/* $Id: time.c,v 1.18 2005/03/04 08:16:17 starvik Exp $ * * linux/arch/cris/kernel/time.c * * Copyright (C) 1991, 1992, 1995 Linus Torvalds * Copyright (C) 1999, 2000, 2001 Axis Communications AB * * 1994-07-02 Alan Modra * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime * 1995-03-26 Markus Kuhn * fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887 * precision CMOS clock update * 1996-05-03 Ingo Molnar * fixed time warps in do_[slow|fast]_gettimeoffset() * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 * "A Kernel Model for Precision Timekeeping" by Dave Mills * * Linux/CRIS specific code: * * Authors: Bjorn Wesen * Johan Adolfsson * */ #include <asm/rtc.h> #include <linux/errno.h> #include <linux/module.h> #include <linux/param.h> #include <linux/jiffies.h> #include <linux/bcd.h> #include <linux/timex.h> #include <linux/init.h> #include <linux/profile.h> #include <linux/sched.h> /* just for sched_clock() - funny that */ int have_rtc; /* used to remember if we have an RTC or not */; #define TICK_SIZE tick extern unsigned long loops_per_jiffy; /* init/main.c */ unsigned long loops_per_usec; extern unsigned long do_slow_gettimeoffset(void); static unsigned long (*do_gettimeoffset)(void) = do_slow_gettimeoffset; /* * This version of gettimeofday has near microsecond resolution. * * Note: Division is quite slow on CRIS and do_gettimeofday is called * rather often. Maybe we should do some kind of approximation here * (a naive approximation would be to divide by 1024). */ void do_gettimeofday(struct timeval *tv) { unsigned long flags; signed long usec, sec; local_irq_save(flags); local_irq_disable(); usec = do_gettimeoffset(); /* * If time_adjust is negative then NTP is slowing the clock * so make sure not to go into next possible interval. * Better to lose some accuracy than have time go backwards.. */ if (unlikely(time_adjust < 0) && usec > tickadj) usec = tickadj; sec = xtime.tv_sec; usec += xtime.tv_nsec / 1000; local_irq_restore(flags); while (usec >= 1000000) { usec -= 1000000; sec++; } tv->tv_sec = sec; tv->tv_usec = usec; } EXPORT_SYMBOL(do_gettimeofday); int do_settimeofday(struct timespec *tv) { time_t wtm_sec, sec = tv->tv_sec; long wtm_nsec, nsec = tv->tv_nsec; if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) return -EINVAL; write_seqlock_irq(&xtime_lock); /* * This is revolting. We need to set "xtime" correctly. However, the * value in this location is the value at the most recent update of * wall time. Discover what correction gettimeofday() would have * made, and then undo it! */ nsec -= do_gettimeoffset() * NSEC_PER_USEC; wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); set_normalized_timespec(&xtime, sec, nsec); set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); ntp_clear(); write_sequnlock_irq(&xtime_lock); clock_was_set(); return 0; } EXPORT_SYMBOL(do_settimeofday); /* * BUG: This routine does not handle hour overflow properly; it just * sets the minutes. Usually you'll only notice that after reboot! */ int set_rtc_mmss(unsigned long nowtime) { int retval = 0; int real_seconds, real_minutes, cmos_minutes; printk(KERN_DEBUG "set_rtc_mmss(%lu)\n", nowtime); if(!have_rtc) return 0; cmos_minutes = CMOS_READ(RTC_MINUTES); BCD_TO_BIN(cmos_minutes); /* * since we're only adjusting minutes and seconds, * don't interfere with hour overflow. This avoids * messing with unknown time zones but requires your * RTC not to be off by more than 15 minutes */ real_seconds = nowtime % 60; real_minutes = nowtime / 60; if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) real_minutes += 30; /* correct for half hour time zone */ real_minutes %= 60; if (abs(real_minutes - cmos_minutes) < 30) { BIN_TO_BCD(real_seconds); BIN_TO_BCD(real_minutes); CMOS_WRITE(real_seconds,RTC_SECONDS); CMOS_WRITE(real_minutes,RTC_MINUTES); } else { printk(KERN_WARNING "set_rtc_mmss: can't update from %d to %d\n", cmos_minutes, real_minutes); retval = -1; } return retval; } /* grab the time from the RTC chip */ unsigned long get_cmos_time(void) { unsigned int year, mon, day, hour, min, sec; sec = CMOS_READ(RTC_SECONDS); min = CMOS_READ(RTC_MINUTES); hour = CMOS_READ(RTC_HOURS); day = CMOS_READ(RTC_DAY_OF_MONTH); mon = CMOS_READ(RTC_MONTH); year = CMOS_READ(RTC_YEAR); printk(KERN_DEBUG "rtc: sec 0x%x min 0x%x hour 0x%x day 0x%x mon 0x%x year 0x%x\n", sec, min, hour, day, mon, year); BCD_TO_BIN(sec); BCD_TO_BIN(min); BCD_TO_BIN(hour); BCD_TO_BIN(day); BCD_TO_BIN(mon); BCD_TO_BIN(year); if ((year += 1900) < 1970) year += 100; return mktime(year, mon, day, hour, min, sec); } /* update xtime from the CMOS settings. used when /dev/rtc gets a SET_TIME. * TODO: this doesn't reset the fancy NTP phase stuff as do_settimeofday does. */ void update_xtime_from_cmos(void) { if(have_rtc) { xtime.tv_sec = get_cmos_time(); xtime.tv_nsec = 0; } } extern void cris_profile_sample(struct pt_regs* regs); void cris_do_profile(struct pt_regs* regs) { #if CONFIG_SYSTEM_PROFILER cris_profile_sample(regs); #endif #if CONFIG_PROFILING profile_tick(CPU_PROFILING, regs); #endif } /* * Scheduler clock - returns current time in nanosec units. */ unsigned long long sched_clock(void) { return (unsigned long long)jiffies * (1000000000 / HZ); } static int __init init_udelay(void) { loops_per_usec = (loops_per_jiffy * HZ) / 1000000; return 0; } __initcall(init_udelay);