/* pci-vdk.c: MB93090-MB00 (VDK) PCI support * * Copyright (C) 2003, 2004 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include <linux/types.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/pci.h> #include <linux/init.h> #include <linux/ioport.h> #include <linux/delay.h> #include <linux/slab.h> #include <asm/segment.h> #include <asm/io.h> #include <asm/mb-regs.h> #include <asm/mb86943a.h> #include "pci-frv.h" unsigned int __nongpreldata pci_probe = 1; int __nongpreldata pcibios_last_bus = -1; struct pci_bus *__nongpreldata pci_root_bus; struct pci_ops *__nongpreldata pci_root_ops; /* * Functions for accessing PCI configuration space */ #define CONFIG_CMD(bus, dev, where) \ (0x80000000 | (bus->number << 16) | (devfn << 8) | (where & ~3)) #define __set_PciCfgAddr(A) writel((A), (volatile void __iomem *) __region_CS1 + 0x80) #define __get_PciCfgDataB(A) readb((volatile void __iomem *) __region_CS1 + 0x88 + ((A) & 3)) #define __get_PciCfgDataW(A) readw((volatile void __iomem *) __region_CS1 + 0x88 + ((A) & 2)) #define __get_PciCfgDataL(A) readl((volatile void __iomem *) __region_CS1 + 0x88) #define __set_PciCfgDataB(A,V) \ writeb((V), (volatile void __iomem *) __region_CS1 + 0x88 + (3 - ((A) & 3))) #define __set_PciCfgDataW(A,V) \ writew((V), (volatile void __iomem *) __region_CS1 + 0x88 + (2 - ((A) & 2))) #define __set_PciCfgDataL(A,V) \ writel((V), (volatile void __iomem *) __region_CS1 + 0x88) #define __get_PciBridgeDataB(A) readb((volatile void __iomem *) __region_CS1 + 0x800 + (A)) #define __get_PciBridgeDataW(A) readw((volatile void __iomem *) __region_CS1 + 0x800 + (A)) #define __get_PciBridgeDataL(A) readl((volatile void __iomem *) __region_CS1 + 0x800 + (A)) #define __set_PciBridgeDataB(A,V) writeb((V), (volatile void __iomem *) __region_CS1 + 0x800 + (A)) #define __set_PciBridgeDataW(A,V) writew((V), (volatile void __iomem *) __region_CS1 + 0x800 + (A)) #define __set_PciBridgeDataL(A,V) writel((V), (volatile void __iomem *) __region_CS1 + 0x800 + (A)) static inline int __query(const struct pci_dev *dev) { // return dev->bus->number==0 && (dev->devfn==PCI_DEVFN(0,0)); // return dev->bus->number==1; // return dev->bus->number==0 && // (dev->devfn==PCI_DEVFN(2,0) || dev->devfn==PCI_DEVFN(3,0)); return 0; } /*****************************************************************************/ /* * */ static int pci_frv_read_config(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val) { u32 _value; if (bus->number == 0 && devfn == PCI_DEVFN(0, 0)) { _value = __get_PciBridgeDataL(where & ~3); } else { __set_PciCfgAddr(CONFIG_CMD(bus, devfn, where)); _value = __get_PciCfgDataL(where & ~3); } switch (size) { case 1: _value = _value >> ((where & 3) * 8); break; case 2: _value = _value >> ((where & 2) * 8); break; case 4: break; default: BUG(); } *val = _value; return PCIBIOS_SUCCESSFUL; } static int pci_frv_write_config(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 value) { switch (size) { case 1: if (bus->number == 0 && devfn == PCI_DEVFN(0, 0)) { __set_PciBridgeDataB(where, value); } else { __set_PciCfgAddr(CONFIG_CMD(bus, devfn, where)); __set_PciCfgDataB(where, value); } break; case 2: if (bus->number == 0 && devfn == PCI_DEVFN(0, 0)) { __set_PciBridgeDataW(where, value); } else { __set_PciCfgAddr(CONFIG_CMD(bus, devfn, where)); __set_PciCfgDataW(where, value); } break; case 4: if (bus->number == 0 && devfn == PCI_DEVFN(0, 0)) { __set_PciBridgeDataL(where, value); } else { __set_PciCfgAddr(CONFIG_CMD(bus, devfn, where)); __set_PciCfgDataL(where, value); } break; default: BUG(); } return PCIBIOS_SUCCESSFUL; } static struct pci_ops pci_direct_frv = { pci_frv_read_config, pci_frv_write_config, }; /* * Before we decide to use direct hardware access mechanisms, we try to do some * trivial checks to ensure it at least _seems_ to be working -- we just test * whether bus 00 contains a host bridge (this is similar to checking * techniques used in XFree86, but ours should be more reliable since we * attempt to make use of direct access hints provided by the PCI BIOS). * * This should be close to trivial, but it isn't, because there are buggy * chipsets (yes, you guessed it, by Intel and Compaq) that have no class ID. */ static int __init pci_sanity_check(struct pci_ops *o) { struct pci_bus bus; /* Fake bus and device */ u32 id; bus.number = 0; if (o->read(&bus, 0, PCI_VENDOR_ID, 4, &id) == PCIBIOS_SUCCESSFUL) { printk("PCI: VDK Bridge device:vendor: %08x\n", id); if (id == 0x200e10cf) return 1; } printk("PCI: VDK Bridge: Sanity check failed\n"); return 0; } static struct pci_ops * __init pci_check_direct(void) { unsigned long flags; local_irq_save(flags); /* check if access works */ if (pci_sanity_check(&pci_direct_frv)) { local_irq_restore(flags); printk("PCI: Using configuration frv\n"); // request_mem_region(0xBE040000, 256, "FRV bridge"); // request_mem_region(0xBFFFFFF4, 12, "PCI frv"); return &pci_direct_frv; } local_irq_restore(flags); return NULL; } /* * Several buggy motherboards address only 16 devices and mirror * them to next 16 IDs. We try to detect this `feature' on all * primary buses (those containing host bridges as they are * expected to be unique) and remove the ghost devices. */ static void __init pcibios_fixup_ghosts(struct pci_bus *b) { struct list_head *ln, *mn; struct pci_dev *d, *e; int mirror = PCI_DEVFN(16,0); int seen_host_bridge = 0; int i; for (ln=b->devices.next; ln != &b->devices; ln=ln->next) { d = pci_dev_b(ln); if ((d->class >> 8) == PCI_CLASS_BRIDGE_HOST) seen_host_bridge++; for (mn=ln->next; mn != &b->devices; mn=mn->next) { e = pci_dev_b(mn); if (e->devfn != d->devfn + mirror || e->vendor != d->vendor || e->device != d->device || e->class != d->class) continue; for(i=0; i<PCI_NUM_RESOURCES; i++) if (e->resource[i].start != d->resource[i].start || e->resource[i].end != d->resource[i].end || e->resource[i].flags != d->resource[i].flags) continue; break; } if (mn == &b->devices) return; } if (!seen_host_bridge) return; printk("PCI: Ignoring ghost devices on bus %02x\n", b->number); ln = &b->devices; while (ln->next != &b->devices) { d = pci_dev_b(ln->next); if (d->devfn >= mirror) { list_del(&d->global_list); list_del(&d->bus_list); kfree(d); } else ln = ln->next; } } /* * Discover remaining PCI buses in case there are peer host bridges. * We use the number of last PCI bus provided by the PCI BIOS. */ static void __init pcibios_fixup_peer_bridges(void) { struct pci_bus bus; struct pci_dev dev; int n; u16 l; if (pcibios_last_bus <= 0 || pcibios_last_bus >= 0xff) return; printk("PCI: Peer bridge fixup\n"); for (n=0; n <= pcibios_last_bus; n++) { if (pci_find_bus(0, n)) continue; bus.number = n; bus.ops = pci_root_ops; dev.bus = &bus; for(dev.devfn=0; dev.devfn<256; dev.devfn += 8) if (!pci_read_config_word(&dev, PCI_VENDOR_ID, &l) && l != 0x0000 && l != 0xffff) { printk("Found device at %02x:%02x [%04x]\n", n, dev.devfn, l); printk("PCI: Discovered peer bus %02x\n", n); pci_scan_bus(n, pci_root_ops, NULL); break; } } } /* * Exceptions for specific devices. Usually work-arounds for fatal design flaws. */ static void __init pci_fixup_umc_ide(struct pci_dev *d) { /* * UM8886BF IDE controller sets region type bits incorrectly, * therefore they look like memory despite of them being I/O. */ int i; printk("PCI: Fixing base address flags for device %s\n", pci_name(d)); for(i=0; i<4; i++) d->resource[i].flags |= PCI_BASE_ADDRESS_SPACE_IO; } static void __init pci_fixup_ide_bases(struct pci_dev *d) { int i; /* * PCI IDE controllers use non-standard I/O port decoding, respect it. */ if ((d->class >> 8) != PCI_CLASS_STORAGE_IDE) return; printk("PCI: IDE base address fixup for %s\n", pci_name(d)); for(i=0; i<4; i++) { struct resource *r = &d->resource[i]; if ((r->start & ~0x80) == 0x374) { r->start |= 2; r->end = r->start; } } } static void __init pci_fixup_ide_trash(struct pci_dev *d) { int i; /* * There exist PCI IDE controllers which have utter garbage * in first four base registers. Ignore that. */ printk("PCI: IDE base address trash cleared for %s\n", pci_name(d)); for(i=0; i<4; i++) d->resource[i].start = d->resource[i].end = d->resource[i].flags = 0; } static void __devinit pci_fixup_latency(struct pci_dev *d) { /* * SiS 5597 and 5598 chipsets require latency timer set to * at most 32 to avoid lockups. */ DBG("PCI: Setting max latency to 32\n"); pcibios_max_latency = 32; } DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_UMC, PCI_DEVICE_ID_UMC_UM8886BF, pci_fixup_umc_ide); DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_5513, pci_fixup_ide_trash); DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_5597, pci_fixup_latency); DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_5598, pci_fixup_latency); DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pci_fixup_ide_bases); /* * Called after each bus is probed, but before its children * are examined. */ void __init pcibios_fixup_bus(struct pci_bus *bus) { #if 0 printk("### PCIBIOS_FIXUP_BUS(%d)\n",bus->number); #endif pcibios_fixup_ghosts(bus); pci_read_bridge_bases(bus); if (bus->number == 0) { struct list_head *ln; struct pci_dev *dev; for (ln=bus->devices.next; ln != &bus->devices; ln=ln->next) { dev = pci_dev_b(ln); if (dev->devfn == 0) { dev->resource[0].start = 0; dev->resource[0].end = 0; } } } } /* * Initialization. Try all known PCI access methods. Note that we support * using both PCI BIOS and direct access: in such cases, we use I/O ports * to access config space, but we still keep BIOS order of cards to be * compatible with 2.0.X. This should go away some day. */ int __init pcibios_init(void) { struct pci_ops *dir = NULL; if (!mb93090_mb00_detected) return -ENXIO; __reg_MB86943_sl_ctl |= MB86943_SL_CTL_DRCT_MASTER_SWAP | MB86943_SL_CTL_DRCT_SLAVE_SWAP; __reg_MB86943_ecs_base(1) = ((__region_CS2 + 0x01000000) >> 9) | 0x08000000; __reg_MB86943_ecs_base(2) = ((__region_CS2 + 0x00000000) >> 9) | 0x08000000; *(volatile uint32_t *) (__region_CS1 + 0x848) = 0xe0000000; *(volatile uint32_t *) (__region_CS1 + 0x8b8) = 0x00000000; __reg_MB86943_sl_pci_io_base = (__region_CS2 + 0x04000000) >> 9; __reg_MB86943_sl_pci_mem_base = (__region_CS2 + 0x08000000) >> 9; __reg_MB86943_pci_sl_io_base = __region_CS2 + 0x04000000; __reg_MB86943_pci_sl_mem_base = __region_CS2 + 0x08000000; mb(); *(volatile unsigned long *)(__region_CS2+0x01300014) == 1; ioport_resource.start = (__reg_MB86943_sl_pci_io_base << 9) & 0xfffffc00; ioport_resource.end = (__reg_MB86943_sl_pci_io_range << 9) | 0x3ff; ioport_resource.end += ioport_resource.start; printk("PCI IO window: %08llx-%08llx\n", (unsigned long long) ioport_resource.start, (unsigned long long) ioport_resource.end); iomem_resource.start = (__reg_MB86943_sl_pci_mem_base << 9) & 0xfffffc00; /* Reserve somewhere to write to flush posted writes. */ iomem_resource.start += 0x400; iomem_resource.end = (__reg_MB86943_sl_pci_mem_range << 9) | 0x3ff; iomem_resource.end += iomem_resource.start; printk("PCI MEM window: %08llx-%08llx\n", (unsigned long long) iomem_resource.start, (unsigned long long) iomem_resource.end); printk("PCI DMA memory: %08lx-%08lx\n", dma_coherent_mem_start, dma_coherent_mem_end); if (!pci_probe) return -ENXIO; dir = pci_check_direct(); if (dir) pci_root_ops = dir; else { printk("PCI: No PCI bus detected\n"); return -ENXIO; } printk("PCI: Probing PCI hardware\n"); pci_root_bus = pci_scan_bus(0, pci_root_ops, NULL); pcibios_irq_init(); pcibios_fixup_peer_bridges(); pcibios_fixup_irqs(); pcibios_resource_survey(); return 0; } arch_initcall(pcibios_init); char * __init pcibios_setup(char *str) { if (!strcmp(str, "off")) { pci_probe = 0; return NULL; } else if (!strncmp(str, "lastbus=", 8)) { pcibios_last_bus = simple_strtol(str+8, NULL, 0); return NULL; } return str; } int pcibios_enable_device(struct pci_dev *dev, int mask) { int err; if ((err = pcibios_enable_resources(dev, mask)) < 0) return err; if (!dev->msi_enabled) pcibios_enable_irq(dev); return 0; }