/* * Architecture-specific setup. * * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co * David Mosberger-Tang * Stephane Eranian * Copyright (C) 2000, 2004 Intel Corp * Rohit Seth * Suresh Siddha * Gordon Jin * Copyright (C) 1999 VA Linux Systems * Copyright (C) 1999 Walt Drummond * * 12/26/04 S.Siddha, G.Jin, R.Seth * Add multi-threading and multi-core detection * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo(). * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map * 03/31/00 R.Seth cpu_initialized and current->processor fixes * 02/04/00 D.Mosberger some more get_cpuinfo fixes... * 02/01/00 R.Seth fixed get_cpuinfo for SMP * 01/07/99 S.Eranian added the support for command line argument * 06/24/99 W.Drummond added boot_cpu_data. * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()" */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE) # error "struct cpuinfo_ia64 too big!" #endif #ifdef CONFIG_SMP unsigned long __per_cpu_offset[NR_CPUS]; EXPORT_SYMBOL(__per_cpu_offset); #endif extern void ia64_setup_printk_clock(void); DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info); DEFINE_PER_CPU(unsigned long, local_per_cpu_offset); DEFINE_PER_CPU(unsigned long, ia64_phys_stacked_size_p8); unsigned long ia64_cycles_per_usec; struct ia64_boot_param *ia64_boot_param; struct screen_info screen_info; unsigned long vga_console_iobase; unsigned long vga_console_membase; static struct resource data_resource = { .name = "Kernel data", .flags = IORESOURCE_BUSY | IORESOURCE_MEM }; static struct resource code_resource = { .name = "Kernel code", .flags = IORESOURCE_BUSY | IORESOURCE_MEM }; extern void efi_initialize_iomem_resources(struct resource *, struct resource *); extern char _text[], _end[], _etext[]; unsigned long ia64_max_cacheline_size; int dma_get_cache_alignment(void) { return ia64_max_cacheline_size; } EXPORT_SYMBOL(dma_get_cache_alignment); unsigned long ia64_iobase; /* virtual address for I/O accesses */ EXPORT_SYMBOL(ia64_iobase); struct io_space io_space[MAX_IO_SPACES]; EXPORT_SYMBOL(io_space); unsigned int num_io_spaces; /* * "flush_icache_range()" needs to know what processor dependent stride size to use * when it makes i-cache(s) coherent with d-caches. */ #define I_CACHE_STRIDE_SHIFT 5 /* Safest way to go: 32 bytes by 32 bytes */ unsigned long ia64_i_cache_stride_shift = ~0; /* * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1). This * mask specifies a mask of address bits that must be 0 in order for two buffers to be * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start * address of the second buffer must be aligned to (merge_mask+1) in order to be * mergeable). By default, we assume there is no I/O MMU which can merge physically * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu * page-size of 2^64. */ unsigned long ia64_max_iommu_merge_mask = ~0UL; EXPORT_SYMBOL(ia64_max_iommu_merge_mask); /* * We use a special marker for the end of memory and it uses the extra (+1) slot */ struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata; int num_rsvd_regions __initdata; /* * Filter incoming memory segments based on the primitive map created from the boot * parameters. Segments contained in the map are removed from the memory ranges. A * caller-specified function is called with the memory ranges that remain after filtering. * This routine does not assume the incoming segments are sorted. */ int __init filter_rsvd_memory (unsigned long start, unsigned long end, void *arg) { unsigned long range_start, range_end, prev_start; void (*func)(unsigned long, unsigned long, int); int i; #if IGNORE_PFN0 if (start == PAGE_OFFSET) { printk(KERN_WARNING "warning: skipping physical page 0\n"); start += PAGE_SIZE; if (start >= end) return 0; } #endif /* * lowest possible address(walker uses virtual) */ prev_start = PAGE_OFFSET; func = arg; for (i = 0; i < num_rsvd_regions; ++i) { range_start = max(start, prev_start); range_end = min(end, rsvd_region[i].start); if (range_start < range_end) call_pernode_memory(__pa(range_start), range_end - range_start, func); /* nothing more available in this segment */ if (range_end == end) return 0; prev_start = rsvd_region[i].end; } /* end of memory marker allows full processing inside loop body */ return 0; } static void __init sort_regions (struct rsvd_region *rsvd_region, int max) { int j; /* simple bubble sorting */ while (max--) { for (j = 0; j < max; ++j) { if (rsvd_region[j].start > rsvd_region[j+1].start) { struct rsvd_region tmp; tmp = rsvd_region[j]; rsvd_region[j] = rsvd_region[j + 1]; rsvd_region[j + 1] = tmp; } } } } /* * Request address space for all standard resources */ static int __init register_memory(void) { code_resource.start = ia64_tpa(_text); code_resource.end = ia64_tpa(_etext) - 1; data_resource.start = ia64_tpa(_etext); data_resource.end = ia64_tpa(_end) - 1; efi_initialize_iomem_resources(&code_resource, &data_resource); return 0; } __initcall(register_memory); /** * reserve_memory - setup reserved memory areas * * Setup the reserved memory areas set aside for the boot parameters, * initrd, etc. There are currently %IA64_MAX_RSVD_REGIONS defined, * see include/asm-ia64/meminit.h if you need to define more. */ void __init reserve_memory (void) { int n = 0; /* * none of the entries in this table overlap */ rsvd_region[n].start = (unsigned long) ia64_boot_param; rsvd_region[n].end = rsvd_region[n].start + sizeof(*ia64_boot_param); n++; rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap); rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->efi_memmap_size; n++; rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line); rsvd_region[n].end = (rsvd_region[n].start + strlen(__va(ia64_boot_param->command_line)) + 1); n++; rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START); rsvd_region[n].end = (unsigned long) ia64_imva(_end); n++; #ifdef CONFIG_BLK_DEV_INITRD if (ia64_boot_param->initrd_start) { rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start); rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->initrd_size; n++; } #endif efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end); n++; #ifdef CONFIG_KEXEC /* crashkernel=size@offset specifies the size to reserve for a crash * kernel.(offset is ingored for keep compatibility with other archs) * By reserving this memory we guarantee that linux never set's it * up as a DMA target.Useful for holding code to do something * appropriate after a kernel panic. */ { char *from = strstr(saved_command_line, "crashkernel="); unsigned long base, size; if (from) { size = memparse(from + 12, &from); if (size) { sort_regions(rsvd_region, n); base = kdump_find_rsvd_region(size, rsvd_region, n); if (base != ~0UL) { rsvd_region[n].start = (unsigned long)__va(base); rsvd_region[n].end = (unsigned long)__va(base + size); n++; crashk_res.start = base; crashk_res.end = base + size - 1; } } } efi_memmap_res.start = ia64_boot_param->efi_memmap; efi_memmap_res.end = efi_memmap_res.start + ia64_boot_param->efi_memmap_size; boot_param_res.start = __pa(ia64_boot_param); boot_param_res.end = boot_param_res.start + sizeof(*ia64_boot_param); } #endif /* end of memory marker */ rsvd_region[n].start = ~0UL; rsvd_region[n].end = ~0UL; n++; num_rsvd_regions = n; BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n); sort_regions(rsvd_region, num_rsvd_regions); } /** * find_initrd - get initrd parameters from the boot parameter structure * * Grab the initrd start and end from the boot parameter struct given us by * the boot loader. */ void __init find_initrd (void) { #ifdef CONFIG_BLK_DEV_INITRD if (ia64_boot_param->initrd_start) { initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start); initrd_end = initrd_start+ia64_boot_param->initrd_size; printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n", initrd_start, ia64_boot_param->initrd_size); } #endif } static void __init io_port_init (void) { unsigned long phys_iobase; /* * Set `iobase' based on the EFI memory map or, failing that, the * value firmware left in ar.k0. * * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute * the port's virtual address, so ia32_load_state() loads it with a * user virtual address. But in ia64 mode, glibc uses the * *physical* address in ar.k0 to mmap the appropriate area from * /dev/mem, and the inX()/outX() interfaces use MMIO. In both * cases, user-mode can only use the legacy 0-64K I/O port space. * * ar.k0 is not involved in kernel I/O port accesses, which can use * any of the I/O port spaces and are done via MMIO using the * virtual mmio_base from the appropriate io_space[]. */ phys_iobase = efi_get_iobase(); if (!phys_iobase) { phys_iobase = ia64_get_kr(IA64_KR_IO_BASE); printk(KERN_INFO "No I/O port range found in EFI memory map, " "falling back to AR.KR0 (0x%lx)\n", phys_iobase); } ia64_iobase = (unsigned long) ioremap(phys_iobase, 0); ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase)); /* setup legacy IO port space */ io_space[0].mmio_base = ia64_iobase; io_space[0].sparse = 1; num_io_spaces = 1; } /** * early_console_setup - setup debugging console * * Consoles started here require little enough setup that we can start using * them very early in the boot process, either right after the machine * vector initialization, or even before if the drivers can detect their hw. * * Returns non-zero if a console couldn't be setup. */ static inline int __init early_console_setup (char *cmdline) { int earlycons = 0; #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE { extern int sn_serial_console_early_setup(void); if (!sn_serial_console_early_setup()) earlycons++; } #endif #ifdef CONFIG_EFI_PCDP if (!efi_setup_pcdp_console(cmdline)) earlycons++; #endif #ifdef CONFIG_SERIAL_8250_CONSOLE if (!early_serial_console_init(cmdline)) earlycons++; #endif return (earlycons) ? 0 : -1; } static inline void mark_bsp_online (void) { #ifdef CONFIG_SMP /* If we register an early console, allow CPU 0 to printk */ cpu_set(smp_processor_id(), cpu_online_map); #endif } #ifdef CONFIG_SMP static void __init check_for_logical_procs (void) { pal_logical_to_physical_t info; s64 status; status = ia64_pal_logical_to_phys(0, &info); if (status == -1) { printk(KERN_INFO "No logical to physical processor mapping " "available\n"); return; } if (status) { printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n", status); return; } /* * Total number of siblings that BSP has. Though not all of them * may have booted successfully. The correct number of siblings * booted is in info.overview_num_log. */ smp_num_siblings = info.overview_tpc; smp_num_cpucores = info.overview_cpp; } #endif static __initdata int nomca; static __init int setup_nomca(char *s) { nomca = 1; return 0; } early_param("nomca", setup_nomca); #ifdef CONFIG_PROC_VMCORE /* elfcorehdr= specifies the location of elf core header * stored by the crashed kernel. */ static int __init parse_elfcorehdr(char *arg) { if (!arg) return -EINVAL; elfcorehdr_addr = memparse(arg, &arg); return 0; } early_param("elfcorehdr", parse_elfcorehdr); #endif /* CONFIG_PROC_VMCORE */ void __init setup_arch (char **cmdline_p) { unw_init(); ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist); *cmdline_p = __va(ia64_boot_param->command_line); strlcpy(saved_command_line, *cmdline_p, COMMAND_LINE_SIZE); efi_init(); io_port_init(); parse_early_param(); #ifdef CONFIG_IA64_GENERIC machvec_init(NULL); #endif if (early_console_setup(*cmdline_p) == 0) mark_bsp_online(); #ifdef CONFIG_ACPI /* Initialize the ACPI boot-time table parser */ acpi_table_init(); # ifdef CONFIG_ACPI_NUMA acpi_numa_init(); # endif #else # ifdef CONFIG_SMP smp_build_cpu_map(); /* happens, e.g., with the Ski simulator */ # endif #endif /* CONFIG_APCI_BOOT */ find_memory(); /* process SAL system table: */ ia64_sal_init(__va(efi.sal_systab)); ia64_setup_printk_clock(); #ifdef CONFIG_SMP cpu_physical_id(0) = hard_smp_processor_id(); cpu_set(0, cpu_sibling_map[0]); cpu_set(0, cpu_core_map[0]); check_for_logical_procs(); if (smp_num_cpucores > 1) printk(KERN_INFO "cpu package is Multi-Core capable: number of cores=%d\n", smp_num_cpucores); if (smp_num_siblings > 1) printk(KERN_INFO "cpu package is Multi-Threading capable: number of siblings=%d\n", smp_num_siblings); #endif cpu_init(); /* initialize the bootstrap CPU */ mmu_context_init(); /* initialize context_id bitmap */ check_sal_cache_flush(); #ifdef CONFIG_ACPI acpi_boot_init(); #endif #ifdef CONFIG_VT if (!conswitchp) { # if defined(CONFIG_DUMMY_CONSOLE) conswitchp = &dummy_con; # endif # if defined(CONFIG_VGA_CONSOLE) /* * Non-legacy systems may route legacy VGA MMIO range to system * memory. vga_con probes the MMIO hole, so memory looks like * a VGA device to it. The EFI memory map can tell us if it's * memory so we can avoid this problem. */ if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY) conswitchp = &vga_con; # endif } #endif /* enable IA-64 Machine Check Abort Handling unless disabled */ if (!nomca) ia64_mca_init(); platform_setup(cmdline_p); paging_init(); } /* * Display cpu info for all cpu's. */ static int show_cpuinfo (struct seq_file *m, void *v) { #ifdef CONFIG_SMP # define lpj c->loops_per_jiffy # define cpunum c->cpu #else # define lpj loops_per_jiffy # define cpunum 0 #endif static struct { unsigned long mask; const char *feature_name; } feature_bits[] = { { 1UL << 0, "branchlong" }, { 1UL << 1, "spontaneous deferral"}, { 1UL << 2, "16-byte atomic ops" } }; char features[128], *cp, sep; struct cpuinfo_ia64 *c = v; unsigned long mask; unsigned long proc_freq; int i; mask = c->features; /* build the feature string: */ memcpy(features, " standard", 10); cp = features; sep = 0; for (i = 0; i < (int) ARRAY_SIZE(feature_bits); ++i) { if (mask & feature_bits[i].mask) { if (sep) *cp++ = sep; sep = ','; *cp++ = ' '; strcpy(cp, feature_bits[i].feature_name); cp += strlen(feature_bits[i].feature_name); mask &= ~feature_bits[i].mask; } } if (mask) { /* print unknown features as a hex value: */ if (sep) *cp++ = sep; sprintf(cp, " 0x%lx", mask); } proc_freq = cpufreq_quick_get(cpunum); if (!proc_freq) proc_freq = c->proc_freq / 1000; seq_printf(m, "processor : %d\n" "vendor : %s\n" "arch : IA-64\n" "family : %u\n" "model : %u\n" "model name : %s\n" "revision : %u\n" "archrev : %u\n" "features :%s\n" /* don't change this---it _is_ right! */ "cpu number : %lu\n" "cpu regs : %u\n" "cpu MHz : %lu.%06lu\n" "itc MHz : %lu.%06lu\n" "BogoMIPS : %lu.%02lu\n", cpunum, c->vendor, c->family, c->model, c->model_name, c->revision, c->archrev, features, c->ppn, c->number, proc_freq / 1000, proc_freq % 1000, c->itc_freq / 1000000, c->itc_freq % 1000000, lpj*HZ/500000, (lpj*HZ/5000) % 100); #ifdef CONFIG_SMP seq_printf(m, "siblings : %u\n", cpus_weight(cpu_core_map[cpunum])); if (c->threads_per_core > 1 || c->cores_per_socket > 1) seq_printf(m, "physical id: %u\n" "core id : %u\n" "thread id : %u\n", c->socket_id, c->core_id, c->thread_id); #endif seq_printf(m,"\n"); return 0; } static void * c_start (struct seq_file *m, loff_t *pos) { #ifdef CONFIG_SMP while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map)) ++*pos; #endif return *pos < NR_CPUS ? cpu_data(*pos) : NULL; } static void * c_next (struct seq_file *m, void *v, loff_t *pos) { ++*pos; return c_start(m, pos); } static void c_stop (struct seq_file *m, void *v) { } struct seq_operations cpuinfo_op = { .start = c_start, .next = c_next, .stop = c_stop, .show = show_cpuinfo }; static char brandname[128]; static char * __cpuinit get_model_name(__u8 family, __u8 model) { char brand[128]; if (ia64_pal_get_brand_info(brand)) { if (family == 0x7) memcpy(brand, "Merced", 7); else if (family == 0x1f) switch (model) { case 0: memcpy(brand, "McKinley", 9); break; case 1: memcpy(brand, "Madison", 8); break; case 2: memcpy(brand, "Madison up to 9M cache", 23); break; } else memcpy(brand, "Unknown", 8); } if (brandname[0] == '\0') return strcpy(brandname, brand); else if (strcmp(brandname, brand) == 0) return brandname; else return kstrdup(brand, GFP_KERNEL); } static void __cpuinit identify_cpu (struct cpuinfo_ia64 *c) { union { unsigned long bits[5]; struct { /* id 0 & 1: */ char vendor[16]; /* id 2 */ u64 ppn; /* processor serial number */ /* id 3: */ unsigned number : 8; unsigned revision : 8; unsigned model : 8; unsigned family : 8; unsigned archrev : 8; unsigned reserved : 24; /* id 4: */ u64 features; } field; } cpuid; pal_vm_info_1_u_t vm1; pal_vm_info_2_u_t vm2; pal_status_t status; unsigned long impl_va_msb = 50, phys_addr_size = 44; /* Itanium defaults */ int i; for (i = 0; i < 5; ++i) cpuid.bits[i] = ia64_get_cpuid(i); memcpy(c->vendor, cpuid.field.vendor, 16); #ifdef CONFIG_SMP c->cpu = smp_processor_id(); /* below default values will be overwritten by identify_siblings() * for Multi-Threading/Multi-Core capable cpu's */ c->threads_per_core = c->cores_per_socket = c->num_log = 1; c->socket_id = -1; identify_siblings(c); #endif c->ppn = cpuid.field.ppn; c->number = cpuid.field.number; c->revision = cpuid.field.revision; c->model = cpuid.field.model; c->family = cpuid.field.family; c->archrev = cpuid.field.archrev; c->features = cpuid.field.features; c->model_name = get_model_name(c->family, c->model); status = ia64_pal_vm_summary(&vm1, &vm2); if (status == PAL_STATUS_SUCCESS) { impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb; phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size; } c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1)); c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1)); } void setup_per_cpu_areas (void) { /* start_kernel() requires this... */ #ifdef CONFIG_ACPI_HOTPLUG_CPU prefill_possible_map(); #endif } /* * Calculate the max. cache line size. * * In addition, the minimum of the i-cache stride sizes is calculated for * "flush_icache_range()". */ static void __cpuinit get_max_cacheline_size (void) { unsigned long line_size, max = 1; unsigned int cache_size = 0; u64 l, levels, unique_caches; pal_cache_config_info_t cci; s64 status; status = ia64_pal_cache_summary(&levels, &unique_caches); if (status != 0) { printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n", __FUNCTION__, status); max = SMP_CACHE_BYTES; /* Safest setup for "flush_icache_range()" */ ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT; goto out; } for (l = 0; l < levels; ++l) { status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2, &cci); if (status != 0) { printk(KERN_ERR "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n", __FUNCTION__, l, status); max = SMP_CACHE_BYTES; /* The safest setup for "flush_icache_range()" */ cci.pcci_stride = I_CACHE_STRIDE_SHIFT; cci.pcci_unified = 1; } line_size = 1 << cci.pcci_line_size; if (line_size > max) max = line_size; if (cache_size < cci.pcci_cache_size) cache_size = cci.pcci_cache_size; if (!cci.pcci_unified) { status = ia64_pal_cache_config_info(l, /* cache_type (instruction)= */ 1, &cci); if (status != 0) { printk(KERN_ERR "%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n", __FUNCTION__, l, status); /* The safest setup for "flush_icache_range()" */ cci.pcci_stride = I_CACHE_STRIDE_SHIFT; } } if (cci.pcci_stride < ia64_i_cache_stride_shift) ia64_i_cache_stride_shift = cci.pcci_stride; } out: #ifdef CONFIG_SMP max_cache_size = max(max_cache_size, cache_size); #endif if (max > ia64_max_cacheline_size) ia64_max_cacheline_size = max; } /* * cpu_init() initializes state that is per-CPU. This function acts * as a 'CPU state barrier', nothing should get across. */ void __cpuinit cpu_init (void) { extern void __cpuinit ia64_mmu_init (void *); unsigned long num_phys_stacked; pal_vm_info_2_u_t vmi; unsigned int max_ctx; struct cpuinfo_ia64 *cpu_info; void *cpu_data; cpu_data = per_cpu_init(); /* * We set ar.k3 so that assembly code in MCA handler can compute * physical addresses of per cpu variables with a simple: * phys = ar.k3 + &per_cpu_var */ ia64_set_kr(IA64_KR_PER_CPU_DATA, ia64_tpa(cpu_data) - (long) __per_cpu_start); get_max_cacheline_size(); /* * We can't pass "local_cpu_data" to identify_cpu() because we haven't called * ia64_mmu_init() yet. And we can't call ia64_mmu_init() first because it * depends on the data returned by identify_cpu(). We break the dependency by * accessing cpu_data() through the canonical per-CPU address. */ cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start); identify_cpu(cpu_info); #ifdef CONFIG_MCKINLEY { # define FEATURE_SET 16 struct ia64_pal_retval iprv; if (cpu_info->family == 0x1f) { PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0); if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80)) PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES, (iprv.v1 | 0x80), FEATURE_SET, 0); } } #endif /* Clear the stack memory reserved for pt_regs: */ memset(task_pt_regs(current), 0, sizeof(struct pt_regs)); ia64_set_kr(IA64_KR_FPU_OWNER, 0); /* * Initialize the page-table base register to a global * directory with all zeroes. This ensure that we can handle * TLB-misses to user address-space even before we created the * first user address-space. This may happen, e.g., due to * aggressive use of lfetch.fault. */ ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page))); /* * Initialize default control register to defer speculative faults except * for those arising from TLB misses, which are not deferred. The * kernel MUST NOT depend on a particular setting of these bits (in other words, * the kernel must have recovery code for all speculative accesses). Turn on * dcr.lc as per recommendation by the architecture team. Most IA-32 apps * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll * be fine). */ ia64_setreg(_IA64_REG_CR_DCR, ( IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC)); atomic_inc(&init_mm.mm_count); current->active_mm = &init_mm; if (current->mm) BUG(); ia64_mmu_init(ia64_imva(cpu_data)); ia64_mca_cpu_init(ia64_imva(cpu_data)); #ifdef CONFIG_IA32_SUPPORT ia32_cpu_init(); #endif /* Clear ITC to eliminiate sched_clock() overflows in human time. */ ia64_set_itc(0); /* disable all local interrupt sources: */ ia64_set_itv(1 << 16); ia64_set_lrr0(1 << 16); ia64_set_lrr1(1 << 16); ia64_setreg(_IA64_REG_CR_PMV, 1 << 16); ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16); /* clear TPR & XTP to enable all interrupt classes: */ ia64_setreg(_IA64_REG_CR_TPR, 0); #ifdef CONFIG_SMP normal_xtp(); #endif /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */ if (ia64_pal_vm_summary(NULL, &vmi) == 0) max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1; else { printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n"); max_ctx = (1U << 15) - 1; /* use architected minimum */ } while (max_ctx < ia64_ctx.max_ctx) { unsigned int old = ia64_ctx.max_ctx; if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old) break; } if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) { printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical " "stacked regs\n"); num_phys_stacked = 96; } /* size of physical stacked register partition plus 8 bytes: */ __get_cpu_var(ia64_phys_stacked_size_p8) = num_phys_stacked*8 + 8; platform_cpu_init(); pm_idle = default_idle; } /* * On SMP systems, when the scheduler does migration-cost autodetection, * it needs a way to flush as much of the CPU's caches as possible. */ void sched_cacheflush(void) { ia64_sal_cache_flush(3); } void __init check_bugs (void) { ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles, (unsigned long) __end___mckinley_e9_bundles); } static int __init run_dmi_scan(void) { dmi_scan_machine(); return 0; } core_initcall(run_dmi_scan);