/* * cpufreq driver for Enhanced SpeedStep, as found in Intel's Pentium * M (part of the Centrino chipset). * * Despite the "SpeedStep" in the name, this is almost entirely unlike * traditional SpeedStep. * * Modelled on speedstep.c * * Copyright (C) 2003 Jeremy Fitzhardinge * * WARNING WARNING WARNING * * This driver manipulates the PERF_CTL MSR, which is only somewhat * documented. While it seems to work on my laptop, it has not been * tested anywhere else, and it may not work for you, do strange * things or simply crash. */ #include #include #include #include #include #include /* current */ #include #include #ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_ACPI #include #include #endif #include #include #include #define PFX "speedstep-centrino: " #define MAINTAINER "Jeremy Fitzhardinge " #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "speedstep-centrino", msg) struct cpu_id { __u8 x86; /* CPU family */ __u8 x86_model; /* model */ __u8 x86_mask; /* stepping */ }; enum { CPU_BANIAS, CPU_DOTHAN_A1, CPU_DOTHAN_A2, CPU_DOTHAN_B0, CPU_MP4HT_D0, CPU_MP4HT_E0, }; static const struct cpu_id cpu_ids[] = { [CPU_BANIAS] = { 6, 9, 5 }, [CPU_DOTHAN_A1] = { 6, 13, 1 }, [CPU_DOTHAN_A2] = { 6, 13, 2 }, [CPU_DOTHAN_B0] = { 6, 13, 6 }, [CPU_MP4HT_D0] = {15, 3, 4 }, [CPU_MP4HT_E0] = {15, 4, 1 }, }; #define N_IDS ARRAY_SIZE(cpu_ids) struct cpu_model { const struct cpu_id *cpu_id; const char *model_name; unsigned max_freq; /* max clock in kHz */ struct cpufreq_frequency_table *op_points; /* clock/voltage pairs */ }; static int centrino_verify_cpu_id(const struct cpuinfo_x86 *c, const struct cpu_id *x); /* Operating points for current CPU */ static struct cpu_model *centrino_model[NR_CPUS]; static const struct cpu_id *centrino_cpu[NR_CPUS]; static struct cpufreq_driver centrino_driver; #ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_TABLE /* Computes the correct form for IA32_PERF_CTL MSR for a particular frequency/voltage operating point; frequency in MHz, volts in mV. This is stored as "index" in the structure. */ #define OP(mhz, mv) \ { \ .frequency = (mhz) * 1000, \ .index = (((mhz)/100) << 8) | ((mv - 700) / 16) \ } /* * These voltage tables were derived from the Intel Pentium M * datasheet, document 25261202.pdf, Table 5. I have verified they * are consistent with my IBM ThinkPad X31, which has a 1.3GHz Pentium * M. */ /* Ultra Low Voltage Intel Pentium M processor 900MHz (Banias) */ static struct cpufreq_frequency_table banias_900[] = { OP(600, 844), OP(800, 988), OP(900, 1004), { .frequency = CPUFREQ_TABLE_END } }; /* Ultra Low Voltage Intel Pentium M processor 1000MHz (Banias) */ static struct cpufreq_frequency_table banias_1000[] = { OP(600, 844), OP(800, 972), OP(900, 988), OP(1000, 1004), { .frequency = CPUFREQ_TABLE_END } }; /* Low Voltage Intel Pentium M processor 1.10GHz (Banias) */ static struct cpufreq_frequency_table banias_1100[] = { OP( 600, 956), OP( 800, 1020), OP( 900, 1100), OP(1000, 1164), OP(1100, 1180), { .frequency = CPUFREQ_TABLE_END } }; /* Low Voltage Intel Pentium M processor 1.20GHz (Banias) */ static struct cpufreq_frequency_table banias_1200[] = { OP( 600, 956), OP( 800, 1004), OP( 900, 1020), OP(1000, 1100), OP(1100, 1164), OP(1200, 1180), { .frequency = CPUFREQ_TABLE_END } }; /* Intel Pentium M processor 1.30GHz (Banias) */ static struct cpufreq_frequency_table banias_1300[] = { OP( 600, 956), OP( 800, 1260), OP(1000, 1292), OP(1200, 1356), OP(1300, 1388), { .frequency = CPUFREQ_TABLE_END } }; /* Intel Pentium M processor 1.40GHz (Banias) */ static struct cpufreq_frequency_table banias_1400[] = { OP( 600, 956), OP( 800, 1180), OP(1000, 1308), OP(1200, 1436), OP(1400, 1484), { .frequency = CPUFREQ_TABLE_END } }; /* Intel Pentium M processor 1.50GHz (Banias) */ static struct cpufreq_frequency_table banias_1500[] = { OP( 600, 956), OP( 800, 1116), OP(1000, 1228), OP(1200, 1356), OP(1400, 1452), OP(1500, 1484), { .frequency = CPUFREQ_TABLE_END } }; /* Intel Pentium M processor 1.60GHz (Banias) */ static struct cpufreq_frequency_table banias_1600[] = { OP( 600, 956), OP( 800, 1036), OP(1000, 1164), OP(1200, 1276), OP(1400, 1420), OP(1600, 1484), { .frequency = CPUFREQ_TABLE_END } }; /* Intel Pentium M processor 1.70GHz (Banias) */ static struct cpufreq_frequency_table banias_1700[] = { OP( 600, 956), OP( 800, 1004), OP(1000, 1116), OP(1200, 1228), OP(1400, 1308), OP(1700, 1484), { .frequency = CPUFREQ_TABLE_END } }; #undef OP #define _BANIAS(cpuid, max, name) \ { .cpu_id = cpuid, \ .model_name = "Intel(R) Pentium(R) M processor " name "MHz", \ .max_freq = (max)*1000, \ .op_points = banias_##max, \ } #define BANIAS(max) _BANIAS(&cpu_ids[CPU_BANIAS], max, #max) /* CPU models, their operating frequency range, and freq/voltage operating points */ static struct cpu_model models[] = { _BANIAS(&cpu_ids[CPU_BANIAS], 900, " 900"), BANIAS(1000), BANIAS(1100), BANIAS(1200), BANIAS(1300), BANIAS(1400), BANIAS(1500), BANIAS(1600), BANIAS(1700), /* NULL model_name is a wildcard */ { &cpu_ids[CPU_DOTHAN_A1], NULL, 0, NULL }, { &cpu_ids[CPU_DOTHAN_A2], NULL, 0, NULL }, { &cpu_ids[CPU_DOTHAN_B0], NULL, 0, NULL }, { &cpu_ids[CPU_MP4HT_D0], NULL, 0, NULL }, { &cpu_ids[CPU_MP4HT_E0], NULL, 0, NULL }, { NULL, } }; #undef _BANIAS #undef BANIAS static int centrino_cpu_init_table(struct cpufreq_policy *policy) { struct cpuinfo_x86 *cpu = &cpu_data[policy->cpu]; struct cpu_model *model; for(model = models; model->cpu_id != NULL; model++) if (centrino_verify_cpu_id(cpu, model->cpu_id) && (model->model_name == NULL || strcmp(cpu->x86_model_id, model->model_name) == 0)) break; if (model->cpu_id == NULL) { /* No match at all */ dprintk(KERN_INFO PFX "no support for CPU model \"%s\": " "send /proc/cpuinfo to " MAINTAINER "\n", cpu->x86_model_id); return -ENOENT; } if (model->op_points == NULL) { /* Matched a non-match */ dprintk(KERN_INFO PFX "no table support for CPU model \"%s\"\n", cpu->x86_model_id); #ifndef CONFIG_X86_SPEEDSTEP_CENTRINO_ACPI dprintk(KERN_INFO PFX "try compiling with CONFIG_X86_SPEEDSTEP_CENTRINO_ACPI enabled\n"); #endif return -ENOENT; } centrino_model[policy->cpu] = model; dprintk("found \"%s\": max frequency: %dkHz\n", model->model_name, model->max_freq); return 0; } #else static inline int centrino_cpu_init_table(struct cpufreq_policy *policy) { return -ENODEV; } #endif /* CONFIG_X86_SPEEDSTEP_CENTRINO_TABLE */ static int centrino_verify_cpu_id(const struct cpuinfo_x86 *c, const struct cpu_id *x) { if ((c->x86 == x->x86) && (c->x86_model == x->x86_model) && (c->x86_mask == x->x86_mask)) return 1; return 0; } /* To be called only after centrino_model is initialized */ static unsigned extract_clock(unsigned msr, unsigned int cpu, int failsafe) { int i; /* * Extract clock in kHz from PERF_CTL value * for centrino, as some DSDTs are buggy. * Ideally, this can be done using the acpi_data structure. */ if ((centrino_cpu[cpu] == &cpu_ids[CPU_BANIAS]) || (centrino_cpu[cpu] == &cpu_ids[CPU_DOTHAN_A1]) || (centrino_cpu[cpu] == &cpu_ids[CPU_DOTHAN_B0])) { msr = (msr >> 8) & 0xff; return msr * 100000; } if ((!centrino_model[cpu]) || (!centrino_model[cpu]->op_points)) return 0; msr &= 0xffff; for (i=0;centrino_model[cpu]->op_points[i].frequency != CPUFREQ_TABLE_END; i++) { if (msr == centrino_model[cpu]->op_points[i].index) return centrino_model[cpu]->op_points[i].frequency; } if (failsafe) return centrino_model[cpu]->op_points[i-1].frequency; else return 0; } /* Return the current CPU frequency in kHz */ static unsigned int get_cur_freq(unsigned int cpu) { unsigned l, h; unsigned clock_freq; cpumask_t saved_mask; saved_mask = current->cpus_allowed; set_cpus_allowed(current, cpumask_of_cpu(cpu)); if (smp_processor_id() != cpu) return 0; rdmsr(MSR_IA32_PERF_STATUS, l, h); clock_freq = extract_clock(l, cpu, 0); if (unlikely(clock_freq == 0)) { /* * On some CPUs, we can see transient MSR values (which are * not present in _PSS), while CPU is doing some automatic * P-state transition (like TM2). Get the last freq set * in PERF_CTL. */ rdmsr(MSR_IA32_PERF_CTL, l, h); clock_freq = extract_clock(l, cpu, 1); } set_cpus_allowed(current, saved_mask); return clock_freq; } #ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_ACPI static struct acpi_processor_performance *acpi_perf_data[NR_CPUS]; /* * centrino_cpu_early_init_acpi - Do the preregistering with ACPI P-States * library * * Before doing the actual init, we need to do _PSD related setup whenever * supported by the BIOS. These are handled by this early_init routine. */ static int centrino_cpu_early_init_acpi(void) { unsigned int i, j; struct acpi_processor_performance *data; for_each_cpu(i) { data = kzalloc(sizeof(struct acpi_processor_performance), GFP_KERNEL); if (!data) { for_each_cpu(j) { kfree(acpi_perf_data[j]); acpi_perf_data[j] = NULL; } return (-ENOMEM); } acpi_perf_data[i] = data; } acpi_processor_preregister_performance(acpi_perf_data); return 0; } /* * centrino_cpu_init_acpi - register with ACPI P-States library * * Register with the ACPI P-States library (part of drivers/acpi/processor.c) * in order to determine correct frequency and voltage pairings by reading * the _PSS of the ACPI DSDT or SSDT tables. */ static int centrino_cpu_init_acpi(struct cpufreq_policy *policy) { unsigned long cur_freq; int result = 0, i; unsigned int cpu = policy->cpu; struct acpi_processor_performance *p; p = acpi_perf_data[cpu]; /* register with ACPI core */ if (acpi_processor_register_performance(p, cpu)) { dprintk(KERN_INFO PFX "obtaining ACPI data failed\n"); return -EIO; } policy->cpus = p->shared_cpu_map; policy->shared_type = p->shared_type; /* verify the acpi_data */ if (p->state_count <= 1) { dprintk("No P-States\n"); result = -ENODEV; goto err_unreg; } if ((p->control_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) || (p->status_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) { dprintk("Invalid control/status registers (%x - %x)\n", p->control_register.space_id, p->status_register.space_id); result = -EIO; goto err_unreg; } for (i=0; istate_count; i++) { if (p->states[i].control != p->states[i].status) { dprintk("Different control (%llu) and status values (%llu)\n", p->states[i].control, p->states[i].status); result = -EINVAL; goto err_unreg; } if (!p->states[i].core_frequency) { dprintk("Zero core frequency for state %u\n", i); result = -EINVAL; goto err_unreg; } if (p->states[i].core_frequency > p->states[0].core_frequency) { dprintk("P%u has larger frequency (%llu) than P0 (%llu), skipping\n", i, p->states[i].core_frequency, p->states[0].core_frequency); p->states[i].core_frequency = 0; continue; } } centrino_model[cpu] = kzalloc(sizeof(struct cpu_model), GFP_KERNEL); if (!centrino_model[cpu]) { result = -ENOMEM; goto err_unreg; } centrino_model[cpu]->model_name=NULL; centrino_model[cpu]->max_freq = p->states[0].core_frequency * 1000; centrino_model[cpu]->op_points = kmalloc(sizeof(struct cpufreq_frequency_table) * (p->state_count + 1), GFP_KERNEL); if (!centrino_model[cpu]->op_points) { result = -ENOMEM; goto err_kfree; } for (i=0; istate_count; i++) { centrino_model[cpu]->op_points[i].index = p->states[i].control; centrino_model[cpu]->op_points[i].frequency = p->states[i].core_frequency * 1000; dprintk("adding state %i with frequency %u and control value %04x\n", i, centrino_model[cpu]->op_points[i].frequency, centrino_model[cpu]->op_points[i].index); } centrino_model[cpu]->op_points[p->state_count].frequency = CPUFREQ_TABLE_END; cur_freq = get_cur_freq(cpu); for (i=0; istate_count; i++) { if (!p->states[i].core_frequency) { dprintk("skipping state %u\n", i); centrino_model[cpu]->op_points[i].frequency = CPUFREQ_ENTRY_INVALID; continue; } if (extract_clock(centrino_model[cpu]->op_points[i].index, cpu, 0) != (centrino_model[cpu]->op_points[i].frequency)) { dprintk("Invalid encoded frequency (%u vs. %u)\n", extract_clock(centrino_model[cpu]->op_points[i].index, cpu, 0), centrino_model[cpu]->op_points[i].frequency); result = -EINVAL; goto err_kfree_all; } if (cur_freq == centrino_model[cpu]->op_points[i].frequency) p->state = i; } /* notify BIOS that we exist */ acpi_processor_notify_smm(THIS_MODULE); return 0; err_kfree_all: kfree(centrino_model[cpu]->op_points); err_kfree: kfree(centrino_model[cpu]); err_unreg: acpi_processor_unregister_performance(p, cpu); dprintk(KERN_INFO PFX "invalid ACPI data\n"); return (result); } #else static inline int centrino_cpu_init_acpi(struct cpufreq_policy *policy) { return -ENODEV; } static inline int centrino_cpu_early_init_acpi(void) { return 0; } #endif static int centrino_cpu_init(struct cpufreq_policy *policy) { struct cpuinfo_x86 *cpu = &cpu_data[policy->cpu]; unsigned freq; unsigned l, h; int ret; int i; /* Only Intel makes Enhanced Speedstep-capable CPUs */ if (cpu->x86_vendor != X86_VENDOR_INTEL || !cpu_has(cpu, X86_FEATURE_EST)) return -ENODEV; if (cpu_has(cpu, X86_FEATURE_CONSTANT_TSC)) centrino_driver.flags |= CPUFREQ_CONST_LOOPS; if (centrino_cpu_init_acpi(policy)) { if (policy->cpu != 0) return -ENODEV; for (i = 0; i < N_IDS; i++) if (centrino_verify_cpu_id(cpu, &cpu_ids[i])) break; if (i != N_IDS) centrino_cpu[policy->cpu] = &cpu_ids[i]; if (!centrino_cpu[policy->cpu]) { dprintk(KERN_INFO PFX "found unsupported CPU with " "Enhanced SpeedStep: send /proc/cpuinfo to " MAINTAINER "\n"); return -ENODEV; } if (centrino_cpu_init_table(policy)) { return -ENODEV; } } /* Check to see if Enhanced SpeedStep is enabled, and try to enable it if not. */ rdmsr(MSR_IA32_MISC_ENABLE, l, h); if (!(l & (1<<16))) { l |= (1<<16); dprintk("trying to enable Enhanced SpeedStep (%x)\n", l); wrmsr(MSR_IA32_MISC_ENABLE, l, h); /* check to see if it stuck */ rdmsr(MSR_IA32_MISC_ENABLE, l, h); if (!(l & (1<<16))) { printk(KERN_INFO PFX "couldn't enable Enhanced SpeedStep\n"); return -ENODEV; } } freq = get_cur_freq(policy->cpu); policy->governor = CPUFREQ_DEFAULT_GOVERNOR; policy->cpuinfo.transition_latency = 10000; /* 10uS transition latency */ policy->cur = freq; dprintk("centrino_cpu_init: cur=%dkHz\n", policy->cur); ret = cpufreq_frequency_table_cpuinfo(policy, centrino_model[policy->cpu]->op_points); if (ret) return (ret); cpufreq_frequency_table_get_attr(centrino_model[policy->cpu]->op_points, policy->cpu); return 0; } static int centrino_cpu_exit(struct cpufreq_policy *policy) { unsigned int cpu = policy->cpu; if (!centrino_model[cpu]) return -ENODEV; cpufreq_frequency_table_put_attr(cpu); #ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_ACPI if (!centrino_model[cpu]->model_name) { static struct acpi_processor_performance *p; if (acpi_perf_data[cpu]) { p = acpi_perf_data[cpu]; dprintk("unregistering and freeing ACPI data\n"); acpi_processor_unregister_performance(p, cpu); kfree(centrino_model[cpu]->op_points); kfree(centrino_model[cpu]); } } #endif centrino_model[cpu] = NULL; return 0; } /** * centrino_verify - verifies a new CPUFreq policy * @policy: new policy * * Limit must be within this model's frequency range at least one * border included. */ static int centrino_verify (struct cpufreq_policy *policy) { return cpufreq_frequency_table_verify(policy, centrino_model[policy->cpu]->op_points); } /** * centrino_setpolicy - set a new CPUFreq policy * @policy: new policy * @target_freq: the target frequency * @relation: how that frequency relates to achieved frequency (CPUFREQ_RELATION_L or CPUFREQ_RELATION_H) * * Sets a new CPUFreq policy. */ static int centrino_target (struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation) { unsigned int newstate = 0; unsigned int msr, oldmsr = 0, h = 0, cpu = policy->cpu; struct cpufreq_freqs freqs; cpumask_t online_policy_cpus; cpumask_t saved_mask; cpumask_t set_mask; cpumask_t covered_cpus; int retval = 0; unsigned int j, k, first_cpu, tmp; if (unlikely(centrino_model[cpu] == NULL)) return -ENODEV; if (unlikely(cpufreq_frequency_table_target(policy, centrino_model[cpu]->op_points, target_freq, relation, &newstate))) { return -EINVAL; } #ifdef CONFIG_HOTPLUG_CPU /* cpufreq holds the hotplug lock, so we are safe from here on */ cpus_and(online_policy_cpus, cpu_online_map, policy->cpus); #else online_policy_cpus = policy->cpus; #endif saved_mask = current->cpus_allowed; first_cpu = 1; cpus_clear(covered_cpus); for_each_cpu_mask(j, online_policy_cpus) { /* * Support for SMP systems. * Make sure we are running on CPU that wants to change freq */ cpus_clear(set_mask); if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) cpus_or(set_mask, set_mask, online_policy_cpus); else cpu_set(j, set_mask); set_cpus_allowed(current, set_mask); if (unlikely(!cpu_isset(smp_processor_id(), set_mask))) { dprintk("couldn't limit to CPUs in this domain\n"); retval = -EAGAIN; if (first_cpu) { /* We haven't started the transition yet. */ goto migrate_end; } break; } msr = centrino_model[cpu]->op_points[newstate].index; if (first_cpu) { rdmsr(MSR_IA32_PERF_CTL, oldmsr, h); if (msr == (oldmsr & 0xffff)) { dprintk("no change needed - msr was and needs " "to be %x\n", oldmsr); retval = 0; goto migrate_end; } freqs.old = extract_clock(oldmsr, cpu, 0); freqs.new = extract_clock(msr, cpu, 0); dprintk("target=%dkHz old=%d new=%d msr=%04x\n", target_freq, freqs.old, freqs.new, msr); for_each_cpu_mask(k, online_policy_cpus) { freqs.cpu = k; cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); } first_cpu = 0; /* all but 16 LSB are reserved, treat them with care */ oldmsr &= ~0xffff; msr &= 0xffff; oldmsr |= msr; } wrmsr(MSR_IA32_PERF_CTL, oldmsr, h); if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) break; cpu_set(j, covered_cpus); } for_each_cpu_mask(k, online_policy_cpus) { freqs.cpu = k; cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); } if (unlikely(retval)) { /* * We have failed halfway through the frequency change. * We have sent callbacks to policy->cpus and * MSRs have already been written on coverd_cpus. * Best effort undo.. */ if (!cpus_empty(covered_cpus)) { for_each_cpu_mask(j, covered_cpus) { set_cpus_allowed(current, cpumask_of_cpu(j)); wrmsr(MSR_IA32_PERF_CTL, oldmsr, h); } } tmp = freqs.new; freqs.new = freqs.old; freqs.old = tmp; for_each_cpu_mask(j, online_policy_cpus) { freqs.cpu = j; cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); } } migrate_end: set_cpus_allowed(current, saved_mask); return 0; } static struct freq_attr* centrino_attr[] = { &cpufreq_freq_attr_scaling_available_freqs, NULL, }; static struct cpufreq_driver centrino_driver = { .name = "centrino", /* should be speedstep-centrino, but there's a 16 char limit */ .init = centrino_cpu_init, .exit = centrino_cpu_exit, .verify = centrino_verify, .target = centrino_target, .get = get_cur_freq, .attr = centrino_attr, .owner = THIS_MODULE, }; /** * centrino_init - initializes the Enhanced SpeedStep CPUFreq driver * * Initializes the Enhanced SpeedStep support. Returns -ENODEV on * unsupported devices, -ENOENT if there's no voltage table for this * particular CPU model, -EINVAL on problems during initiatization, * and zero on success. * * This is quite picky. Not only does the CPU have to advertise the * "est" flag in the cpuid capability flags, we look for a specific * CPU model and stepping, and we need to have the exact model name in * our voltage tables. That is, be paranoid about not releasing * someone's valuable magic smoke. */ static int __init centrino_init(void) { struct cpuinfo_x86 *cpu = cpu_data; if (!cpu_has(cpu, X86_FEATURE_EST)) return -ENODEV; centrino_cpu_early_init_acpi(); return cpufreq_register_driver(¢rino_driver); } static void __exit centrino_exit(void) { #ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_ACPI unsigned int j; #endif cpufreq_unregister_driver(¢rino_driver); #ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_ACPI for_each_cpu(j) { kfree(acpi_perf_data[j]); acpi_perf_data[j] = NULL; } #endif } MODULE_AUTHOR ("Jeremy Fitzhardinge "); MODULE_DESCRIPTION ("Enhanced SpeedStep driver for Intel Pentium M processors."); MODULE_LICENSE ("GPL"); late_initcall(centrino_init); module_exit(centrino_exit);