/* * File: arch/blackfin/mach-common/ints-priority.c * Based on: * Author: * * Created: ? * Description: Set up the interrupt priorities * * Modified: * 1996 Roman Zippel * 1999 D. Jeff Dionne * 2000-2001 Lineo, Inc. D. Jefff Dionne * 2002 Arcturus Networks Inc. MaTed * 2003 Metrowerks/Motorola * 2003 Bas Vermeulen * Copyright 2004-2008 Analog Devices Inc. * * Bugs: Enter bugs at http://blackfin.uclinux.org/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see the file COPYING, or write * to the Free Software Foundation, Inc., * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #ifdef CONFIG_KGDB #include #endif #include #include #include #include #ifdef BF537_FAMILY # define BF537_GENERIC_ERROR_INT_DEMUX #else # undef BF537_GENERIC_ERROR_INT_DEMUX #endif /* * NOTES: * - we have separated the physical Hardware interrupt from the * levels that the LINUX kernel sees (see the description in irq.h) * - */ /* Initialize this to an actual value to force it into the .data * section so that we know it is properly initialized at entry into * the kernel but before bss is initialized to zero (which is where * it would live otherwise). The 0x1f magic represents the IRQs we * cannot actually mask out in hardware. */ unsigned long irq_flags = 0x1f; /* The number of spurious interrupts */ atomic_t num_spurious; #ifdef CONFIG_PM unsigned long bfin_sic_iwr[3]; /* Up to 3 SIC_IWRx registers */ #endif struct ivgx { /* irq number for request_irq, available in mach-bf5xx/irq.h */ unsigned int irqno; /* corresponding bit in the SIC_ISR register */ unsigned int isrflag; } ivg_table[NR_PERI_INTS]; struct ivg_slice { /* position of first irq in ivg_table for given ivg */ struct ivgx *ifirst; struct ivgx *istop; } ivg7_13[IVG13 - IVG7 + 1]; /* * Search SIC_IAR and fill tables with the irqvalues * and their positions in the SIC_ISR register. */ static void __init search_IAR(void) { unsigned ivg, irq_pos = 0; for (ivg = 0; ivg <= IVG13 - IVG7; ivg++) { int irqn; ivg7_13[ivg].istop = ivg7_13[ivg].ifirst = &ivg_table[irq_pos]; for (irqn = 0; irqn < NR_PERI_INTS; irqn++) { int iar_shift = (irqn & 7) * 4; if (ivg == (0xf & #ifndef CONFIG_BF52x bfin_read32((unsigned long *)SIC_IAR0 + (irqn >> 3)) >> iar_shift)) { #else bfin_read32((unsigned long *)SIC_IAR0 + ((irqn%32) >> 3) + ((irqn / 32) * 16)) >> iar_shift)) { #endif ivg_table[irq_pos].irqno = IVG7 + irqn; ivg_table[irq_pos].isrflag = 1 << (irqn % 32); ivg7_13[ivg].istop++; irq_pos++; } } } } /* * This is for core internal IRQs */ static void bfin_ack_noop(unsigned int irq) { /* Dummy function. */ } static void bfin_core_mask_irq(unsigned int irq) { irq_flags &= ~(1 << irq); if (!irqs_disabled()) local_irq_enable(); } static void bfin_core_unmask_irq(unsigned int irq) { irq_flags |= 1 << irq; /* * If interrupts are enabled, IMASK must contain the same value * as irq_flags. Make sure that invariant holds. If interrupts * are currently disabled we need not do anything; one of the * callers will take care of setting IMASK to the proper value * when reenabling interrupts. * local_irq_enable just does "STI irq_flags", so it's exactly * what we need. */ if (!irqs_disabled()) local_irq_enable(); return; } static void bfin_internal_mask_irq(unsigned int irq) { #ifdef CONFIG_BF53x bfin_write_SIC_IMASK(bfin_read_SIC_IMASK() & ~(1 << SIC_SYSIRQ(irq))); #else unsigned mask_bank, mask_bit; mask_bank = SIC_SYSIRQ(irq) / 32; mask_bit = SIC_SYSIRQ(irq) % 32; bfin_write_SIC_IMASK(mask_bank, bfin_read_SIC_IMASK(mask_bank) & ~(1 << mask_bit)); #endif SSYNC(); } static void bfin_internal_unmask_irq(unsigned int irq) { #ifdef CONFIG_BF53x bfin_write_SIC_IMASK(bfin_read_SIC_IMASK() | (1 << SIC_SYSIRQ(irq))); #else unsigned mask_bank, mask_bit; mask_bank = SIC_SYSIRQ(irq) / 32; mask_bit = SIC_SYSIRQ(irq) % 32; bfin_write_SIC_IMASK(mask_bank, bfin_read_SIC_IMASK(mask_bank) | (1 << mask_bit)); #endif SSYNC(); } #ifdef CONFIG_PM int bfin_internal_set_wake(unsigned int irq, unsigned int state) { unsigned bank, bit; unsigned long flags; bank = SIC_SYSIRQ(irq) / 32; bit = SIC_SYSIRQ(irq) % 32; local_irq_save(flags); if (state) bfin_sic_iwr[bank] |= (1 << bit); else bfin_sic_iwr[bank] &= ~(1 << bit); local_irq_restore(flags); return 0; } #endif static struct irq_chip bfin_core_irqchip = { .ack = bfin_ack_noop, .mask = bfin_core_mask_irq, .unmask = bfin_core_unmask_irq, }; static struct irq_chip bfin_internal_irqchip = { .ack = bfin_ack_noop, .mask = bfin_internal_mask_irq, .unmask = bfin_internal_unmask_irq, .mask_ack = bfin_internal_mask_irq, .disable = bfin_internal_mask_irq, .enable = bfin_internal_unmask_irq, #ifdef CONFIG_PM .set_wake = bfin_internal_set_wake, #endif }; #ifdef BF537_GENERIC_ERROR_INT_DEMUX static int error_int_mask; static void bfin_generic_error_mask_irq(unsigned int irq) { error_int_mask &= ~(1L << (irq - IRQ_PPI_ERROR)); if (!error_int_mask) bfin_internal_mask_irq(IRQ_GENERIC_ERROR); } static void bfin_generic_error_unmask_irq(unsigned int irq) { bfin_internal_unmask_irq(IRQ_GENERIC_ERROR); error_int_mask |= 1L << (irq - IRQ_PPI_ERROR); } static struct irq_chip bfin_generic_error_irqchip = { .ack = bfin_ack_noop, .mask_ack = bfin_generic_error_mask_irq, .mask = bfin_generic_error_mask_irq, .unmask = bfin_generic_error_unmask_irq, }; static void bfin_demux_error_irq(unsigned int int_err_irq, struct irq_desc *inta_desc) { int irq = 0; SSYNC(); #if (defined(CONFIG_BF537) || defined(CONFIG_BF536)) if (bfin_read_EMAC_SYSTAT() & EMAC_ERR_MASK) irq = IRQ_MAC_ERROR; else #endif if (bfin_read_SPORT0_STAT() & SPORT_ERR_MASK) irq = IRQ_SPORT0_ERROR; else if (bfin_read_SPORT1_STAT() & SPORT_ERR_MASK) irq = IRQ_SPORT1_ERROR; else if (bfin_read_PPI_STATUS() & PPI_ERR_MASK) irq = IRQ_PPI_ERROR; else if (bfin_read_CAN_GIF() & CAN_ERR_MASK) irq = IRQ_CAN_ERROR; else if (bfin_read_SPI_STAT() & SPI_ERR_MASK) irq = IRQ_SPI_ERROR; else if ((bfin_read_UART0_IIR() & UART_ERR_MASK_STAT1) && (bfin_read_UART0_IIR() & UART_ERR_MASK_STAT0)) irq = IRQ_UART0_ERROR; else if ((bfin_read_UART1_IIR() & UART_ERR_MASK_STAT1) && (bfin_read_UART1_IIR() & UART_ERR_MASK_STAT0)) irq = IRQ_UART1_ERROR; if (irq) { if (error_int_mask & (1L << (irq - IRQ_PPI_ERROR))) { struct irq_desc *desc = irq_desc + irq; desc->handle_irq(irq, desc); } else { switch (irq) { case IRQ_PPI_ERROR: bfin_write_PPI_STATUS(PPI_ERR_MASK); break; #if (defined(CONFIG_BF537) || defined(CONFIG_BF536)) case IRQ_MAC_ERROR: bfin_write_EMAC_SYSTAT(EMAC_ERR_MASK); break; #endif case IRQ_SPORT0_ERROR: bfin_write_SPORT0_STAT(SPORT_ERR_MASK); break; case IRQ_SPORT1_ERROR: bfin_write_SPORT1_STAT(SPORT_ERR_MASK); break; case IRQ_CAN_ERROR: bfin_write_CAN_GIS(CAN_ERR_MASK); break; case IRQ_SPI_ERROR: bfin_write_SPI_STAT(SPI_ERR_MASK); break; default: break; } pr_debug("IRQ %d:" " MASKED PERIPHERAL ERROR INTERRUPT ASSERTED\n", irq); } } else printk(KERN_ERR "%s : %s : LINE %d :\nIRQ ?: PERIPHERAL ERROR" " INTERRUPT ASSERTED BUT NO SOURCE FOUND\n", __func__, __FILE__, __LINE__); } #endif /* BF537_GENERIC_ERROR_INT_DEMUX */ #if !defined(CONFIG_BF54x) static unsigned short gpio_enabled[gpio_bank(MAX_BLACKFIN_GPIOS)]; static unsigned short gpio_edge_triggered[gpio_bank(MAX_BLACKFIN_GPIOS)]; extern void bfin_gpio_irq_prepare(unsigned gpio); static void bfin_gpio_ack_irq(unsigned int irq) { u16 gpionr = irq - IRQ_PF0; if (gpio_edge_triggered[gpio_bank(gpionr)] & gpio_bit(gpionr)) { set_gpio_data(gpionr, 0); SSYNC(); } } static void bfin_gpio_mask_ack_irq(unsigned int irq) { u16 gpionr = irq - IRQ_PF0; if (gpio_edge_triggered[gpio_bank(gpionr)] & gpio_bit(gpionr)) { set_gpio_data(gpionr, 0); SSYNC(); } set_gpio_maska(gpionr, 0); SSYNC(); } static void bfin_gpio_mask_irq(unsigned int irq) { set_gpio_maska(irq - IRQ_PF0, 0); SSYNC(); } static void bfin_gpio_unmask_irq(unsigned int irq) { set_gpio_maska(irq - IRQ_PF0, 1); SSYNC(); } static unsigned int bfin_gpio_irq_startup(unsigned int irq) { u16 gpionr = irq - IRQ_PF0; if (!(gpio_enabled[gpio_bank(gpionr)] & gpio_bit(gpionr))) bfin_gpio_irq_prepare(gpionr); gpio_enabled[gpio_bank(gpionr)] |= gpio_bit(gpionr); bfin_gpio_unmask_irq(irq); return 0; } static void bfin_gpio_irq_shutdown(unsigned int irq) { bfin_gpio_mask_irq(irq); gpio_enabled[gpio_bank(irq - IRQ_PF0)] &= ~gpio_bit(irq - IRQ_PF0); } static int bfin_gpio_irq_type(unsigned int irq, unsigned int type) { u16 gpionr = irq - IRQ_PF0; if (type == IRQ_TYPE_PROBE) { /* only probe unenabled GPIO interrupt lines */ if (gpio_enabled[gpio_bank(gpionr)] & gpio_bit(gpionr)) return 0; type = IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING; } if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_LEVEL_HIGH | IRQ_TYPE_LEVEL_LOW)) { if (!(gpio_enabled[gpio_bank(gpionr)] & gpio_bit(gpionr))) bfin_gpio_irq_prepare(gpionr); gpio_enabled[gpio_bank(gpionr)] |= gpio_bit(gpionr); } else { gpio_enabled[gpio_bank(gpionr)] &= ~gpio_bit(gpionr); return 0; } set_gpio_inen(gpionr, 0); set_gpio_dir(gpionr, 0); if ((type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING)) == (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING)) set_gpio_both(gpionr, 1); else set_gpio_both(gpionr, 0); if ((type & (IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_LEVEL_LOW))) set_gpio_polar(gpionr, 1); /* low or falling edge denoted by one */ else set_gpio_polar(gpionr, 0); /* high or rising edge denoted by zero */ if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING)) { set_gpio_edge(gpionr, 1); set_gpio_inen(gpionr, 1); gpio_edge_triggered[gpio_bank(gpionr)] |= gpio_bit(gpionr); set_gpio_data(gpionr, 0); } else { set_gpio_edge(gpionr, 0); gpio_edge_triggered[gpio_bank(gpionr)] &= ~gpio_bit(gpionr); set_gpio_inen(gpionr, 1); } SSYNC(); if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING)) set_irq_handler(irq, handle_edge_irq); else set_irq_handler(irq, handle_level_irq); return 0; } #ifdef CONFIG_PM int bfin_gpio_set_wake(unsigned int irq, unsigned int state) { unsigned gpio = irq_to_gpio(irq); if (state) gpio_pm_wakeup_request(gpio, PM_WAKE_IGNORE); else gpio_pm_wakeup_free(gpio); return 0; } #endif static struct irq_chip bfin_gpio_irqchip = { .ack = bfin_gpio_ack_irq, .mask = bfin_gpio_mask_irq, .mask_ack = bfin_gpio_mask_ack_irq, .unmask = bfin_gpio_unmask_irq, .set_type = bfin_gpio_irq_type, .startup = bfin_gpio_irq_startup, .shutdown = bfin_gpio_irq_shutdown, #ifdef CONFIG_PM .set_wake = bfin_gpio_set_wake, #endif }; static void bfin_demux_gpio_irq(unsigned int inta_irq, struct irq_desc *desc) { unsigned int i, gpio, mask, irq, search = 0; switch (inta_irq) { #if defined(CONFIG_BF53x) case IRQ_PROG_INTA: irq = IRQ_PF0; search = 1; break; # if defined(BF537_FAMILY) && !(defined(CONFIG_BFIN_MAC) || defined(CONFIG_BFIN_MAC_MODULE)) case IRQ_MAC_RX: irq = IRQ_PH0; break; # endif #elif defined(CONFIG_BF52x) case IRQ_PORTF_INTA: irq = IRQ_PF0; break; case IRQ_PORTG_INTA: irq = IRQ_PG0; break; case IRQ_PORTH_INTA: irq = IRQ_PH0; break; #elif defined(CONFIG_BF561) case IRQ_PROG0_INTA: irq = IRQ_PF0; break; case IRQ_PROG1_INTA: irq = IRQ_PF16; break; case IRQ_PROG2_INTA: irq = IRQ_PF32; break; #endif default: BUG(); return; } if (search) { for (i = 0; i < MAX_BLACKFIN_GPIOS; i += GPIO_BANKSIZE) { irq += i; mask = get_gpiop_data(i) & (gpio_enabled[gpio_bank(i)] & get_gpiop_maska(i)); while (mask) { if (mask & 1) { desc = irq_desc + irq; desc->handle_irq(irq, desc); } irq++; mask >>= 1; } } } else { gpio = irq_to_gpio(irq); mask = get_gpiop_data(gpio) & (gpio_enabled[gpio_bank(gpio)] & get_gpiop_maska(gpio)); do { if (mask & 1) { desc = irq_desc + irq; desc->handle_irq(irq, desc); } irq++; mask >>= 1; } while (mask); } } #else /* CONFIG_BF54x */ #define NR_PINT_SYS_IRQS 4 #define NR_PINT_BITS 32 #define NR_PINTS 160 #define IRQ_NOT_AVAIL 0xFF #define PINT_2_BANK(x) ((x) >> 5) #define PINT_2_BIT(x) ((x) & 0x1F) #define PINT_BIT(x) (1 << (PINT_2_BIT(x))) static unsigned char irq2pint_lut[NR_PINTS]; static unsigned char pint2irq_lut[NR_PINT_SYS_IRQS * NR_PINT_BITS]; static unsigned int gpio_both_edge_triggered[NR_PINT_SYS_IRQS]; static unsigned short gpio_enabled[gpio_bank(MAX_BLACKFIN_GPIOS)]; struct pin_int_t { unsigned int mask_set; unsigned int mask_clear; unsigned int request; unsigned int assign; unsigned int edge_set; unsigned int edge_clear; unsigned int invert_set; unsigned int invert_clear; unsigned int pinstate; unsigned int latch; }; static struct pin_int_t *pint[NR_PINT_SYS_IRQS] = { (struct pin_int_t *)PINT0_MASK_SET, (struct pin_int_t *)PINT1_MASK_SET, (struct pin_int_t *)PINT2_MASK_SET, (struct pin_int_t *)PINT3_MASK_SET, }; extern void bfin_gpio_irq_prepare(unsigned gpio); inline unsigned short get_irq_base(u8 bank, u8 bmap) { u16 irq_base; if (bank < 2) { /*PA-PB */ irq_base = IRQ_PA0 + bmap * 16; } else { /*PC-PJ */ irq_base = IRQ_PC0 + bmap * 16; } return irq_base; } /* Whenever PINTx_ASSIGN is altered init_pint_lut() must be executed! */ void init_pint_lut(void) { u16 bank, bit, irq_base, bit_pos; u32 pint_assign; u8 bmap; memset(irq2pint_lut, IRQ_NOT_AVAIL, sizeof(irq2pint_lut)); for (bank = 0; bank < NR_PINT_SYS_IRQS; bank++) { pint_assign = pint[bank]->assign; for (bit = 0; bit < NR_PINT_BITS; bit++) { bmap = (pint_assign >> ((bit / 8) * 8)) & 0xFF; irq_base = get_irq_base(bank, bmap); irq_base += (bit % 8) + ((bit / 8) & 1 ? 8 : 0); bit_pos = bit + bank * NR_PINT_BITS; pint2irq_lut[bit_pos] = irq_base - SYS_IRQS; irq2pint_lut[irq_base - SYS_IRQS] = bit_pos; } } } static void bfin_gpio_ack_irq(unsigned int irq) { u8 pint_val = irq2pint_lut[irq - SYS_IRQS]; u32 pintbit = PINT_BIT(pint_val); u8 bank = PINT_2_BANK(pint_val); if (unlikely(gpio_both_edge_triggered[bank] & pintbit)) { if (pint[bank]->invert_set & pintbit) pint[bank]->invert_clear = pintbit; else pint[bank]->invert_set = pintbit; } pint[bank]->request = pintbit; SSYNC(); } static void bfin_gpio_mask_ack_irq(unsigned int irq) { u8 pint_val = irq2pint_lut[irq - SYS_IRQS]; u32 pintbit = PINT_BIT(pint_val); u8 bank = PINT_2_BANK(pint_val); if (unlikely(gpio_both_edge_triggered[bank] & pintbit)) { if (pint[bank]->invert_set & pintbit) pint[bank]->invert_clear = pintbit; else pint[bank]->invert_set = pintbit; } pint[bank]->request = pintbit; pint[bank]->mask_clear = pintbit; SSYNC(); } static void bfin_gpio_mask_irq(unsigned int irq) { u8 pint_val = irq2pint_lut[irq - SYS_IRQS]; pint[PINT_2_BANK(pint_val)]->mask_clear = PINT_BIT(pint_val); SSYNC(); } static void bfin_gpio_unmask_irq(unsigned int irq) { u8 pint_val = irq2pint_lut[irq - SYS_IRQS]; u32 pintbit = PINT_BIT(pint_val); u8 bank = PINT_2_BANK(pint_val); pint[bank]->request = pintbit; pint[bank]->mask_set = pintbit; SSYNC(); } static unsigned int bfin_gpio_irq_startup(unsigned int irq) { u16 gpionr = irq_to_gpio(irq); u8 pint_val = irq2pint_lut[irq - SYS_IRQS]; if (pint_val == IRQ_NOT_AVAIL) { printk(KERN_ERR "GPIO IRQ %d :Not in PINT Assign table " "Reconfigure Interrupt to Port Assignemt\n", irq); return -ENODEV; } if (!(gpio_enabled[gpio_bank(gpionr)] & gpio_bit(gpionr))) bfin_gpio_irq_prepare(gpionr); gpio_enabled[gpio_bank(gpionr)] |= gpio_bit(gpionr); bfin_gpio_unmask_irq(irq); return 0; } static void bfin_gpio_irq_shutdown(unsigned int irq) { u16 gpionr = irq_to_gpio(irq); bfin_gpio_mask_irq(irq); gpio_enabled[gpio_bank(gpionr)] &= ~gpio_bit(gpionr); } static int bfin_gpio_irq_type(unsigned int irq, unsigned int type) { u16 gpionr = irq_to_gpio(irq); u8 pint_val = irq2pint_lut[irq - SYS_IRQS]; u32 pintbit = PINT_BIT(pint_val); u8 bank = PINT_2_BANK(pint_val); if (pint_val == IRQ_NOT_AVAIL) return -ENODEV; if (type == IRQ_TYPE_PROBE) { /* only probe unenabled GPIO interrupt lines */ if (gpio_enabled[gpio_bank(gpionr)] & gpio_bit(gpionr)) return 0; type = IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING; } if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_LEVEL_HIGH | IRQ_TYPE_LEVEL_LOW)) { if (!(gpio_enabled[gpio_bank(gpionr)] & gpio_bit(gpionr))) bfin_gpio_irq_prepare(gpionr); gpio_enabled[gpio_bank(gpionr)] |= gpio_bit(gpionr); } else { gpio_enabled[gpio_bank(gpionr)] &= ~gpio_bit(gpionr); return 0; } if ((type & (IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_LEVEL_LOW))) pint[bank]->invert_set = pintbit; /* low or falling edge denoted by one */ else pint[bank]->invert_clear = pintbit; /* high or rising edge denoted by zero */ if ((type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING)) == (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING)) { gpio_both_edge_triggered[bank] |= pintbit; if (gpio_get_value(gpionr)) pint[bank]->invert_set = pintbit; else pint[bank]->invert_clear = pintbit; } else { gpio_both_edge_triggered[bank] &= ~pintbit; } if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING)) { pint[bank]->edge_set = pintbit; set_irq_handler(irq, handle_edge_irq); } else { pint[bank]->edge_clear = pintbit; set_irq_handler(irq, handle_level_irq); } SSYNC(); return 0; } #ifdef CONFIG_PM u32 pint_saved_masks[NR_PINT_SYS_IRQS]; u32 pint_wakeup_masks[NR_PINT_SYS_IRQS]; int bfin_gpio_set_wake(unsigned int irq, unsigned int state) { u32 pint_irq; u8 pint_val = irq2pint_lut[irq - SYS_IRQS]; u32 bank = PINT_2_BANK(pint_val); u32 pintbit = PINT_BIT(pint_val); switch (bank) { case 0: pint_irq = IRQ_PINT0; break; case 2: pint_irq = IRQ_PINT2; break; case 3: pint_irq = IRQ_PINT3; break; case 1: pint_irq = IRQ_PINT1; break; default: return -EINVAL; } bfin_internal_set_wake(pint_irq, state); if (state) pint_wakeup_masks[bank] |= pintbit; else pint_wakeup_masks[bank] &= ~pintbit; return 0; } u32 bfin_pm_setup(void) { u32 val, i; for (i = 0; i < NR_PINT_SYS_IRQS; i++) { val = pint[i]->mask_clear; pint_saved_masks[i] = val; if (val ^ pint_wakeup_masks[i]) { pint[i]->mask_clear = val; pint[i]->mask_set = pint_wakeup_masks[i]; } } return 0; } void bfin_pm_restore(void) { u32 i, val; for (i = 0; i < NR_PINT_SYS_IRQS; i++) { val = pint_saved_masks[i]; if (val ^ pint_wakeup_masks[i]) { pint[i]->mask_clear = pint[i]->mask_clear; pint[i]->mask_set = val; } } } #endif static struct irq_chip bfin_gpio_irqchip = { .ack = bfin_gpio_ack_irq, .mask = bfin_gpio_mask_irq, .mask_ack = bfin_gpio_mask_ack_irq, .unmask = bfin_gpio_unmask_irq, .set_type = bfin_gpio_irq_type, .startup = bfin_gpio_irq_startup, .shutdown = bfin_gpio_irq_shutdown, #ifdef CONFIG_PM .set_wake = bfin_gpio_set_wake, #endif }; static void bfin_demux_gpio_irq(unsigned int inta_irq, struct irq_desc *desc) { u8 bank, pint_val; u32 request, irq; switch (inta_irq) { case IRQ_PINT0: bank = 0; break; case IRQ_PINT2: bank = 2; break; case IRQ_PINT3: bank = 3; break; case IRQ_PINT1: bank = 1; break; default: return; } pint_val = bank * NR_PINT_BITS; request = pint[bank]->request; while (request) { if (request & 1) { irq = pint2irq_lut[pint_val] + SYS_IRQS; desc = irq_desc + irq; desc->handle_irq(irq, desc); } pint_val++; request >>= 1; } } #endif void __init init_exception_vectors(void) { SSYNC(); /* cannot program in software: * evt0 - emulation (jtag) * evt1 - reset */ bfin_write_EVT2(evt_nmi); bfin_write_EVT3(trap); bfin_write_EVT5(evt_ivhw); bfin_write_EVT6(evt_timer); bfin_write_EVT7(evt_evt7); bfin_write_EVT8(evt_evt8); bfin_write_EVT9(evt_evt9); bfin_write_EVT10(evt_evt10); bfin_write_EVT11(evt_evt11); bfin_write_EVT12(evt_evt12); bfin_write_EVT13(evt_evt13); bfin_write_EVT14(evt14_softirq); bfin_write_EVT15(evt_system_call); CSYNC(); } /* * This function should be called during kernel startup to initialize * the BFin IRQ handling routines. */ int __init init_arch_irq(void) { int irq; unsigned long ilat = 0; /* Disable all the peripheral intrs - page 4-29 HW Ref manual */ #if defined(CONFIG_BF54x) || defined(CONFIG_BF52x) || defined(CONFIG_BF561) bfin_write_SIC_IMASK0(SIC_UNMASK_ALL); bfin_write_SIC_IMASK1(SIC_UNMASK_ALL); # ifdef CONFIG_BF54x bfin_write_SIC_IMASK2(SIC_UNMASK_ALL); # endif #else bfin_write_SIC_IMASK(SIC_UNMASK_ALL); #endif local_irq_disable(); init_exception_buff(); #ifdef CONFIG_BF54x # ifdef CONFIG_PINTx_REASSIGN pint[0]->assign = CONFIG_PINT0_ASSIGN; pint[1]->assign = CONFIG_PINT1_ASSIGN; pint[2]->assign = CONFIG_PINT2_ASSIGN; pint[3]->assign = CONFIG_PINT3_ASSIGN; # endif /* Whenever PINTx_ASSIGN is altered init_pint_lut() must be executed! */ init_pint_lut(); #endif for (irq = 0; irq <= SYS_IRQS; irq++) { if (irq <= IRQ_CORETMR) set_irq_chip(irq, &bfin_core_irqchip); else set_irq_chip(irq, &bfin_internal_irqchip); switch (irq) { #if defined(CONFIG_BF53x) case IRQ_PROG_INTA: # if defined(BF537_FAMILY) && !(defined(CONFIG_BFIN_MAC) || defined(CONFIG_BFIN_MAC_MODULE)) case IRQ_MAC_RX: # endif #elif defined(CONFIG_BF54x) case IRQ_PINT0: case IRQ_PINT1: case IRQ_PINT2: case IRQ_PINT3: #elif defined(CONFIG_BF52x) case IRQ_PORTF_INTA: case IRQ_PORTG_INTA: case IRQ_PORTH_INTA: #elif defined(CONFIG_BF561) case IRQ_PROG0_INTA: case IRQ_PROG1_INTA: case IRQ_PROG2_INTA: #endif set_irq_chained_handler(irq, bfin_demux_gpio_irq); break; #ifdef BF537_GENERIC_ERROR_INT_DEMUX case IRQ_GENERIC_ERROR: set_irq_handler(irq, bfin_demux_error_irq); break; #endif default: set_irq_handler(irq, handle_simple_irq); break; } } #ifdef BF537_GENERIC_ERROR_INT_DEMUX for (irq = IRQ_PPI_ERROR; irq <= IRQ_UART1_ERROR; irq++) set_irq_chip_and_handler(irq, &bfin_generic_error_irqchip, handle_level_irq); #endif /* if configured as edge, then will be changed to do_edge_IRQ */ for (irq = GPIO_IRQ_BASE; irq < NR_IRQS; irq++) set_irq_chip_and_handler(irq, &bfin_gpio_irqchip, handle_level_irq); bfin_write_IMASK(0); CSYNC(); ilat = bfin_read_ILAT(); CSYNC(); bfin_write_ILAT(ilat); CSYNC(); printk(KERN_INFO "Configuring Blackfin Priority Driven Interrupts\n"); /* IMASK=xxx is equivalent to STI xx or irq_flags=xx, * local_irq_enable() */ program_IAR(); /* Therefore it's better to setup IARs before interrupts enabled */ search_IAR(); /* Enable interrupts IVG7-15 */ irq_flags = irq_flags | IMASK_IVG15 | IMASK_IVG14 | IMASK_IVG13 | IMASK_IVG12 | IMASK_IVG11 | IMASK_IVG10 | IMASK_IVG9 | IMASK_IVG8 | IMASK_IVG7 | IMASK_IVGHW; #if defined(CONFIG_BF54x) || defined(CONFIG_BF52x) || defined(CONFIG_BF561) bfin_write_SIC_IWR0(IWR_ENABLE_ALL); bfin_write_SIC_IWR1(IWR_ENABLE_ALL); # ifdef CONFIG_BF54x bfin_write_SIC_IWR2(IWR_ENABLE_ALL); # endif #else bfin_write_SIC_IWR(IWR_ENABLE_ALL); #endif return 0; } #ifdef CONFIG_DO_IRQ_L1 __attribute__((l1_text)) #endif void do_irq(int vec, struct pt_regs *fp) { if (vec == EVT_IVTMR_P) { vec = IRQ_CORETMR; } else { struct ivgx *ivg = ivg7_13[vec - IVG7].ifirst; struct ivgx *ivg_stop = ivg7_13[vec - IVG7].istop; #if defined(CONFIG_BF54x) || defined(CONFIG_BF52x) || defined(CONFIG_BF561) unsigned long sic_status[3]; sic_status[0] = bfin_read_SIC_ISR0() & bfin_read_SIC_IMASK0(); sic_status[1] = bfin_read_SIC_ISR1() & bfin_read_SIC_IMASK1(); #ifdef CONFIG_BF54x sic_status[2] = bfin_read_SIC_ISR2() & bfin_read_SIC_IMASK2(); #endif for (;; ivg++) { if (ivg >= ivg_stop) { atomic_inc(&num_spurious); return; } if (sic_status[(ivg->irqno - IVG7) / 32] & ivg->isrflag) break; } #else unsigned long sic_status; sic_status = bfin_read_SIC_IMASK() & bfin_read_SIC_ISR(); for (;; ivg++) { if (ivg >= ivg_stop) { atomic_inc(&num_spurious); return; } else if (sic_status & ivg->isrflag) break; } #endif vec = ivg->irqno; } asm_do_IRQ(vec, fp); #ifdef CONFIG_KGDB kgdb_process_breakpoint(); #endif }