/* * linux/arch/m68knommu/kernel/process.c * * Copyright (C) 1995 Hamish Macdonald * * 68060 fixes by Jesper Skov * * uClinux changes * Copyright (C) 2000-2002, David McCullough <davidm@snapgear.com> */ /* * This file handles the architecture-dependent parts of process handling.. */ #include <linux/module.h> #include <linux/errno.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/smp.h> #include <linux/smp_lock.h> #include <linux/stddef.h> #include <linux/unistd.h> #include <linux/ptrace.h> #include <linux/slab.h> #include <linux/user.h> #include <linux/a.out.h> #include <linux/interrupt.h> #include <linux/reboot.h> #include <linux/fs.h> #include <asm/uaccess.h> #include <asm/system.h> #include <asm/traps.h> #include <asm/machdep.h> #include <asm/setup.h> #include <asm/pgtable.h> asmlinkage void ret_from_fork(void); /* * The following aren't currently used. */ void (*pm_idle)(void); EXPORT_SYMBOL(pm_idle); void (*pm_power_off)(void); EXPORT_SYMBOL(pm_power_off); /* * The idle loop on an m68knommu.. */ static void default_idle(void) { local_irq_disable(); while (!need_resched()) { /* This stop will re-enable interrupts */ __asm__("stop #0x2000" : : : "cc"); local_irq_disable(); } local_irq_enable(); } void (*idle)(void) = default_idle; /* * The idle thread. There's no useful work to be * done, so just try to conserve power and have a * low exit latency (ie sit in a loop waiting for * somebody to say that they'd like to reschedule) */ void cpu_idle(void) { /* endless idle loop with no priority at all */ while (1) { idle(); preempt_enable_no_resched(); schedule(); preempt_disable(); } } void machine_restart(char * __unused) { if (mach_reset) mach_reset(); for (;;); } void machine_halt(void) { if (mach_halt) mach_halt(); for (;;); } void machine_power_off(void) { if (mach_power_off) mach_power_off(); for (;;); } void show_regs(struct pt_regs * regs) { printk(KERN_NOTICE "\n"); printk(KERN_NOTICE "Format %02x Vector: %04x PC: %08lx Status: %04x %s\n", regs->format, regs->vector, regs->pc, regs->sr, print_tainted()); printk(KERN_NOTICE "ORIG_D0: %08lx D0: %08lx A2: %08lx A1: %08lx\n", regs->orig_d0, regs->d0, regs->a2, regs->a1); printk(KERN_NOTICE "A0: %08lx D5: %08lx D4: %08lx\n", regs->a0, regs->d5, regs->d4); printk(KERN_NOTICE "D3: %08lx D2: %08lx D1: %08lx\n", regs->d3, regs->d2, regs->d1); if (!(regs->sr & PS_S)) printk(KERN_NOTICE "USP: %08lx\n", rdusp()); } /* * Create a kernel thread */ int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) { int retval; long clone_arg = flags | CLONE_VM; mm_segment_t fs; fs = get_fs(); set_fs(KERNEL_DS); __asm__ __volatile__ ( "movel %%sp, %%d2\n\t" "movel %5, %%d1\n\t" "movel %1, %%d0\n\t" "trap #0\n\t" "cmpl %%sp, %%d2\n\t" "jeq 1f\n\t" "movel %3, %%sp@-\n\t" "jsr %4@\n\t" "movel %2, %%d0\n\t" "trap #0\n" "1:\n\t" "movel %%d0, %0\n" : "=d" (retval) : "i" (__NR_clone), "i" (__NR_exit), "a" (arg), "a" (fn), "a" (clone_arg) : "cc", "%d0", "%d1", "%d2"); set_fs(fs); return retval; } void flush_thread(void) { #ifdef CONFIG_FPU unsigned long zero = 0; #endif set_fs(USER_DS); current->thread.fs = __USER_DS; #ifdef CONFIG_FPU if (!FPU_IS_EMU) asm volatile (".chip 68k/68881\n\t" "frestore %0@\n\t" ".chip 68k" : : "a" (&zero)); #endif } /* * "m68k_fork()".. By the time we get here, the * non-volatile registers have also been saved on the * stack. We do some ugly pointer stuff here.. (see * also copy_thread) */ asmlinkage int m68k_fork(struct pt_regs *regs) { /* fork almost works, enough to trick you into looking elsewhere :-( */ return(-EINVAL); } asmlinkage int m68k_vfork(struct pt_regs *regs) { return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(), regs, 0, NULL, NULL); } asmlinkage int m68k_clone(struct pt_regs *regs) { unsigned long clone_flags; unsigned long newsp; /* syscall2 puts clone_flags in d1 and usp in d2 */ clone_flags = regs->d1; newsp = regs->d2; if (!newsp) newsp = rdusp(); return do_fork(clone_flags, newsp, regs, 0, NULL, NULL); } int copy_thread(int nr, unsigned long clone_flags, unsigned long usp, unsigned long topstk, struct task_struct * p, struct pt_regs * regs) { struct pt_regs * childregs; struct switch_stack * childstack, *stack; unsigned long *retp; childregs = (struct pt_regs *) (task_stack_page(p) + THREAD_SIZE) - 1; *childregs = *regs; childregs->d0 = 0; retp = ((unsigned long *) regs); stack = ((struct switch_stack *) retp) - 1; childstack = ((struct switch_stack *) childregs) - 1; *childstack = *stack; childstack->retpc = (unsigned long)ret_from_fork; p->thread.usp = usp; p->thread.ksp = (unsigned long)childstack; /* * Must save the current SFC/DFC value, NOT the value when * the parent was last descheduled - RGH 10-08-96 */ p->thread.fs = get_fs().seg; #ifdef CONFIG_FPU if (!FPU_IS_EMU) { /* Copy the current fpu state */ asm volatile ("fsave %0" : : "m" (p->thread.fpstate[0]) : "memory"); if (p->thread.fpstate[0]) asm volatile ("fmovemx %/fp0-%/fp7,%0\n\t" "fmoveml %/fpiar/%/fpcr/%/fpsr,%1" : : "m" (p->thread.fp[0]), "m" (p->thread.fpcntl[0]) : "memory"); /* Restore the state in case the fpu was busy */ asm volatile ("frestore %0" : : "m" (p->thread.fpstate[0])); } #endif return 0; } /* Fill in the fpu structure for a core dump. */ int dump_fpu(struct pt_regs *regs, struct user_m68kfp_struct *fpu) { #ifdef CONFIG_FPU char fpustate[216]; if (FPU_IS_EMU) { int i; memcpy(fpu->fpcntl, current->thread.fpcntl, 12); memcpy(fpu->fpregs, current->thread.fp, 96); /* Convert internal fpu reg representation * into long double format */ for (i = 0; i < 24; i += 3) fpu->fpregs[i] = ((fpu->fpregs[i] & 0xffff0000) << 15) | ((fpu->fpregs[i] & 0x0000ffff) << 16); return 1; } /* First dump the fpu context to avoid protocol violation. */ asm volatile ("fsave %0" :: "m" (fpustate[0]) : "memory"); if (!fpustate[0]) return 0; asm volatile ("fmovem %/fpiar/%/fpcr/%/fpsr,%0" :: "m" (fpu->fpcntl[0]) : "memory"); asm volatile ("fmovemx %/fp0-%/fp7,%0" :: "m" (fpu->fpregs[0]) : "memory"); #endif return 1; } /* * Generic dumping code. Used for panic and debug. */ void dump(struct pt_regs *fp) { unsigned long *sp; unsigned char *tp; int i; printk(KERN_EMERG "\n" KERN_EMERG "CURRENT PROCESS:\n" KERN_EMERG "\n"); printk(KERN_EMERG "COMM=%s PID=%d\n", current->comm, current->pid); if (current->mm) { printk(KERN_EMERG "TEXT=%08x-%08x DATA=%08x-%08x BSS=%08x-%08x\n", (int) current->mm->start_code, (int) current->mm->end_code, (int) current->mm->start_data, (int) current->mm->end_data, (int) current->mm->end_data, (int) current->mm->brk); printk(KERN_EMERG "USER-STACK=%08x KERNEL-STACK=%08x\n" KERN_EMERG "\n", (int) current->mm->start_stack, (int)(((unsigned long) current) + THREAD_SIZE)); } printk(KERN_EMERG "PC: %08lx\n", fp->pc); printk(KERN_EMERG "SR: %08lx SP: %08lx\n", (long) fp->sr, (long) fp); printk(KERN_EMERG "d0: %08lx d1: %08lx d2: %08lx d3: %08lx\n", fp->d0, fp->d1, fp->d2, fp->d3); printk(KERN_EMERG "d4: %08lx d5: %08lx a0: %08lx a1: %08lx\n", fp->d4, fp->d5, fp->a0, fp->a1); printk(KERN_EMERG "\n" KERN_EMERG "USP: %08x TRAPFRAME: %08x\n", (unsigned int) rdusp(), (unsigned int) fp); printk(KERN_EMERG "\n" KERN_EMERG "CODE:"); tp = ((unsigned char *) fp->pc) - 0x20; for (sp = (unsigned long *) tp, i = 0; (i < 0x40); i += 4) { if ((i % 0x10) == 0) printk("\n" KERN_EMERG "%08x: ", (int) (tp + i)); printk("%08x ", (int) *sp++); } printk("\n" KERN_EMERG "\n"); printk(KERN_EMERG "KERNEL STACK:"); tp = ((unsigned char *) fp) - 0x40; for (sp = (unsigned long *) tp, i = 0; (i < 0xc0); i += 4) { if ((i % 0x10) == 0) printk("\n" KERN_EMERG "%08x: ", (int) (tp + i)); printk("%08x ", (int) *sp++); } printk("\n" KERN_EMERG "\n"); printk(KERN_EMERG "USER STACK:"); tp = (unsigned char *) (rdusp() - 0x10); for (sp = (unsigned long *) tp, i = 0; (i < 0x80); i += 4) { if ((i % 0x10) == 0) printk("\n" KERN_EMERG "%08x: ", (int) (tp + i)); printk("%08x ", (int) *sp++); } printk("\n" KERN_EMERG "\n"); } /* * sys_execve() executes a new program. */ asmlinkage int sys_execve(char *name, char **argv, char **envp) { int error; char * filename; struct pt_regs *regs = (struct pt_regs *) &name; lock_kernel(); filename = getname(name); error = PTR_ERR(filename); if (IS_ERR(filename)) goto out; error = do_execve(filename, argv, envp, regs); putname(filename); out: unlock_kernel(); return error; } unsigned long get_wchan(struct task_struct *p) { unsigned long fp, pc; unsigned long stack_page; int count = 0; if (!p || p == current || p->state == TASK_RUNNING) return 0; stack_page = (unsigned long)p; fp = ((struct switch_stack *)p->thread.ksp)->a6; do { if (fp < stack_page+sizeof(struct thread_info) || fp >= THREAD_SIZE-8+stack_page) return 0; pc = ((unsigned long *)fp)[1]; if (!in_sched_functions(pc)) return pc; fp = *(unsigned long *) fp; } while (count++ < 16); return 0; } /* * Return saved PC of a blocked thread. */ unsigned long thread_saved_pc(struct task_struct *tsk) { struct switch_stack *sw = (struct switch_stack *)tsk->thread.ksp; /* Check whether the thread is blocked in resume() */ if (in_sched_functions(sw->retpc)) return ((unsigned long *)sw->a6)[1]; else return sw->retpc; }