/* * * Copyright (C) 2001 MontaVista Software, ppopov@mvista.com * Copied and modified Carsten Langgaard's time.c * * Carsten Langgaard, carstenl@mips.com * Copyright (C) 1999,2000 MIPS Technologies, Inc. All rights reserved. * * ######################################################################## * * This program is free software; you can distribute it and/or modify it * under the terms of the GNU General Public License (Version 2) as * published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA. * * ######################################################################## * * Setting up the clock on the MIPS boards. * * Update. Always configure the kernel with CONFIG_NEW_TIME_C. This * will use the user interface gettimeofday() functions from the * arch/mips/kernel/time.c, and we provide the clock interrupt processing * and the timer offset compute functions. If CONFIG_PM is selected, * we also ensure the 32KHz timer is available. -- Dan */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include static unsigned long r4k_offset; /* Amount to increment compare reg each time */ static unsigned long r4k_cur; /* What counter should be at next timer irq */ int no_au1xxx_32khz; extern int allow_au1k_wait; /* default off for CP0 Counter */ /* Cycle counter value at the previous timer interrupt.. */ static unsigned int timerhi = 0, timerlo = 0; #ifdef CONFIG_PM #if HZ < 100 || HZ > 1000 #error "unsupported HZ value! Must be in [100,1000]" #endif #define MATCH20_INC (328*100/HZ) /* magic number 328 is for HZ=100... */ extern void startup_match20_interrupt(irqreturn_t (*handler)(int, void *)); static unsigned long last_pc0, last_match20; #endif static DEFINE_SPINLOCK(time_lock); static inline void ack_r4ktimer(unsigned long newval) { write_c0_compare(newval); } /* * There are a lot of conceptually broken versions of the MIPS timer interrupt * handler floating around. This one is rather different, but the algorithm * is provably more robust. */ unsigned long wtimer; void mips_timer_interrupt(void) { int irq = 63; unsigned long count; irq_enter(); kstat_this_cpu.irqs[irq]++; if (r4k_offset == 0) goto null; do { count = read_c0_count(); timerhi += (count < timerlo); /* Wrap around */ timerlo = count; kstat_this_cpu.irqs[irq]++; do_timer(1); #ifndef CONFIG_SMP update_process_times(user_mode(get_irq_regs())); #endif r4k_cur += r4k_offset; ack_r4ktimer(r4k_cur); } while (((unsigned long)read_c0_count() - r4k_cur) < 0x7fffffff); irq_exit(); return; null: ack_r4ktimer(0); irq_exit(); } #ifdef CONFIG_PM irqreturn_t counter0_irq(int irq, void *dev_id) { unsigned long pc0; int time_elapsed; static int jiffie_drift = 0; if (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_M20) { /* should never happen! */ printk(KERN_WARNING "counter 0 w status error\n"); return IRQ_NONE; } pc0 = au_readl(SYS_TOYREAD); if (pc0 < last_match20) { /* counter overflowed */ time_elapsed = (0xffffffff - last_match20) + pc0; } else { time_elapsed = pc0 - last_match20; } while (time_elapsed > 0) { do_timer(1); #ifndef CONFIG_SMP update_process_times(user_mode(get_irq_regs())); #endif time_elapsed -= MATCH20_INC; last_match20 += MATCH20_INC; jiffie_drift++; } last_pc0 = pc0; au_writel(last_match20 + MATCH20_INC, SYS_TOYMATCH2); au_sync(); /* our counter ticks at 10.009765625 ms/tick, we we're running * almost 10uS too slow per tick. */ if (jiffie_drift >= 999) { jiffie_drift -= 999; do_timer(1); /* increment jiffies by one */ #ifndef CONFIG_SMP update_process_times(user_mode(get_irq_regs())); #endif } return IRQ_HANDLED; } /* When we wakeup from sleep, we have to "catch up" on all of the * timer ticks we have missed. */ void wakeup_counter0_adjust(void) { unsigned long pc0; int time_elapsed; pc0 = au_readl(SYS_TOYREAD); if (pc0 < last_match20) { /* counter overflowed */ time_elapsed = (0xffffffff - last_match20) + pc0; } else { time_elapsed = pc0 - last_match20; } while (time_elapsed > 0) { time_elapsed -= MATCH20_INC; last_match20 += MATCH20_INC; } last_pc0 = pc0; au_writel(last_match20 + MATCH20_INC, SYS_TOYMATCH2); au_sync(); } /* This is just for debugging to set the timer for a sleep delay. */ void wakeup_counter0_set(int ticks) { unsigned long pc0; pc0 = au_readl(SYS_TOYREAD); last_pc0 = pc0; au_writel(last_match20 + (MATCH20_INC * ticks), SYS_TOYMATCH2); au_sync(); } #endif /* I haven't found anyone that doesn't use a 12 MHz source clock, * but just in case..... */ #ifdef CONFIG_AU1000_SRC_CLK #define AU1000_SRC_CLK CONFIG_AU1000_SRC_CLK #else #define AU1000_SRC_CLK 12000000 #endif /* * We read the real processor speed from the PLL. This is important * because it is more accurate than computing it from the 32KHz * counter, if it exists. If we don't have an accurate processor * speed, all of the peripherals that derive their clocks based on * this advertised speed will introduce error and sometimes not work * properly. This function is futher convoluted to still allow configurations * to do that in case they have really, really old silicon with a * write-only PLL register, that we need the 32KHz when power management * "wait" is enabled, and we need to detect if the 32KHz isn't present * but requested......got it? :-) -- Dan */ unsigned long cal_r4koff(void) { unsigned long count; unsigned long cpu_speed; unsigned long flags; unsigned long counter; spin_lock_irqsave(&time_lock, flags); /* Power management cares if we don't have a 32KHz counter. */ no_au1xxx_32khz = 0; counter = au_readl(SYS_COUNTER_CNTRL); if (counter & SYS_CNTRL_E0) { int trim_divide = 16; au_writel(counter | SYS_CNTRL_EN1, SYS_COUNTER_CNTRL); while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_T1S); /* RTC now ticks at 32.768/16 kHz */ au_writel(trim_divide-1, SYS_RTCTRIM); while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_T1S); while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_C1S); au_writel (0, SYS_TOYWRITE); while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_C1S); #if defined(CONFIG_AU1000_USE32K) { unsigned long start, end; start = au_readl(SYS_RTCREAD); start += 2; /* wait for the beginning of a new tick */ while (au_readl(SYS_RTCREAD) < start); /* Start r4k counter. */ write_c0_count(0); /* Wait 0.5 seconds. */ end = start + (32768 / trim_divide)/2; while (end > au_readl(SYS_RTCREAD)); count = read_c0_count(); cpu_speed = count * 2; } #else cpu_speed = (au_readl(SYS_CPUPLL) & 0x0000003f) * AU1000_SRC_CLK; count = cpu_speed / 2; #endif } else { /* The 32KHz oscillator isn't running, so assume there * isn't one and grab the processor speed from the PLL. * NOTE: some old silicon doesn't allow reading the PLL. */ cpu_speed = (au_readl(SYS_CPUPLL) & 0x0000003f) * AU1000_SRC_CLK; count = cpu_speed / 2; no_au1xxx_32khz = 1; } mips_hpt_frequency = count; // Equation: Baudrate = CPU / (SD * 2 * CLKDIV * 16) set_au1x00_uart_baud_base(cpu_speed / (2 * ((int)(au_readl(SYS_POWERCTRL)&0x03) + 2) * 16)); spin_unlock_irqrestore(&time_lock, flags); return (cpu_speed / HZ); } /* This is for machines which generate the exact clock. */ #define USECS_PER_JIFFY (1000000/HZ) #define USECS_PER_JIFFY_FRAC (0x100000000LL*1000000/HZ&0xffffffff) static unsigned long div64_32(unsigned long v1, unsigned long v2, unsigned long v3) { unsigned long r0; do_div64_32(r0, v1, v2, v3); return r0; } static unsigned long do_fast_cp0_gettimeoffset(void) { u32 count; unsigned long res, tmp; unsigned long r0; /* Last jiffy when do_fast_gettimeoffset() was called. */ static unsigned long last_jiffies=0; unsigned long quotient; /* * Cached "1/(clocks per usec)*2^32" value. * It has to be recalculated once each jiffy. */ static unsigned long cached_quotient=0; tmp = jiffies; quotient = cached_quotient; if (tmp && last_jiffies != tmp) { last_jiffies = tmp; if (last_jiffies != 0) { r0 = div64_32(timerhi, timerlo, tmp); quotient = div64_32(USECS_PER_JIFFY, USECS_PER_JIFFY_FRAC, r0); cached_quotient = quotient; } } /* Get last timer tick in absolute kernel time */ count = read_c0_count(); /* .. relative to previous jiffy (32 bits is enough) */ count -= timerlo; __asm__("multu\t%1,%2\n\t" "mfhi\t%0" : "=r" (res) : "r" (count), "r" (quotient) : "hi", "lo", GCC_REG_ACCUM); /* * Due to possible jiffies inconsistencies, we need to check * the result so that we'll get a timer that is monotonic. */ if (res >= USECS_PER_JIFFY) res = USECS_PER_JIFFY-1; return res; } #ifdef CONFIG_PM static unsigned long do_fast_pm_gettimeoffset(void) { unsigned long pc0; unsigned long offset; pc0 = au_readl(SYS_TOYREAD); au_sync(); offset = pc0 - last_pc0; if (offset > 2*MATCH20_INC) { printk("huge offset %x, last_pc0 %x last_match20 %x pc0 %x\n", (unsigned)offset, (unsigned)last_pc0, (unsigned)last_match20, (unsigned)pc0); } offset = (unsigned long)((offset * 305) / 10); return offset; } #endif void __init plat_timer_setup(struct irqaction *irq) { unsigned int est_freq; printk("calculating r4koff... "); r4k_offset = cal_r4koff(); printk("%08lx(%d)\n", r4k_offset, (int) r4k_offset); //est_freq = 2*r4k_offset*HZ; est_freq = r4k_offset*HZ; est_freq += 5000; /* round */ est_freq -= est_freq%10000; printk("CPU frequency %d.%02d MHz\n", est_freq/1000000, (est_freq%1000000)*100/1000000); set_au1x00_speed(est_freq); set_au1x00_lcd_clock(); // program the LCD clock r4k_cur = (read_c0_count() + r4k_offset); write_c0_compare(r4k_cur); #ifdef CONFIG_PM /* * setup counter 0, since it keeps ticking after a * 'wait' instruction has been executed. The CP0 timer and * counter 1 do NOT continue running after 'wait' * * It's too early to call request_irq() here, so we handle * counter 0 interrupt as a special irq and it doesn't show * up under /proc/interrupts. * * Check to ensure we really have a 32KHz oscillator before * we do this. */ if (no_au1xxx_32khz) { unsigned int c0_status; printk("WARNING: no 32KHz clock found.\n"); do_gettimeoffset = do_fast_cp0_gettimeoffset; /* Ensure we get CPO_COUNTER interrupts. */ c0_status = read_c0_status(); c0_status |= IE_IRQ5; write_c0_status(c0_status); } else { while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_C0S); au_writel(0, SYS_TOYWRITE); while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_C0S); au_writel(au_readl(SYS_WAKEMSK) | (1<<8), SYS_WAKEMSK); au_writel(~0, SYS_WAKESRC); au_sync(); while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_M20); /* setup match20 to interrupt once every HZ */ last_pc0 = last_match20 = au_readl(SYS_TOYREAD); au_writel(last_match20 + MATCH20_INC, SYS_TOYMATCH2); au_sync(); while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_M20); startup_match20_interrupt(counter0_irq); do_gettimeoffset = do_fast_pm_gettimeoffset; /* We can use the real 'wait' instruction. */ allow_au1k_wait = 1; } #else /* We have to do this here instead of in timer_init because * the generic code in arch/mips/kernel/time.c will write * over our function pointer. */ do_gettimeoffset = do_fast_cp0_gettimeoffset; #endif } void __init au1xxx_time_init(void) { }