/* * I/O SAPIC support. * * Copyright (C) 1999 Intel Corp. * Copyright (C) 1999 Asit Mallick * Copyright (C) 2000-2002 J.I. Lee * Copyright (C) 1999-2000, 2002-2003 Hewlett-Packard Co. * David Mosberger-Tang * Copyright (C) 1999 VA Linux Systems * Copyright (C) 1999,2000 Walt Drummond * * 00/04/19 D. Mosberger Rewritten to mirror more closely the x86 I/O APIC code. * In particular, we now have separate handlers for edge * and level triggered interrupts. * 00/10/27 Asit Mallick, Goutham Rao IRQ vector allocation * PCI to vector mapping, shared PCI interrupts. * 00/10/27 D. Mosberger Document things a bit more to make them more understandable. * Clean up much of the old IOSAPIC cruft. * 01/07/27 J.I. Lee PCI irq routing, Platform/Legacy interrupts and fixes for * ACPI S5(SoftOff) support. * 02/01/23 J.I. Lee iosapic pgm fixes for PCI irq routing from _PRT * 02/01/07 E. Focht Redirectable interrupt vectors in * iosapic_set_affinity(), initializations for * /proc/irq/#/smp_affinity * 02/04/02 P. Diefenbaugh Cleaned up ACPI PCI IRQ routing. * 02/04/18 J.I. Lee bug fix in iosapic_init_pci_irq * 02/04/30 J.I. Lee bug fix in find_iosapic to fix ACPI PCI IRQ to IOSAPIC mapping * error * 02/07/29 T. Kochi Allocate interrupt vectors dynamically * 02/08/04 T. Kochi Cleaned up terminology (irq, global system interrupt, vector, etc.) * 02/09/20 D. Mosberger Simplified by taking advantage of ACPI's pci_irq code. * 03/02/19 B. Helgaas Make pcat_compat system-wide, not per-IOSAPIC. * Remove iosapic_address & gsi_base from external interfaces. * Rationalize __init/__devinit attributes. * 04/12/04 Ashok Raj Intel Corporation 2004 * Updated to work with irq migration necessary for CPU Hotplug */ /* * Here is what the interrupt logic between a PCI device and the kernel looks like: * * (1) A PCI device raises one of the four interrupt pins (INTA, INTB, INTC, INTD). The * device is uniquely identified by its bus--, and slot-number (the function * number does not matter here because all functions share the same interrupt * lines). * * (2) The motherboard routes the interrupt line to a pin on a IOSAPIC controller. * Multiple interrupt lines may have to share the same IOSAPIC pin (if they're level * triggered and use the same polarity). Each interrupt line has a unique Global * System Interrupt (GSI) number which can be calculated as the sum of the controller's * base GSI number and the IOSAPIC pin number to which the line connects. * * (3) The IOSAPIC uses an internal routing table entries (RTEs) to map the IOSAPIC pin * into the IA-64 interrupt vector. This interrupt vector is then sent to the CPU. * * (4) The kernel recognizes an interrupt as an IRQ. The IRQ interface is used as * architecture-independent interrupt handling mechanism in Linux. As an * IRQ is a number, we have to have IA-64 interrupt vector number <-> IRQ number * mapping. On smaller systems, we use one-to-one mapping between IA-64 vector and * IRQ. A platform can implement platform_irq_to_vector(irq) and * platform_local_vector_to_irq(vector) APIs to differentiate the mapping. * Please see also include/asm-ia64/hw_irq.h for those APIs. * * To sum up, there are three levels of mappings involved: * * PCI pin -> global system interrupt (GSI) -> IA-64 vector <-> IRQ * * Note: The term "IRQ" is loosely used everywhere in Linux kernel to describe interrupts. * Now we use "IRQ" only for Linux IRQ's. ISA IRQ (isa_irq) is the only exception in this * source code. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #undef DEBUG_INTERRUPT_ROUTING #ifdef DEBUG_INTERRUPT_ROUTING #define DBG(fmt...) printk(fmt) #else #define DBG(fmt...) #endif #define NR_PREALLOCATE_RTE_ENTRIES (PAGE_SIZE / sizeof(struct iosapic_rte_info)) #define RTE_PREALLOCATED (1) static DEFINE_SPINLOCK(iosapic_lock); /* These tables map IA-64 vectors to the IOSAPIC pin that generates this vector. */ struct iosapic_rte_info { struct list_head rte_list; /* node in list of RTEs sharing the same vector */ char __iomem *addr; /* base address of IOSAPIC */ unsigned int gsi_base; /* first GSI assigned to this IOSAPIC */ char rte_index; /* IOSAPIC RTE index */ int refcnt; /* reference counter */ unsigned int flags; /* flags */ } ____cacheline_aligned; static struct iosapic_intr_info { struct list_head rtes; /* RTEs using this vector (empty => not an IOSAPIC interrupt) */ int count; /* # of RTEs that shares this vector */ u32 low32; /* current value of low word of Redirection table entry */ unsigned int dest; /* destination CPU physical ID */ unsigned char dmode : 3; /* delivery mode (see iosapic.h) */ unsigned char polarity: 1; /* interrupt polarity (see iosapic.h) */ unsigned char trigger : 1; /* trigger mode (see iosapic.h) */ } iosapic_intr_info[IA64_NUM_VECTORS]; static struct iosapic { char __iomem *addr; /* base address of IOSAPIC */ unsigned int gsi_base; /* first GSI assigned to this IOSAPIC */ unsigned short num_rte; /* number of RTE in this IOSAPIC */ #ifdef CONFIG_NUMA unsigned short node; /* numa node association via pxm */ #endif } iosapic_lists[NR_IOSAPICS]; static int num_iosapic; static unsigned char pcat_compat __initdata; /* 8259 compatibility flag */ static int iosapic_kmalloc_ok; static LIST_HEAD(free_rte_list); /* * Find an IOSAPIC associated with a GSI */ static inline int find_iosapic (unsigned int gsi) { int i; for (i = 0; i < num_iosapic; i++) { if ((unsigned) (gsi - iosapic_lists[i].gsi_base) < iosapic_lists[i].num_rte) return i; } return -1; } static inline int _gsi_to_vector (unsigned int gsi) { struct iosapic_intr_info *info; struct iosapic_rte_info *rte; for (info = iosapic_intr_info; info < iosapic_intr_info + IA64_NUM_VECTORS; ++info) list_for_each_entry(rte, &info->rtes, rte_list) if (rte->gsi_base + rte->rte_index == gsi) return info - iosapic_intr_info; return -1; } /* * Translate GSI number to the corresponding IA-64 interrupt vector. If no * entry exists, return -1. */ inline int gsi_to_vector (unsigned int gsi) { return _gsi_to_vector(gsi); } int gsi_to_irq (unsigned int gsi) { unsigned long flags; int irq; /* * XXX fix me: this assumes an identity mapping vetween IA-64 vector and Linux irq * numbers... */ spin_lock_irqsave(&iosapic_lock, flags); { irq = _gsi_to_vector(gsi); } spin_unlock_irqrestore(&iosapic_lock, flags); return irq; } static struct iosapic_rte_info *gsi_vector_to_rte(unsigned int gsi, unsigned int vec) { struct iosapic_rte_info *rte; list_for_each_entry(rte, &iosapic_intr_info[vec].rtes, rte_list) if (rte->gsi_base + rte->rte_index == gsi) return rte; return NULL; } static void set_rte (unsigned int gsi, unsigned int vector, unsigned int dest, int mask) { unsigned long pol, trigger, dmode; u32 low32, high32; char __iomem *addr; int rte_index; char redir; struct iosapic_rte_info *rte; DBG(KERN_DEBUG"IOSAPIC: routing vector %d to 0x%x\n", vector, dest); rte = gsi_vector_to_rte(gsi, vector); if (!rte) return; /* not an IOSAPIC interrupt */ rte_index = rte->rte_index; addr = rte->addr; pol = iosapic_intr_info[vector].polarity; trigger = iosapic_intr_info[vector].trigger; dmode = iosapic_intr_info[vector].dmode; redir = (dmode == IOSAPIC_LOWEST_PRIORITY) ? 1 : 0; #ifdef CONFIG_SMP { unsigned int irq; for (irq = 0; irq < NR_IRQS; ++irq) if (irq_to_vector(irq) == vector) { set_irq_affinity_info(irq, (int)(dest & 0xffff), redir); break; } } #endif low32 = ((pol << IOSAPIC_POLARITY_SHIFT) | (trigger << IOSAPIC_TRIGGER_SHIFT) | (dmode << IOSAPIC_DELIVERY_SHIFT) | ((mask ? 1 : 0) << IOSAPIC_MASK_SHIFT) | vector); /* dest contains both id and eid */ high32 = (dest << IOSAPIC_DEST_SHIFT); iosapic_write(addr, IOSAPIC_RTE_HIGH(rte_index), high32); iosapic_write(addr, IOSAPIC_RTE_LOW(rte_index), low32); iosapic_intr_info[vector].low32 = low32; iosapic_intr_info[vector].dest = dest; } static void nop (unsigned int vector) { /* do nothing... */ } static void mask_irq (unsigned int irq) { unsigned long flags; char __iomem *addr; u32 low32; int rte_index; ia64_vector vec = irq_to_vector(irq); struct iosapic_rte_info *rte; if (list_empty(&iosapic_intr_info[vec].rtes)) return; /* not an IOSAPIC interrupt! */ spin_lock_irqsave(&iosapic_lock, flags); { /* set only the mask bit */ low32 = iosapic_intr_info[vec].low32 |= IOSAPIC_MASK; list_for_each_entry(rte, &iosapic_intr_info[vec].rtes, rte_list) { addr = rte->addr; rte_index = rte->rte_index; iosapic_write(addr, IOSAPIC_RTE_LOW(rte_index), low32); } } spin_unlock_irqrestore(&iosapic_lock, flags); } static void unmask_irq (unsigned int irq) { unsigned long flags; char __iomem *addr; u32 low32; int rte_index; ia64_vector vec = irq_to_vector(irq); struct iosapic_rte_info *rte; if (list_empty(&iosapic_intr_info[vec].rtes)) return; /* not an IOSAPIC interrupt! */ spin_lock_irqsave(&iosapic_lock, flags); { low32 = iosapic_intr_info[vec].low32 &= ~IOSAPIC_MASK; list_for_each_entry(rte, &iosapic_intr_info[vec].rtes, rte_list) { addr = rte->addr; rte_index = rte->rte_index; iosapic_write(addr, IOSAPIC_RTE_LOW(rte_index), low32); } } spin_unlock_irqrestore(&iosapic_lock, flags); } static void iosapic_set_affinity (unsigned int irq, cpumask_t mask) { #ifdef CONFIG_SMP unsigned long flags; u32 high32, low32; int dest, rte_index; char __iomem *addr; int redir = (irq & IA64_IRQ_REDIRECTED) ? 1 : 0; ia64_vector vec; struct iosapic_rte_info *rte; irq &= (~IA64_IRQ_REDIRECTED); vec = irq_to_vector(irq); if (cpus_empty(mask)) return; dest = cpu_physical_id(first_cpu(mask)); if (list_empty(&iosapic_intr_info[vec].rtes)) return; /* not an IOSAPIC interrupt */ set_irq_affinity_info(irq, dest, redir); /* dest contains both id and eid */ high32 = dest << IOSAPIC_DEST_SHIFT; spin_lock_irqsave(&iosapic_lock, flags); { low32 = iosapic_intr_info[vec].low32 & ~(7 << IOSAPIC_DELIVERY_SHIFT); if (redir) /* change delivery mode to lowest priority */ low32 |= (IOSAPIC_LOWEST_PRIORITY << IOSAPIC_DELIVERY_SHIFT); else /* change delivery mode to fixed */ low32 |= (IOSAPIC_FIXED << IOSAPIC_DELIVERY_SHIFT); iosapic_intr_info[vec].low32 = low32; iosapic_intr_info[vec].dest = dest; list_for_each_entry(rte, &iosapic_intr_info[vec].rtes, rte_list) { addr = rte->addr; rte_index = rte->rte_index; iosapic_write(addr, IOSAPIC_RTE_HIGH(rte_index), high32); iosapic_write(addr, IOSAPIC_RTE_LOW(rte_index), low32); } } spin_unlock_irqrestore(&iosapic_lock, flags); #endif } /* * Handlers for level-triggered interrupts. */ static unsigned int iosapic_startup_level_irq (unsigned int irq) { unmask_irq(irq); return 0; } static void iosapic_end_level_irq (unsigned int irq) { ia64_vector vec = irq_to_vector(irq); struct iosapic_rte_info *rte; move_irq(irq); list_for_each_entry(rte, &iosapic_intr_info[vec].rtes, rte_list) iosapic_eoi(rte->addr, vec); } #define iosapic_shutdown_level_irq mask_irq #define iosapic_enable_level_irq unmask_irq #define iosapic_disable_level_irq mask_irq #define iosapic_ack_level_irq nop struct hw_interrupt_type irq_type_iosapic_level = { .typename = "IO-SAPIC-level", .startup = iosapic_startup_level_irq, .shutdown = iosapic_shutdown_level_irq, .enable = iosapic_enable_level_irq, .disable = iosapic_disable_level_irq, .ack = iosapic_ack_level_irq, .end = iosapic_end_level_irq, .set_affinity = iosapic_set_affinity }; /* * Handlers for edge-triggered interrupts. */ static unsigned int iosapic_startup_edge_irq (unsigned int irq) { unmask_irq(irq); /* * IOSAPIC simply drops interrupts pended while the * corresponding pin was masked, so we can't know if an * interrupt is pending already. Let's hope not... */ return 0; } static void iosapic_ack_edge_irq (unsigned int irq) { irq_desc_t *idesc = irq_descp(irq); move_irq(irq); /* * Once we have recorded IRQ_PENDING already, we can mask the * interrupt for real. This prevents IRQ storms from unhandled * devices. */ if ((idesc->status & (IRQ_PENDING|IRQ_DISABLED)) == (IRQ_PENDING|IRQ_DISABLED)) mask_irq(irq); } #define iosapic_enable_edge_irq unmask_irq #define iosapic_disable_edge_irq nop #define iosapic_end_edge_irq nop struct hw_interrupt_type irq_type_iosapic_edge = { .typename = "IO-SAPIC-edge", .startup = iosapic_startup_edge_irq, .shutdown = iosapic_disable_edge_irq, .enable = iosapic_enable_edge_irq, .disable = iosapic_disable_edge_irq, .ack = iosapic_ack_edge_irq, .end = iosapic_end_edge_irq, .set_affinity = iosapic_set_affinity }; unsigned int iosapic_version (char __iomem *addr) { /* * IOSAPIC Version Register return 32 bit structure like: * { * unsigned int version : 8; * unsigned int reserved1 : 8; * unsigned int max_redir : 8; * unsigned int reserved2 : 8; * } */ return iosapic_read(addr, IOSAPIC_VERSION); } static int iosapic_find_sharable_vector (unsigned long trigger, unsigned long pol) { int i, vector = -1, min_count = -1; struct iosapic_intr_info *info; /* * shared vectors for edge-triggered interrupts are not * supported yet */ if (trigger == IOSAPIC_EDGE) return -1; for (i = IA64_FIRST_DEVICE_VECTOR; i <= IA64_LAST_DEVICE_VECTOR; i++) { info = &iosapic_intr_info[i]; if (info->trigger == trigger && info->polarity == pol && (info->dmode == IOSAPIC_FIXED || info->dmode == IOSAPIC_LOWEST_PRIORITY)) { if (min_count == -1 || info->count < min_count) { vector = i; min_count = info->count; } } } if (vector < 0) panic("%s: out of interrupt vectors!\n", __FUNCTION__); return vector; } /* * if the given vector is already owned by other, * assign a new vector for the other and make the vector available */ static void __init iosapic_reassign_vector (int vector) { int new_vector; if (!list_empty(&iosapic_intr_info[vector].rtes)) { new_vector = assign_irq_vector(AUTO_ASSIGN); printk(KERN_INFO "Reassigning vector %d to %d\n", vector, new_vector); memcpy(&iosapic_intr_info[new_vector], &iosapic_intr_info[vector], sizeof(struct iosapic_intr_info)); INIT_LIST_HEAD(&iosapic_intr_info[new_vector].rtes); list_move(iosapic_intr_info[vector].rtes.next, &iosapic_intr_info[new_vector].rtes); memset(&iosapic_intr_info[vector], 0, sizeof(struct iosapic_intr_info)); iosapic_intr_info[vector].low32 = IOSAPIC_MASK; INIT_LIST_HEAD(&iosapic_intr_info[vector].rtes); } } static struct iosapic_rte_info *iosapic_alloc_rte (void) { int i; struct iosapic_rte_info *rte; int preallocated = 0; if (!iosapic_kmalloc_ok && list_empty(&free_rte_list)) { rte = alloc_bootmem(sizeof(struct iosapic_rte_info) * NR_PREALLOCATE_RTE_ENTRIES); if (!rte) return NULL; for (i = 0; i < NR_PREALLOCATE_RTE_ENTRIES; i++, rte++) list_add(&rte->rte_list, &free_rte_list); } if (!list_empty(&free_rte_list)) { rte = list_entry(free_rte_list.next, struct iosapic_rte_info, rte_list); list_del(&rte->rte_list); preallocated++; } else { rte = kmalloc(sizeof(struct iosapic_rte_info), GFP_ATOMIC); if (!rte) return NULL; } memset(rte, 0, sizeof(struct iosapic_rte_info)); if (preallocated) rte->flags |= RTE_PREALLOCATED; return rte; } static void iosapic_free_rte (struct iosapic_rte_info *rte) { if (rte->flags & RTE_PREALLOCATED) list_add_tail(&rte->rte_list, &free_rte_list); else kfree(rte); } static inline int vector_is_shared (int vector) { return (iosapic_intr_info[vector].count > 1); } static void register_intr (unsigned int gsi, int vector, unsigned char delivery, unsigned long polarity, unsigned long trigger) { irq_desc_t *idesc; struct hw_interrupt_type *irq_type; int rte_index; int index; unsigned long gsi_base; void __iomem *iosapic_address; struct iosapic_rte_info *rte; index = find_iosapic(gsi); if (index < 0) { printk(KERN_WARNING "%s: No IOSAPIC for GSI %u\n", __FUNCTION__, gsi); return; } iosapic_address = iosapic_lists[index].addr; gsi_base = iosapic_lists[index].gsi_base; rte = gsi_vector_to_rte(gsi, vector); if (!rte) { rte = iosapic_alloc_rte(); if (!rte) { printk(KERN_WARNING "%s: cannot allocate memory\n", __FUNCTION__); return; } rte_index = gsi - gsi_base; rte->rte_index = rte_index; rte->addr = iosapic_address; rte->gsi_base = gsi_base; rte->refcnt++; list_add_tail(&rte->rte_list, &iosapic_intr_info[vector].rtes); iosapic_intr_info[vector].count++; } else if (vector_is_shared(vector)) { struct iosapic_intr_info *info = &iosapic_intr_info[vector]; if (info->trigger != trigger || info->polarity != polarity) { printk (KERN_WARNING "%s: cannot override the interrupt\n", __FUNCTION__); return; } } iosapic_intr_info[vector].polarity = polarity; iosapic_intr_info[vector].dmode = delivery; iosapic_intr_info[vector].trigger = trigger; if (trigger == IOSAPIC_EDGE) irq_type = &irq_type_iosapic_edge; else irq_type = &irq_type_iosapic_level; idesc = irq_descp(vector); if (idesc->handler != irq_type) { if (idesc->handler != &no_irq_type) printk(KERN_WARNING "%s: changing vector %d from %s to %s\n", __FUNCTION__, vector, idesc->handler->typename, irq_type->typename); idesc->handler = irq_type; } } static unsigned int get_target_cpu (unsigned int gsi, int vector) { #ifdef CONFIG_SMP static int cpu = -1; /* * In case of vector shared by multiple RTEs, all RTEs that * share the vector need to use the same destination CPU. */ if (!list_empty(&iosapic_intr_info[vector].rtes)) return iosapic_intr_info[vector].dest; /* * If the platform supports redirection via XTP, let it * distribute interrupts. */ if (smp_int_redirect & SMP_IRQ_REDIRECTION) return cpu_physical_id(smp_processor_id()); /* * Some interrupts (ACPI SCI, for instance) are registered * before the BSP is marked as online. */ if (!cpu_online(smp_processor_id())) return cpu_physical_id(smp_processor_id()); #ifdef CONFIG_NUMA { int num_cpus, cpu_index, iosapic_index, numa_cpu, i = 0; cpumask_t cpu_mask; iosapic_index = find_iosapic(gsi); if (iosapic_index < 0 || iosapic_lists[iosapic_index].node == MAX_NUMNODES) goto skip_numa_setup; cpu_mask = node_to_cpumask(iosapic_lists[iosapic_index].node); for_each_cpu_mask(numa_cpu, cpu_mask) { if (!cpu_online(numa_cpu)) cpu_clear(numa_cpu, cpu_mask); } num_cpus = cpus_weight(cpu_mask); if (!num_cpus) goto skip_numa_setup; /* Use vector assigment to distribute across cpus in node */ cpu_index = vector % num_cpus; for (numa_cpu = first_cpu(cpu_mask) ; i < cpu_index ; i++) numa_cpu = next_cpu(numa_cpu, cpu_mask); if (numa_cpu != NR_CPUS) return cpu_physical_id(numa_cpu); } skip_numa_setup: #endif /* * Otherwise, round-robin interrupt vectors across all the * processors. (It'd be nice if we could be smarter in the * case of NUMA.) */ do { if (++cpu >= NR_CPUS) cpu = 0; } while (!cpu_online(cpu)); return cpu_physical_id(cpu); #else return cpu_physical_id(smp_processor_id()); #endif } /* * ACPI can describe IOSAPIC interrupts via static tables and namespace * methods. This provides an interface to register those interrupts and * program the IOSAPIC RTE. */ int iosapic_register_intr (unsigned int gsi, unsigned long polarity, unsigned long trigger) { int vector, mask = 1; unsigned int dest; unsigned long flags; struct iosapic_rte_info *rte; u32 low32; again: /* * If this GSI has already been registered (i.e., it's a * shared interrupt, or we lost a race to register it), * don't touch the RTE. */ spin_lock_irqsave(&iosapic_lock, flags); { vector = gsi_to_vector(gsi); if (vector > 0) { rte = gsi_vector_to_rte(gsi, vector); rte->refcnt++; spin_unlock_irqrestore(&iosapic_lock, flags); return vector; } } spin_unlock_irqrestore(&iosapic_lock, flags); /* If vector is running out, we try to find a sharable vector */ vector = assign_irq_vector_nopanic(AUTO_ASSIGN); if (vector < 0) vector = iosapic_find_sharable_vector(trigger, polarity); spin_lock_irqsave(&irq_descp(vector)->lock, flags); spin_lock(&iosapic_lock); { if (gsi_to_vector(gsi) > 0) { if (list_empty(&iosapic_intr_info[vector].rtes)) free_irq_vector(vector); spin_unlock(&iosapic_lock); spin_unlock_irqrestore(&irq_descp(vector)->lock, flags); goto again; } dest = get_target_cpu(gsi, vector); register_intr(gsi, vector, IOSAPIC_LOWEST_PRIORITY, polarity, trigger); /* * If the vector is shared and already unmasked for * other interrupt sources, don't mask it. */ low32 = iosapic_intr_info[vector].low32; if (vector_is_shared(vector) && !(low32 & IOSAPIC_MASK)) mask = 0; set_rte(gsi, vector, dest, mask); } spin_unlock_irq(&iosapic_lock); spin_unlock_irqrestore(&irq_descp(vector)->lock, flags); printk(KERN_INFO "GSI %u (%s, %s) -> CPU %d (0x%04x) vector %d\n", gsi, (trigger == IOSAPIC_EDGE ? "edge" : "level"), (polarity == IOSAPIC_POL_HIGH ? "high" : "low"), cpu_logical_id(dest), dest, vector); return vector; } #ifdef CONFIG_ACPI_DEALLOCATE_IRQ void iosapic_unregister_intr (unsigned int gsi) { unsigned long flags; int irq, vector; irq_desc_t *idesc; u32 low32; unsigned long trigger, polarity; unsigned int dest; struct iosapic_rte_info *rte; /* * If the irq associated with the gsi is not found, * iosapic_unregister_intr() is unbalanced. We need to check * this again after getting locks. */ irq = gsi_to_irq(gsi); if (irq < 0) { printk(KERN_ERR "iosapic_unregister_intr(%u) unbalanced\n", gsi); WARN_ON(1); return; } vector = irq_to_vector(irq); idesc = irq_descp(irq); spin_lock_irqsave(&idesc->lock, flags); spin_lock(&iosapic_lock); { if ((rte = gsi_vector_to_rte(gsi, vector)) == NULL) { printk(KERN_ERR "iosapic_unregister_intr(%u) unbalanced\n", gsi); WARN_ON(1); goto out; } if (--rte->refcnt > 0) goto out; /* Mask the interrupt */ low32 = iosapic_intr_info[vector].low32 | IOSAPIC_MASK; iosapic_write(rte->addr, IOSAPIC_RTE_LOW(rte->rte_index), low32); /* Remove the rte entry from the list */ list_del(&rte->rte_list); iosapic_intr_info[vector].count--; iosapic_free_rte(rte); trigger = iosapic_intr_info[vector].trigger; polarity = iosapic_intr_info[vector].polarity; dest = iosapic_intr_info[vector].dest; printk(KERN_INFO "GSI %u (%s, %s) -> CPU %d (0x%04x) vector %d unregistered\n", gsi, (trigger == IOSAPIC_EDGE ? "edge" : "level"), (polarity == IOSAPIC_POL_HIGH ? "high" : "low"), cpu_logical_id(dest), dest, vector); if (list_empty(&iosapic_intr_info[vector].rtes)) { /* Sanity check */ BUG_ON(iosapic_intr_info[vector].count); /* Clear the interrupt controller descriptor */ idesc->handler = &no_irq_type; /* Clear the interrupt information */ memset(&iosapic_intr_info[vector], 0, sizeof(struct iosapic_intr_info)); iosapic_intr_info[vector].low32 |= IOSAPIC_MASK; INIT_LIST_HEAD(&iosapic_intr_info[vector].rtes); if (idesc->action) { printk(KERN_ERR "interrupt handlers still exist on IRQ %u\n", irq); WARN_ON(1); } /* Free the interrupt vector */ free_irq_vector(vector); } } out: spin_unlock(&iosapic_lock); spin_unlock_irqrestore(&idesc->lock, flags); } #endif /* CONFIG_ACPI_DEALLOCATE_IRQ */ /* * ACPI calls this when it finds an entry for a platform interrupt. * Note that the irq_base and IOSAPIC address must be set in iosapic_init(). */ int __init iosapic_register_platform_intr (u32 int_type, unsigned int gsi, int iosapic_vector, u16 eid, u16 id, unsigned long polarity, unsigned long trigger) { static const char * const name[] = {"unknown", "PMI", "INIT", "CPEI"}; unsigned char delivery; int vector, mask = 0; unsigned int dest = ((id << 8) | eid) & 0xffff; switch (int_type) { case ACPI_INTERRUPT_PMI: vector = iosapic_vector; /* * since PMI vector is alloc'd by FW(ACPI) not by kernel, * we need to make sure the vector is available */ iosapic_reassign_vector(vector); delivery = IOSAPIC_PMI; break; case ACPI_INTERRUPT_INIT: vector = assign_irq_vector(AUTO_ASSIGN); delivery = IOSAPIC_INIT; break; case ACPI_INTERRUPT_CPEI: vector = IA64_CPE_VECTOR; delivery = IOSAPIC_LOWEST_PRIORITY; mask = 1; break; default: printk(KERN_ERR "iosapic_register_platform_irq(): invalid int type 0x%x\n", int_type); return -1; } register_intr(gsi, vector, delivery, polarity, trigger); printk(KERN_INFO "PLATFORM int %s (0x%x): GSI %u (%s, %s) -> CPU %d (0x%04x) vector %d\n", int_type < ARRAY_SIZE(name) ? name[int_type] : "unknown", int_type, gsi, (trigger == IOSAPIC_EDGE ? "edge" : "level"), (polarity == IOSAPIC_POL_HIGH ? "high" : "low"), cpu_logical_id(dest), dest, vector); set_rte(gsi, vector, dest, mask); return vector; } /* * ACPI calls this when it finds an entry for a legacy ISA IRQ override. * Note that the gsi_base and IOSAPIC address must be set in iosapic_init(). */ void __init iosapic_override_isa_irq (unsigned int isa_irq, unsigned int gsi, unsigned long polarity, unsigned long trigger) { int vector; unsigned int dest = cpu_physical_id(smp_processor_id()); vector = isa_irq_to_vector(isa_irq); register_intr(gsi, vector, IOSAPIC_LOWEST_PRIORITY, polarity, trigger); DBG("ISA: IRQ %u -> GSI %u (%s,%s) -> CPU %d (0x%04x) vector %d\n", isa_irq, gsi, trigger == IOSAPIC_EDGE ? "edge" : "level", polarity == IOSAPIC_POL_HIGH ? "high" : "low", cpu_logical_id(dest), dest, vector); set_rte(gsi, vector, dest, 1); } void __init iosapic_system_init (int system_pcat_compat) { int vector; for (vector = 0; vector < IA64_NUM_VECTORS; ++vector) { iosapic_intr_info[vector].low32 = IOSAPIC_MASK; INIT_LIST_HEAD(&iosapic_intr_info[vector].rtes); /* mark as unused */ } pcat_compat = system_pcat_compat; if (pcat_compat) { /* * Disable the compatibility mode interrupts (8259 style), needs IN/OUT support * enabled. */ printk(KERN_INFO "%s: Disabling PC-AT compatible 8259 interrupts\n", __FUNCTION__); outb(0xff, 0xA1); outb(0xff, 0x21); } } void __init iosapic_init (unsigned long phys_addr, unsigned int gsi_base) { int num_rte; unsigned int isa_irq, ver; char __iomem *addr; addr = ioremap(phys_addr, 0); ver = iosapic_version(addr); /* * The MAX_REDIR register holds the highest input pin * number (starting from 0). * We add 1 so that we can use it for number of pins (= RTEs) */ num_rte = ((ver >> 16) & 0xff) + 1; iosapic_lists[num_iosapic].addr = addr; iosapic_lists[num_iosapic].gsi_base = gsi_base; iosapic_lists[num_iosapic].num_rte = num_rte; #ifdef CONFIG_NUMA iosapic_lists[num_iosapic].node = MAX_NUMNODES; #endif num_iosapic++; if ((gsi_base == 0) && pcat_compat) { /* * Map the legacy ISA devices into the IOSAPIC data. Some of these may * get reprogrammed later on with data from the ACPI Interrupt Source * Override table. */ for (isa_irq = 0; isa_irq < 16; ++isa_irq) iosapic_override_isa_irq(isa_irq, isa_irq, IOSAPIC_POL_HIGH, IOSAPIC_EDGE); } } #ifdef CONFIG_NUMA void __init map_iosapic_to_node(unsigned int gsi_base, int node) { int index; index = find_iosapic(gsi_base); if (index < 0) { printk(KERN_WARNING "%s: No IOSAPIC for GSI %u\n", __FUNCTION__, gsi_base); return; } iosapic_lists[index].node = node; return; } #endif static int __init iosapic_enable_kmalloc (void) { iosapic_kmalloc_ok = 1; return 0; } core_initcall (iosapic_enable_kmalloc);