lock stops any enables that might cause a * problem. */ read_lock_irqsave(&octeon_irq_ciu1_rwlock, flags); en1 = cvmx_read_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1)); en1 |= 1ull << bit; cvmx_write_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1), en1); cvmx_read_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1)); read_unlock_irqrestore(&octeon_irq_ciu1_rwlock, flags); } static void octeon_irq_ciu1_disable(unsigned int irq) { int bit = irq - OCTEON_IRQ_WDOG0; /* Bit 0-63 of EN1 */ unsigned long flags; uint64_t en1; int cpu; write_lock_irqsave(&octeon_irq_ciu1_rwlock, flags); for_each_online_cpu(cpu) { int coreid = octeon_coreid_for_cpu(cpu); en1 = cvmx_read_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1)); en1 &= ~(1ull << bit); cvmx_write_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1), en1); } /* * We need to do a read after the last update to make sure all * of them are done. */ cvmx_read_csr(CVMX_CIU_INTX_EN1(cvmx_get_core_num() * 2 + 1)); write_unlock_irqrestore(&octeon_irq_ciu1_rwlock, flags); } /* * Enable the irq on the current core for chips that have the EN*_W1{S,C} * registers. */ static void octeon_irq_ciu1_enable_v2(unsigned int irq) { int index = cvmx_get_core_num() * 2 + 1; u64 mask = 1ull << (irq - OCTEON_IRQ_WDOG0); cvmx_write_csr(CVMX_CIU_INTX_EN1_W1S(index), mask); } /* * Disable the irq on the current core for chips that have the EN*_W1{S,C} * registers. */ static void octeon_irq_ciu1_ack_v2(unsigned int irq) { int index = cvmx_get_core_num() * 2 + 1; u64 mask = 1ull << (irq - OCTEON_IRQ_WDOG0); cvmx_write_csr(CVMX_CIU_INTX_EN1_W1C(index), mask); } /* * Enable the irq on the current core for chips that have the EN*_W1{S,C} * registers. */ static void octeon_irq_ciu1_eoi_v2(unsigned int irq) { struct irq_desc *desc = irq_desc + irq; int index = cvmx_get_core_num() * 2 + 1; u64 mask = 1ull << (irq - OCTEON_IRQ_WDOG0); if ((desc->status & IRQ_DISABLED) == 0) cvmx_write_csr(CVMX_CIU_INTX_EN1_W1S(index), mask); } /* * Disable the irq on the all cores for chips that have the EN*_W1{S,C} * registers. */ static void octeon_irq_ciu1_disable_all_v2(unsigned int irq) { u64 mask = 1ull << (irq - OCTEON_IRQ_WDOG0); int index; int cpu; for_each_online_cpu(cpu) { index = octeon_coreid_for_cpu(cpu) * 2 + 1; cvmx_write_csr(CVMX_CIU_INTX_EN1_W1C(index), mask); } } #ifdef CONFIG_SMP static int octeon_irq_ciu1_set_affinity(unsigned int irq, const struct cpumask *dest) { int cpu; unsigned long flags; int bit = irq - OCTEON_IRQ_WDOG0; /* Bit 0-63 of EN1 */ write_lock_irqsave(&octeon_irq_ciu1_rwlock, flags); for_each_online_cpu(cpu) { int coreid = octeon_coreid_for_cpu(cpu); uint64_t en1 = cvmx_read_csr(CVMX_CIU_INTX_EN1 (coreid * 2 + 1)); if (cpumask_test_cpu(cpu, dest)) en1 |= 1ull << bit; else en1 &= ~(1ull << bit); cvmx_write_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1), en1); } /* * We need to do a read after the last update to make sure all * of them are done. */ cvmx_read_csr(CVMX_CIU_INTX_EN1(cvmx_get_core_num() * 2 + 1)); write_unlock_irqrestore(&octeon_irq_ciu1_rwlock, flags); return 0; } /* * Set affinity for the irq for chips that have the EN*_W1{S,C} * registers. */ static int octeon_irq_ciu1_set_affinity_v2(unsigned int irq, const struct cpumask *dest) { int cpu; int index; u64 mask = 1ull << (irq - OCTEON_IRQ_WDOG0); for_each_online_cpu(cpu) { index = octeon_coreid_for_cpu(cpu) * 2 + 1; if (cpumask_test_cpu(cpu, dest)) cvmx_write_csr(CVMX_CIU_INTX_EN1_W1S(index), mask); else cvmx_write_csr(CVMX_CIU_INTX_EN1_W1C(index), mask); } return 0; } #endif /* * Newer octeon chips have support for lockless CIU operation. */ static struct irq_chip octeon_irq_chip_ciu1_v2 = { .name = "CIU0", .enable = octeon_irq_ciu1_enable_v2, .disable = octeon_irq_ciu1_disable_all_v2, .ack = octeon_irq_ciu1_ack_v2, .eoi = octeon_irq_ciu1_eoi_v2, #ifdef CONFIG_SMP .set_affinity = octeon_irq_ciu1_set_affinity_v2, #endif }; static struct irq_chip octeon_irq_chip_ciu1 = { .name = "CIU1", .enable = octeon_irq_ciu1_enable, .disable = octeon_irq_ciu1_disable, .ack = octeon_irq_ciu1_ack, .eoi = octeon_irq_ciu1_eoi, #ifdef CONFIG_SMP .set_affinity = octeon_irq_ciu1_set_affinity, #endif }; #ifdef CONFIG_PCI_MSI static DEFINE_SPINLOCK(octeon_irq_msi_lock); static void octeon_irq_msi_ack(unsigned int irq) { if (!octeon_has_feature(OCTEON_FEATURE_PCIE)) { /* These chips have PCI */ cvmx_write_csr(CVMX_NPI_NPI_MSI_RCV, 1ull << (irq - OCTEON_IRQ_MSI_BIT0)); } else { /* * These chips have PCIe. Thankfully the ACK doesn't * need any locking. */ cvmx_write_csr(CVMX_PEXP_NPEI_MSI_RCV0, 1ull << (irq - OCTEON_IRQ_MSI_BIT0)); } } static void octeon_irq_msi_eoi(unsigned int irq) { /* Nothing needed */ } static void octeon_irq_msi_enable(unsigned int irq) { if (!octeon_has_feature(OCTEON_FEATURE_PCIE)) { /* * Octeon PCI doesn't have the ability to mask/unmask * MSI interrupts individually. Instead of * masking/unmasking them in groups of 16, we simple * assume MSI devices are well behaved. MSI * interrupts are always enable and the ACK is assumed * to be enough. */ } else { /* These chips have PCIe. Note that we only support * the first 64 MSI interrupts. Unfortunately all the * MSI enables are in the same register. We use * MSI0's lock to control access to them all. */ uint64_t en; unsigned long flags; spin_lock_irqsave(&octeon_irq_msi_lock, flags); en = cvmx_read_csr(CVMX_PEXP_NPEI_MSI_ENB0); en |= 1ull << (irq - OCTEON_IRQ_MSI_BIT0); cvmx_write_csr(CVMX_PEXP_NPEI_MSI_ENB0, en); cvmx_read_csr(CVMX_PEXP_NPEI_MSI_ENB0); spin_unlock_irqrestore(&octeon_irq_msi_lock, flags); } } static void octeon_irq_msi_disable(unsigned int irq) { if (!octeon_has_feature(OCTEON_FEATURE_PCIE)) { /* See comment in enable */ } else { /* * These chips have PCIe. Note that we only support * the first 64 MSI interrupts. Unfortunately all the * MSI enables are in the same register. We use * MSI0's lock to control access to them all. */ uint64_t en; unsigned long flags; spin_lock_irqsave(&octeon_irq_msi_lock, flags); en = cvmx_read_csr(CVMX_PEXP_NPEI_MSI_ENB0); en &= ~(1ull << (irq - OCTEON_IRQ_MSI_BIT0)); cvmx_write_csr(CVMX_PEXP_NPEI_MSI_ENB0, en); cvmx_read_csr(CVMX_PEXP_NPEI_MSI_ENB0); spin_unlock_irqrestore(&octeon_irq_msi_lock, flags); } } static struct irq_chip octeon_irq_chip_msi = { .name = "MSI", .enable = octeon_irq_msi_enable, .disable = octeon_irq_msi_disable, .ack = octeon_irq_msi_ack, .eoi = octeon_irq_msi_eoi, }; #endif void __init arch_init_irq(void) { int irq; struct irq_chip *chip0; struct irq_chip *chip0_timer; struct irq_chip *chip1; #ifdef CONFIG_SMP /* Set the default affinity to the boot cpu. */ cpumask_clear(irq_default_affinity); cpumask_set_cpu(smp_processor_id(), irq_default_affinity); #endif if (NR_IRQS < OCTEON_IRQ_LAST) pr_err("octeon_irq_init: NR_IRQS is set too low\n"); if (OCTEON_IS_MODEL(OCTEON_CN58XX_PASS2_X) || OCTEON_IS_MODEL(OCTEON_CN56XX_PASS2_X) || OCTEON_IS_MODEL(OCTEON_CN52XX_PASS2_X)) { chip0 = &octeon_irq_chip_ciu0_v2; chip0_timer = &octeon_irq_chip_ciu0_timer_v2; chip1 = &octeon_irq_chip_ciu1_v2; } else { chip0 = &octeon_irq_chip_ciu0; chip0_timer = &octeon_irq_chip_ciu0_timer; chip1 = &octeon_irq_chip_ciu1; } /* 0 - 15 reserved for i8259 master and slave controller. */ /* 17 - 23 Mips internal */ for (irq = OCTEON_IRQ_SW0; irq <= OCTEON_IRQ_TIMER; irq++) { set_irq_chip_and_handler(irq, &octeon_irq_chip_core, handle_percpu_irq); } /* 24 - 87 CIU_INT_SUM0 */ for (irq = OCTEON_IRQ_WORKQ0; irq <= OCTEON_IRQ_BOOTDMA; irq++) { switch (irq) { case OCTEON_IRQ_GMX_DRP0: case OCTEON_IRQ_GMX_DRP1: case OCTEON_IRQ_IPD_DRP: case OCTEON_IRQ_KEY_ZERO: case OCTEON_IRQ_TIMER0: case OCTEON_IRQ_TIMER1: case OCTEON_IRQ_TIMER2: case OCTEON_IRQ_TIMER3: set_irq_chip_and_handler(irq, chip0_timer, handle_percpu_irq); break; default: set_irq_chip_and_handler(irq, chip0, handle_percpu_irq); break; } } /* 88 - 151 CIU_INT_SUM1 */ for (irq = OCTEON_IRQ_WDOG0; irq <= OCTEON_IRQ_RESERVED151; irq++) { set_irq_chip_and_handler(irq, chip1, handle_percpu_irq); } #ifdef CONFIG_PCI_MSI /* 152 - 215 PCI/PCIe MSI interrupts */ for (irq = OCTEON_IRQ_MSI_BIT0; irq <= OCTEON_IRQ_MSI_BIT63; irq++) { set_irq_chip_and_handler(irq, &octeon_irq_chip_msi, handle_percpu_irq); } #endif set_c0_status(0x300 << 2); } asmlinkage void plat_irq_dispatch(void) { const unsigned long core_id = cvmx_get_core_num(); const uint64_t ciu_sum0_address = CVMX_CIU_INTX_SUM0(core_id * 2); const uint64_t ciu_en0_address = CVMX_CIU_INTX_EN0(core_id * 2); const uint64_t ciu_sum1_address = CVMX_CIU_INT_SUM1; const uint64_t ciu_en1_address = CVMX_CIU_INTX_EN1(core_id * 2 + 1); unsigned long cop0_cause; unsigned long cop0_status; uint64_t ciu_en; uint64_t ciu_sum; while (1) { cop0_cause = read_c0_cause(); cop0_status = read_c0_status(); cop0_cause &= cop0_status; cop0_cause &= ST0_IM; if (unlikely(cop0_cause & STATUSF_IP2)) { ciu_sum = cvmx_read_csr(ciu_sum0_address); ciu_en = cvmx_read_csr(ciu_en0_address); ciu_sum &= ciu_en; if (likely(ciu_sum)) do_IRQ(fls64(ciu_sum) + OCTEON_IRQ_WORKQ0 - 1); else spurious_interrupt(); } else if (unlikely(cop0_cause & STATUSF_IP3)) { ciu_sum = cvmx_read_csr(ciu_sum1_address); ciu_en = cvmx_read_csr(ciu_en1_address); ciu_sum &= ciu_en; if (likely(ciu_sum)) do_IRQ(fls64(ciu_sum) + OCTEON_IRQ_WDOG0 - 1); else spurious_interrupt(); } else if (likely(cop0_cause)) { do_IRQ(fls(cop0_cause) - 9 + MIPS_CPU_IRQ_BASE); } else { break; } } } #ifdef CONFIG_HOTPLUG_CPU static int is_irq_enabled_on_cpu(unsigned int irq, unsigned int cpu) { unsigned int isset; int coreid = octeon_coreid_for_cpu(cpu); int bit = (irq < OCTEON_IRQ_WDOG0) ? irq - OCTEON_IRQ_WORKQ0 : irq - OCTEON_IRQ_WDOG0; if (irq < 64) { isset = (cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)) & (1ull << bit)) >> bit; } else { isset = (cvmx_read_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1)) & (1ull << bit)) >> bit; } return isset; } void fixup_irqs(void) { int irq; for (irq = OCTEON_IRQ_SW0; irq <= OCTEON_IRQ_TIMER; irq++) octeon_irq_core_disable_local(irq); for (irq = OCTEON_IRQ_WORKQ0; irq <= OCTEON_IRQ_GPIO15; irq++) { if (is_irq_enabled_on_cpu(irq, smp_processor_id())) { /* ciu irq migrates to next cpu */ octeon_irq_chip_ciu0.disable(irq); octeon_irq_ciu0_set_affinity(irq, &cpu_online_map); } } #if 0 for (irq = OCTEON_IRQ_MBOX0; irq <= OCTEON_IRQ_MBOX1; irq++) octeon_irq_mailbox_mask(irq); #endif for (irq = OCTEON_IRQ_UART0; irq <= OCTEON_IRQ_BOOTDMA; irq++) { if (is_irq_enabled_on_cpu(irq, smp_processor_id())) { /* ciu irq migrates to next cpu */ octeon_irq_chip_ciu0.disable(irq); octeon_irq_ciu0_set_affinity(irq, &cpu_online_map); } } for (irq = OCTEON_IRQ_UART2; irq <= OCTEON_IRQ_RESERVED135; irq++) { if (is_irq_enabled_on_cpu(irq, smp_processor_id())) { /* ciu irq migrates to next cpu */ octeon_irq_chip_ciu1.disable(irq); octeon_irq_ciu1_set_affinity(irq, &cpu_online_map); } } } #endif /* CONFIG_HOTPLUG_CPU */