/* * Copyright (C) 2005-2006 Atmel Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/dw_dmac.h> #include <linux/fb.h> #include <linux/init.h> #include <linux/platform_device.h> #include <linux/dma-mapping.h> #include <linux/gpio.h> #include <linux/spi/spi.h> #include <linux/usb/atmel_usba_udc.h> #include <asm/atmel-mci.h> #include <asm/io.h> #include <asm/irq.h> #include <asm/arch/at32ap700x.h> #include <asm/arch/board.h> #include <asm/arch/portmux.h> #include <asm/arch/sram.h> #include <video/atmel_lcdc.h> #include "clock.h" #include "hmatrix.h" #include "pio.h" #include "pm.h" #define PBMEM(base) \ { \ .start = base, \ .end = base + 0x3ff, \ .flags = IORESOURCE_MEM, \ } #define IRQ(num) \ { \ .start = num, \ .end = num, \ .flags = IORESOURCE_IRQ, \ } #define NAMED_IRQ(num, _name) \ { \ .start = num, \ .end = num, \ .name = _name, \ .flags = IORESOURCE_IRQ, \ } /* REVISIT these assume *every* device supports DMA, but several * don't ... tc, smc, pio, rtc, watchdog, pwm, ps2, and more. */ #define DEFINE_DEV(_name, _id) \ static u64 _name##_id##_dma_mask = DMA_32BIT_MASK; \ static struct platform_device _name##_id##_device = { \ .name = #_name, \ .id = _id, \ .dev = { \ .dma_mask = &_name##_id##_dma_mask, \ .coherent_dma_mask = DMA_32BIT_MASK, \ }, \ .resource = _name##_id##_resource, \ .num_resources = ARRAY_SIZE(_name##_id##_resource), \ } #define DEFINE_DEV_DATA(_name, _id) \ static u64 _name##_id##_dma_mask = DMA_32BIT_MASK; \ static struct platform_device _name##_id##_device = { \ .name = #_name, \ .id = _id, \ .dev = { \ .dma_mask = &_name##_id##_dma_mask, \ .platform_data = &_name##_id##_data, \ .coherent_dma_mask = DMA_32BIT_MASK, \ }, \ .resource = _name##_id##_resource, \ .num_resources = ARRAY_SIZE(_name##_id##_resource), \ } #define select_peripheral(pin, periph, flags) \ at32_select_periph(GPIO_PIN_##pin, GPIO_##periph, flags) #define DEV_CLK(_name, devname, bus, _index) \ static struct clk devname##_##_name = { \ .name = #_name, \ .dev = &devname##_device.dev, \ .parent = &bus##_clk, \ .mode = bus##_clk_mode, \ .get_rate = bus##_clk_get_rate, \ .index = _index, \ } static DEFINE_SPINLOCK(pm_lock); static struct clk osc0; static struct clk osc1; static unsigned long osc_get_rate(struct clk *clk) { return at32_board_osc_rates[clk->index]; } static unsigned long pll_get_rate(struct clk *clk, unsigned long control) { unsigned long div, mul, rate; div = PM_BFEXT(PLLDIV, control) + 1; mul = PM_BFEXT(PLLMUL, control) + 1; rate = clk->parent->get_rate(clk->parent); rate = (rate + div / 2) / div; rate *= mul; return rate; } static long pll_set_rate(struct clk *clk, unsigned long rate, u32 *pll_ctrl) { unsigned long mul; unsigned long mul_best_fit = 0; unsigned long div; unsigned long div_min; unsigned long div_max; unsigned long div_best_fit = 0; unsigned long base; unsigned long pll_in; unsigned long actual = 0; unsigned long rate_error; unsigned long rate_error_prev = ~0UL; u32 ctrl; /* Rate must be between 80 MHz and 200 Mhz. */ if (rate < 80000000UL || rate > 200000000UL) return -EINVAL; ctrl = PM_BF(PLLOPT, 4); base = clk->parent->get_rate(clk->parent); /* PLL input frequency must be between 6 MHz and 32 MHz. */ div_min = DIV_ROUND_UP(base, 32000000UL); div_max = base / 6000000UL; if (div_max < div_min) return -EINVAL; for (div = div_min; div <= div_max; div++) { pll_in = (base + div / 2) / div; mul = (rate + pll_in / 2) / pll_in; if (mul == 0) continue; actual = pll_in * mul; rate_error = abs(actual - rate); if (rate_error < rate_error_prev) { mul_best_fit = mul; div_best_fit = div; rate_error_prev = rate_error; } if (rate_error == 0) break; } if (div_best_fit == 0) return -EINVAL; ctrl |= PM_BF(PLLMUL, mul_best_fit - 1); ctrl |= PM_BF(PLLDIV, div_best_fit - 1); ctrl |= PM_BF(PLLCOUNT, 16); if (clk->parent == &osc1) ctrl |= PM_BIT(PLLOSC); *pll_ctrl = ctrl; return actual; } static unsigned long pll0_get_rate(struct clk *clk) { u32 control; control = pm_readl(PLL0); return pll_get_rate(clk, control); } static void pll1_mode(struct clk *clk, int enabled) { unsigned long timeout; u32 status; u32 ctrl; ctrl = pm_readl(PLL1); if (enabled) { if (!PM_BFEXT(PLLMUL, ctrl) && !PM_BFEXT(PLLDIV, ctrl)) { pr_debug("clk %s: failed to enable, rate not set\n", clk->name); return; } ctrl |= PM_BIT(PLLEN); pm_writel(PLL1, ctrl); /* Wait for PLL lock. */ for (timeout = 10000; timeout; timeout--) { status = pm_readl(ISR); if (status & PM_BIT(LOCK1)) break; udelay(10); } if (!(status & PM_BIT(LOCK1))) printk(KERN_ERR "clk %s: timeout waiting for lock\n", clk->name); } else { ctrl &= ~PM_BIT(PLLEN); pm_writel(PLL1, ctrl); } } static unsigned long pll1_get_rate(struct clk *clk) { u32 control; control = pm_readl(PLL1); return pll_get_rate(clk, control); } static long pll1_set_rate(struct clk *clk, unsigned long rate, int apply) { u32 ctrl = 0; unsigned long actual_rate; actual_rate = pll_set_rate(clk, rate, &ctrl); if (apply) { if (actual_rate != rate) return -EINVAL; if (clk->users > 0) return -EBUSY; pr_debug(KERN_INFO "clk %s: new rate %lu (actual rate %lu)\n", clk->name, rate, actual_rate); pm_writel(PLL1, ctrl); } return actual_rate; } static int pll1_set_parent(struct clk *clk, struct clk *parent) { u32 ctrl; if (clk->users > 0) return -EBUSY; ctrl = pm_readl(PLL1); WARN_ON(ctrl & PM_BIT(PLLEN)); if (parent == &osc0) ctrl &= ~PM_BIT(PLLOSC); else if (parent == &osc1) ctrl |= PM_BIT(PLLOSC); else return -EINVAL; pm_writel(PLL1, ctrl); clk->parent = parent; return 0; } /* * The AT32AP7000 has five primary clock sources: One 32kHz * oscillator, two crystal oscillators and two PLLs. */ static struct clk osc32k = { .name = "osc32k", .get_rate = osc_get_rate, .users = 1, .index = 0, }; static struct clk osc0 = { .name = "osc0", .get_rate = osc_get_rate, .users = 1, .index = 1, }; static struct clk osc1 = { .name = "osc1", .get_rate = osc_get_rate, .index = 2, }; static struct clk pll0 = { .name = "pll0", .get_rate = pll0_get_rate, .parent = &osc0, }; static struct clk pll1 = { .name = "pll1", .mode = pll1_mode, .get_rate = pll1_get_rate, .set_rate = pll1_set_rate, .set_parent = pll1_set_parent, .parent = &osc0, }; /* * The main clock can be either osc0 or pll0. The boot loader may * have chosen one for us, so we don't really know which one until we * have a look at the SM. */ static struct clk *main_clock; /* * Synchronous clocks are generated from the main clock. The clocks * must satisfy the constraint * fCPU >= fHSB >= fPB * i.e. each clock must not be faster than its parent. */ static unsigned long bus_clk_get_rate(struct clk *clk, unsigned int shift) { return main_clock->get_rate(main_clock) >> shift; }; static void cpu_clk_mode(struct clk *clk, int enabled) { unsigned long flags; u32 mask; spin_lock_irqsave(&pm_lock, flags); mask = pm_readl(CPU_MASK); if (enabled) mask |= 1 << clk->index; else mask &= ~(1 << clk->index); pm_writel(CPU_MASK, mask); spin_unlock_irqrestore(&pm_lock, flags); } static unsigned long cpu_clk_get_rate(struct clk *clk) { unsigned long cksel, shift = 0; cksel = pm_readl(CKSEL); if (cksel & PM_BIT(CPUDIV)) shift = PM_BFEXT(CPUSEL, cksel) + 1; return bus_clk_get_rate(clk, shift); } static long cpu_clk_set_rate(struct clk *clk, unsigned long rate, int apply) { u32 control; unsigned long parent_rate, child_div, actual_rate, div; parent_rate = clk->parent->get_rate(clk->parent); control = pm_readl(CKSEL); if (control & PM_BIT(HSBDIV)) child_div = 1 << (PM_BFEXT(HSBSEL, control) + 1); else child_div = 1; if (rate > 3 * (parent_rate / 4) || child_div == 1) { actual_rate = parent_rate; control &= ~PM_BIT(CPUDIV); } else { unsigned int cpusel; div = (parent_rate + rate / 2) / rate; if (div > child_div) div = child_div; cpusel = (div > 1) ? (fls(div) - 2) : 0; control = PM_BIT(CPUDIV) | PM_BFINS(CPUSEL, cpusel, control); actual_rate = parent_rate / (1 << (cpusel + 1)); } pr_debug("clk %s: new rate %lu (actual rate %lu)\n", clk->name, rate, actual_rate); if (apply) pm_writel(CKSEL, control); return actual_rate; } static void hsb_clk_mode(struct clk *clk, int enabled) { unsigned long flags; u32 mask; spin_lock_irqsave(&pm_lock, flags); mask = pm_readl(HSB_MASK); if (enabled) mask |= 1 << clk->index; else mask &= ~(1 << clk->index); pm_writel(HSB_MASK, mask); spin_unlock_irqrestore(&pm_lock, flags); } static unsigned long hsb_clk_get_rate(struct clk *clk) { unsigned long cksel, shift = 0; cksel = pm_readl(CKSEL); if (cksel & PM_BIT(HSBDIV)) shift = PM_BFEXT(HSBSEL, cksel) + 1; return bus_clk_get_rate(clk, shift); } static void pba_clk_mode(struct clk *clk, int enabled) { unsigned long flags; u32 mask; spin_lock_irqsave(&pm_lock, flags); mask = pm_readl(PBA_MASK); if (enabled) mask |= 1 << clk->index; else mask &= ~(1 << clk->index); pm_writel(PBA_MASK, mask); spin_unlock_irqrestore(&pm_lock, flags); } static unsigned long pba_clk_get_rate(struct clk *clk) { unsigned long cksel, shift = 0; cksel = pm_readl(CKSEL); if (cksel & PM_BIT(PBADIV)) shift = PM_BFEXT(PBASEL, cksel) + 1; return bus_clk_get_rate(clk, shift); } static void pbb_clk_mode(struct clk *clk, int enabled) { unsigned long flags; u32 mask; spin_lock_irqsave(&pm_lock, flags); mask = pm_readl(PBB_MASK); if (enabled) mask |= 1 << clk->index; else mask &= ~(1 << clk->index); pm_writel(PBB_MASK, mask); spin_unlock_irqrestore(&pm_lock, flags); } static unsigned long pbb_clk_get_rate(struct clk *clk) { unsigned long cksel, shift = 0; cksel = pm_readl(CKSEL); if (cksel & PM_BIT(PBBDIV)) shift = PM_BFEXT(PBBSEL, cksel) + 1; return bus_clk_get_rate(clk, shift); } static struct clk cpu_clk = { .name = "cpu", .get_rate = cpu_clk_get_rate, .set_rate = cpu_clk_set_rate, .users = 1, }; static struct clk hsb_clk = { .name = "hsb", .parent = &cpu_clk, .get_rate = hsb_clk_get_rate, }; static struct clk pba_clk = { .name = "pba", .parent = &hsb_clk, .mode = hsb_clk_mode, .get_rate = pba_clk_get_rate, .index = 1, }; static struct clk pbb_clk = { .name = "pbb", .parent = &hsb_clk, .mode = hsb_clk_mode, .get_rate = pbb_clk_get_rate, .users = 1, .index = 2, }; /* -------------------------------------------------------------------- * Generic Clock operations * -------------------------------------------------------------------- */ static void genclk_mode(struct clk *clk, int enabled) { u32 control; control = pm_readl(GCCTRL(clk->index)); if (enabled) control |= PM_BIT(CEN); else control &= ~PM_BIT(CEN); pm_writel(GCCTRL(clk->index), control); } static unsigned long genclk_get_rate(struct clk *clk) { u32 control; unsigned long div = 1; control = pm_readl(GCCTRL(clk->index)); if (control & PM_BIT(DIVEN)) div = 2 * (PM_BFEXT(DIV, control) + 1); return clk->parent->get_rate(clk->parent) / div; } static long genclk_set_rate(struct clk *clk, unsigned long rate, int apply) { u32 control; unsigned long parent_rate, actual_rate, div; parent_rate = clk->parent->get_rate(clk->parent); control = pm_readl(GCCTRL(clk->index)); if (rate > 3 * parent_rate / 4) { actual_rate = parent_rate; control &= ~PM_BIT(DIVEN); } else { div = (parent_rate + rate) / (2 * rate) - 1; control = PM_BFINS(DIV, div, control) | PM_BIT(DIVEN); actual_rate = parent_rate / (2 * (div + 1)); } dev_dbg(clk->dev, "clk %s: new rate %lu (actual rate %lu)\n", clk->name, rate, actual_rate); if (apply) pm_writel(GCCTRL(clk->index), control); return actual_rate; } int genclk_set_parent(struct clk *clk, struct clk *parent) { u32 control; dev_dbg(clk->dev, "clk %s: new parent %s (was %s)\n", clk->name, parent->name, clk->parent->name); control = pm_readl(GCCTRL(clk->index)); if (parent == &osc1 || parent == &pll1) control |= PM_BIT(OSCSEL); else if (parent == &osc0 || parent == &pll0) control &= ~PM_BIT(OSCSEL); else return -EINVAL; if (parent == &pll0 || parent == &pll1) control |= PM_BIT(PLLSEL); else control &= ~PM_BIT(PLLSEL); pm_writel(GCCTRL(clk->index), control); clk->parent = parent; return 0; } static void __init genclk_init_parent(struct clk *clk) { u32 control; struct clk *parent; BUG_ON(clk->index > 7); control = pm_readl(GCCTRL(clk->index)); if (control & PM_BIT(OSCSEL)) parent = (control & PM_BIT(PLLSEL)) ? &pll1 : &osc1; else parent = (control & PM_BIT(PLLSEL)) ? &pll0 : &osc0; clk->parent = parent; } static struct dw_dma_platform_data dw_dmac0_data = { .nr_channels = 3, }; static struct resource dw_dmac0_resource[] = { PBMEM(0xff200000), IRQ(2), }; DEFINE_DEV_DATA(dw_dmac, 0); DEV_CLK(hclk, dw_dmac0, hsb, 10); /* -------------------------------------------------------------------- * System peripherals * -------------------------------------------------------------------- */ static struct resource at32_pm0_resource[] = { { .start = 0xfff00000, .end = 0xfff0007f, .flags = IORESOURCE_MEM, }, IRQ(20), }; static struct resource at32ap700x_rtc0_resource[] = { { .start = 0xfff00080, .end = 0xfff000af, .flags = IORESOURCE_MEM, }, IRQ(21), }; static struct resource at32_wdt0_resource[] = { { .start = 0xfff000b0, .end = 0xfff000cf, .flags = IORESOURCE_MEM, }, }; static struct resource at32_eic0_resource[] = { { .start = 0xfff00100, .end = 0xfff0013f, .flags = IORESOURCE_MEM, }, IRQ(19), }; DEFINE_DEV(at32_pm, 0); DEFINE_DEV(at32ap700x_rtc, 0); DEFINE_DEV(at32_wdt, 0); DEFINE_DEV(at32_eic, 0); /* * Peripheral clock for PM, RTC, WDT and EIC. PM will ensure that this * is always running. */ static struct clk at32_pm_pclk = { .name = "pclk", .dev = &at32_pm0_device.dev, .parent = &pbb_clk, .mode = pbb_clk_mode, .get_rate = pbb_clk_get_rate, .users = 1, .index = 0, }; static struct resource intc0_resource[] = { PBMEM(0xfff00400), }; struct platform_device at32_intc0_device = { .name = "intc", .id = 0, .resource = intc0_resource, .num_resources = ARRAY_SIZE(intc0_resource), }; DEV_CLK(pclk, at32_intc0, pbb, 1); static struct clk ebi_clk = { .name = "ebi", .parent = &hsb_clk, .mode = hsb_clk_mode, .get_rate = hsb_clk_get_rate, .users = 1, }; static struct clk hramc_clk = { .name = "hramc", .parent = &hsb_clk, .mode = hsb_clk_mode, .get_rate = hsb_clk_get_rate, .users = 1, .index = 3, }; static struct clk sdramc_clk = { .name = "sdramc_clk", .parent = &pbb_clk, .mode = pbb_clk_mode, .get_rate = pbb_clk_get_rate, .users = 1, .index = 14, }; static struct resource smc0_resource[] = { PBMEM(0xfff03400), }; DEFINE_DEV(smc, 0); DEV_CLK(pclk, smc0, pbb, 13); DEV_CLK(mck, smc0, hsb, 0); static struct platform_device pdc_device = { .name = "pdc", .id = 0, }; DEV_CLK(hclk, pdc, hsb, 4); DEV_CLK(pclk, pdc, pba, 16); static struct clk pico_clk = { .name = "pico", .parent = &cpu_clk, .mode = cpu_clk_mode, .get_rate = cpu_clk_get_rate, .users = 1, }; /* -------------------------------------------------------------------- * HMATRIX * -------------------------------------------------------------------- */ static struct clk hmatrix_clk = { .name = "hmatrix_clk", .parent = &pbb_clk, .mode = pbb_clk_mode, .get_rate = pbb_clk_get_rate, .index = 2, .users = 1, }; #define HMATRIX_BASE ((void __iomem *)0xfff00800) #define hmatrix_readl(reg) \ __raw_readl((HMATRIX_BASE) + HMATRIX_##reg) #define hmatrix_writel(reg,value) \ __raw_writel((value), (HMATRIX_BASE) + HMATRIX_##reg) /* * Set bits in the HMATRIX Special Function Register (SFR) used by the * External Bus Interface (EBI). This can be used to enable special * features like CompactFlash support, NAND Flash support, etc. on * certain chipselects. */ static inline void set_ebi_sfr_bits(u32 mask) { u32 sfr; clk_enable(&hmatrix_clk); sfr = hmatrix_readl(SFR4); sfr |= mask; hmatrix_writel(SFR4, sfr); clk_disable(&hmatrix_clk); } /* -------------------------------------------------------------------- * Timer/Counter (TC) * -------------------------------------------------------------------- */ static struct resource at32_tcb0_resource[] = { PBMEM(0xfff00c00), IRQ(22), }; static struct platform_device at32_tcb0_device = { .name = "atmel_tcb", .id = 0, .resource = at32_tcb0_resource, .num_resources = ARRAY_SIZE(at32_tcb0_resource), }; DEV_CLK(t0_clk, at32_tcb0, pbb, 3); static struct resource at32_tcb1_resource[] = { PBMEM(0xfff01000), IRQ(23), }; static struct platform_device at32_tcb1_device = { .name = "atmel_tcb", .id = 1, .resource = at32_tcb1_resource, .num_resources = ARRAY_SIZE(at32_tcb1_resource), }; DEV_CLK(t0_clk, at32_tcb1, pbb, 4); /* -------------------------------------------------------------------- * PIO * -------------------------------------------------------------------- */ static struct resource pio0_resource[] = { PBMEM(0xffe02800), IRQ(13), }; DEFINE_DEV(pio, 0); DEV_CLK(mck, pio0, pba, 10); static struct resource pio1_resource[] = { PBMEM(0xffe02c00), IRQ(14), }; DEFINE_DEV(pio, 1); DEV_CLK(mck, pio1, pba, 11); static struct resource pio2_resource[] = { PBMEM(0xffe03000), IRQ(15), }; DEFINE_DEV(pio, 2); DEV_CLK(mck, pio2, pba, 12); static struct resource pio3_resource[] = { PBMEM(0xffe03400), IRQ(16), }; DEFINE_DEV(pio, 3); DEV_CLK(mck, pio3, pba, 13); static struct resource pio4_resource[] = { PBMEM(0xffe03800), IRQ(17), }; DEFINE_DEV(pio, 4); DEV_CLK(mck, pio4, pba, 14); void __init at32_add_system_devices(void) { platform_device_register(&at32_pm0_device); platform_device_register(&at32_intc0_device); platform_device_register(&at32ap700x_rtc0_device); platform_device_register(&at32_wdt0_device); platform_device_register(&at32_eic0_device); platform_device_register(&smc0_device); platform_device_register(&pdc_device); platform_device_register(&dw_dmac0_device); platform_device_register(&at32_tcb0_device); platform_device_register(&at32_tcb1_device); platform_device_register(&pio0_device); platform_device_register(&pio1_device); platform_device_register(&pio2_device); platform_device_register(&pio3_device); platform_device_register(&pio4_device); } /* -------------------------------------------------------------------- * PSIF * -------------------------------------------------------------------- */ static struct resource atmel_psif0_resource[] __initdata = { { .start = 0xffe03c00, .end = 0xffe03cff, .flags = IORESOURCE_MEM, }, IRQ(18), }; static struct clk atmel_psif0_pclk = { .name = "pclk", .parent = &pba_clk, .mode = pba_clk_mode, .get_rate = pba_clk_get_rate, .index = 15, }; static struct resource atmel_psif1_resource[] __initdata = { { .start = 0xffe03d00, .end = 0xffe03dff, .flags = IORESOURCE_MEM, }, IRQ(18), }; static struct clk atmel_psif1_pclk = { .name = "pclk", .parent = &pba_clk, .mode = pba_clk_mode, .get_rate = pba_clk_get_rate, .index = 15, }; struct platform_device *__init at32_add_device_psif(unsigned int id) { struct platform_device *pdev; if (!(id == 0 || id == 1)) return NULL; pdev = platform_device_alloc("atmel_psif", id); if (!pdev) return NULL; switch (id) { case 0: if (platform_device_add_resources(pdev, atmel_psif0_resource, ARRAY_SIZE(atmel_psif0_resource))) goto err_add_resources; atmel_psif0_pclk.dev = &pdev->dev; select_peripheral(PA(8), PERIPH_A, 0); /* CLOCK */ select_peripheral(PA(9), PERIPH_A, 0); /* DATA */ break; case 1: if (platform_device_add_resources(pdev, atmel_psif1_resource, ARRAY_SIZE(atmel_psif1_resource))) goto err_add_resources; atmel_psif1_pclk.dev = &pdev->dev; select_peripheral(PB(11), PERIPH_A, 0); /* CLOCK */ select_peripheral(PB(12), PERIPH_A, 0); /* DATA */ break; default: return NULL; } platform_device_add(pdev); return pdev; err_add_resources: platform_device_put(pdev); return NULL; } /* -------------------------------------------------------------------- * USART * -------------------------------------------------------------------- */ static struct atmel_uart_data atmel_usart0_data = { .use_dma_tx = 1, .use_dma_rx = 1, }; static struct resource atmel_usart0_resource[] = { PBMEM(0xffe00c00), IRQ(6), }; DEFINE_DEV_DATA(atmel_usart, 0); DEV_CLK(usart, atmel_usart0, pba, 3); static struct atmel_uart_data atmel_usart1_data = { .use_dma_tx = 1, .use_dma_rx = 1, }; static struct resource atmel_usart1_resource[] = { PBMEM(0xffe01000), IRQ(7), }; DEFINE_DEV_DATA(atmel_usart, 1); DEV_CLK(usart, atmel_usart1, pba, 4); static struct atmel_uart_data atmel_usart2_data = { .use_dma_tx = 1, .use_dma_rx = 1, }; static struct resource atmel_usart2_resource[] = { PBMEM(0xffe01400), IRQ(8), }; DEFINE_DEV_DATA(atmel_usart, 2); DEV_CLK(usart, atmel_usart2, pba, 5); static struct atmel_uart_data atmel_usart3_data = { .use_dma_tx = 1, .use_dma_rx = 1, }; static struct resource atmel_usart3_resource[] = { PBMEM(0xffe01800), IRQ(9), }; DEFINE_DEV_DATA(atmel_usart, 3); DEV_CLK(usart, atmel_usart3, pba, 6); static inline void configure_usart0_pins(void) { select_peripheral(PA(8), PERIPH_B, 0); /* RXD */ select_peripheral(PA(9), PERIPH_B, 0); /* TXD */ } static inline void configure_usart1_pins(void) { select_peripheral(PA(17), PERIPH_A, 0); /* RXD */ select_peripheral(PA(18), PERIPH_A, 0); /* TXD */ } static inline void configure_usart2_pins(void) { select_peripheral(PB(26), PERIPH_B, 0); /* RXD */ select_peripheral(PB(27), PERIPH_B, 0); /* TXD */ } static inline void configure_usart3_pins(void) { select_peripheral(PB(18), PERIPH_B, 0); /* RXD */ select_peripheral(PB(17), PERIPH_B, 0); /* TXD */ } static struct platform_device *__initdata at32_usarts[4]; void __init at32_map_usart(unsigned int hw_id, unsigned int line) { struct platform_device *pdev; switch (hw_id) { case 0: pdev = &atmel_usart0_device; configure_usart0_pins(); break; case 1: pdev = &atmel_usart1_device; configure_usart1_pins(); break; case 2: pdev = &atmel_usart2_device; configure_usart2_pins(); break; case 3: pdev = &atmel_usart3_device; configure_usart3_pins(); break; default: return; } if (PXSEG(pdev->resource[0].start) == P4SEG) { /* Addresses in the P4 segment are permanently mapped 1:1 */ struct atmel_uart_data *data = pdev->dev.platform_data; data->regs = (void __iomem *)pdev->resource[0].start; } pdev->id = line; at32_usarts[line] = pdev; } struct platform_device *__init at32_add_device_usart(unsigned int id) { platform_device_register(at32_usarts[id]); return at32_usarts[id]; } struct platform_device *atmel_default_console_device; void __init at32_setup_serial_console(unsigned int usart_id) { atmel_default_console_device = at32_usarts[usart_id]; } /* -------------------------------------------------------------------- * Ethernet * -------------------------------------------------------------------- */ #ifdef CONFIG_CPU_AT32AP7000 static struct eth_platform_data macb0_data; static struct resource macb0_resource[] = { PBMEM(0xfff01800), IRQ(25), }; DEFINE_DEV_DATA(macb, 0); DEV_CLK(hclk, macb0, hsb, 8); DEV_CLK(pclk, macb0, pbb, 6); static struct eth_platform_data macb1_data; static struct resource macb1_resource[] = { PBMEM(0xfff01c00), IRQ(26), }; DEFINE_DEV_DATA(macb, 1); DEV_CLK(hclk, macb1, hsb, 9); DEV_CLK(pclk, macb1, pbb, 7); struct platform_device *__init at32_add_device_eth(unsigned int id, struct eth_platform_data *data) { struct platform_device *pdev; switch (id) { case 0: pdev = &macb0_device; select_peripheral(PC(3), PERIPH_A, 0); /* TXD0 */ select_peripheral(PC(4), PERIPH_A, 0); /* TXD1 */ select_peripheral(PC(7), PERIPH_A, 0); /* TXEN */ select_peripheral(PC(8), PERIPH_A, 0); /* TXCK */ select_peripheral(PC(9), PERIPH_A, 0); /* RXD0 */ select_peripheral(PC(10), PERIPH_A, 0); /* RXD1 */ select_peripheral(PC(13), PERIPH_A, 0); /* RXER */ select_peripheral(PC(15), PERIPH_A, 0); /* RXDV */ select_peripheral(PC(16), PERIPH_A, 0); /* MDC */ select_peripheral(PC(17), PERIPH_A, 0); /* MDIO */ if (!data->is_rmii) { select_peripheral(PC(0), PERIPH_A, 0); /* COL */ select_peripheral(PC(1), PERIPH_A, 0); /* CRS */ select_peripheral(PC(2), PERIPH_A, 0); /* TXER */ select_peripheral(PC(5), PERIPH_A, 0); /* TXD2 */ select_peripheral(PC(6), PERIPH_A, 0); /* TXD3 */ select_peripheral(PC(11), PERIPH_A, 0); /* RXD2 */ select_peripheral(PC(12), PERIPH_A, 0); /* RXD3 */ select_peripheral(PC(14), PERIPH_A, 0); /* RXCK */ select_peripheral(PC(18), PERIPH_A, 0); /* SPD */ } break; case 1: pdev = &macb1_device; select_peripheral(PD(13), PERIPH_B, 0); /* TXD0 */ select_peripheral(PD(14), PERIPH_B, 0); /* TXD1 */ select_peripheral(PD(11), PERIPH_B, 0); /* TXEN */ select_peripheral(PD(12), PERIPH_B, 0); /* TXCK */ select_peripheral(PD(10), PERIPH_B, 0); /* RXD0 */ select_peripheral(PD(6), PERIPH_B, 0); /* RXD1 */ select_peripheral(PD(5), PERIPH_B, 0); /* RXER */ select_peripheral(PD(4), PERIPH_B, 0); /* RXDV */ select_peripheral(PD(3), PERIPH_B, 0); /* MDC */ select_peripheral(PD(2), PERIPH_B, 0); /* MDIO */ if (!data->is_rmii) { select_peripheral(PC(19), PERIPH_B, 0); /* COL */ select_peripheral(PC(23), PERIPH_B, 0); /* CRS */ select_peripheral(PC(26), PERIPH_B, 0); /* TXER */ select_peripheral(PC(27), PERIPH_B, 0); /* TXD2 */ select_peripheral(PC(28), PERIPH_B, 0); /* TXD3 */ select_peripheral(PC(29), PERIPH_B, 0); /* RXD2 */ select_peripheral(PC(30), PERIPH_B, 0); /* RXD3 */ select_peripheral(PC(24), PERIPH_B, 0); /* RXCK */ select_peripheral(PD(15), PERIPH_B, 0); /* SPD */ } break; default: return NULL; } memcpy(pdev->dev.platform_data, data, sizeof(struct eth_platform_data)); platform_device_register(pdev); return pdev; } #endif /* -------------------------------------------------------------------- * SPI * -------------------------------------------------------------------- */ static struct resource atmel_spi0_resource[] = { PBMEM(0xffe00000), IRQ(3), }; DEFINE_DEV(atmel_spi, 0); DEV_CLK(spi_clk, atmel_spi0, pba, 0); static struct resource atmel_spi1_resource[] = { PBMEM(0xffe00400), IRQ(4), }; DEFINE_DEV(atmel_spi, 1); DEV_CLK(spi_clk, atmel_spi1, pba, 1); static void __init at32_spi_setup_slaves(unsigned int bus_num, struct spi_board_info *b, unsigned int n, const u8 *pins) { unsigned int pin, mode; for (; n; n--, b++) { b->bus_num = bus_num; if (b->chip_select >= 4) continue; pin = (unsigned)b->controller_data; if (!pin) { pin = pins[b->chip_select]; b->controller_data = (void *)pin; } mode = AT32_GPIOF_OUTPUT; if (!(b->mode & SPI_CS_HIGH)) mode |= AT32_GPIOF_HIGH; at32_select_gpio(pin, mode); } } struct platform_device *__init at32_add_device_spi(unsigned int id, struct spi_board_info *b, unsigned int n) { /* * Manage the chipselects as GPIOs, normally using the same pins * the SPI controller expects; but boards can use other pins. */ static u8 __initdata spi0_pins[] = { GPIO_PIN_PA(3), GPIO_PIN_PA(4), GPIO_PIN_PA(5), GPIO_PIN_PA(20), }; static u8 __initdata spi1_pins[] = { GPIO_PIN_PB(2), GPIO_PIN_PB(3), GPIO_PIN_PB(4), GPIO_PIN_PA(27), }; struct platform_device *pdev; switch (id) { case 0: pdev = &atmel_spi0_device; /* pullup MISO so a level is always defined */ select_peripheral(PA(0), PERIPH_A, AT32_GPIOF_PULLUP); select_peripheral(PA(1), PERIPH_A, 0); /* MOSI */ select_peripheral(PA(2), PERIPH_A, 0); /* SCK */ at32_spi_setup_slaves(0, b, n, spi0_pins); break; case 1: pdev = &atmel_spi1_device; /* pullup MISO so a level is always defined */ select_peripheral(PB(0), PERIPH_B, AT32_GPIOF_PULLUP); select_peripheral(PB(1), PERIPH_B, 0); /* MOSI */ select_peripheral(PB(5), PERIPH_B, 0); /* SCK */ at32_spi_setup_slaves(1, b, n, spi1_pins); break; default: return NULL; } spi_register_board_info(b, n); platform_device_register(pdev); return pdev; } /* -------------------------------------------------------------------- * TWI * -------------------------------------------------------------------- */ static struct resource atmel_twi0_resource[] __initdata = { PBMEM(0xffe00800), IRQ(5), }; static struct clk atmel_twi0_pclk = { .name = "twi_pclk", .parent = &pba_clk, .mode = pba_clk_mode, .get_rate = pba_clk_get_rate, .index = 2, }; struct platform_device *__init at32_add_device_twi(unsigned int id, struct i2c_board_info *b, unsigned int n) { struct platform_device *pdev; if (id != 0) return NULL; pdev = platform_device_alloc("atmel_twi", id); if (!pdev) return NULL; if (platform_device_add_resources(pdev, atmel_twi0_resource, ARRAY_SIZE(atmel_twi0_resource))) goto err_add_resources; select_peripheral(PA(6), PERIPH_A, 0); /* SDA */ select_peripheral(PA(7), PERIPH_A, 0); /* SDL */ atmel_twi0_pclk.dev = &pdev->dev; if (b) i2c_register_board_info(id, b, n); platform_device_add(pdev); return pdev; err_add_resources: platform_device_put(pdev); return NULL; } /* -------------------------------------------------------------------- * MMC * -------------------------------------------------------------------- */ static struct resource atmel_mci0_resource[] __initdata = { PBMEM(0xfff02400), IRQ(28), }; static struct clk atmel_mci0_pclk = { .name = "mci_clk", .parent = &pbb_clk, .mode = pbb_clk_mode, .get_rate = pbb_clk_get_rate, .index = 9, }; struct platform_device *__init at32_add_device_mci(unsigned int id, struct mci_platform_data *data) { struct mci_platform_data _data; struct platform_device *pdev; if (id != 0) return NULL; pdev = platform_device_alloc("atmel_mci", id); if (!pdev) goto fail; if (platform_device_add_resources(pdev, atmel_mci0_resource, ARRAY_SIZE(atmel_mci0_resource))) goto fail; if (!data) { data = &_data; memset(data, -1, sizeof(struct mci_platform_data)); data->detect_pin = GPIO_PIN_NONE; data->wp_pin = GPIO_PIN_NONE; } if (platform_device_add_data(pdev, data, sizeof(struct mci_platform_data))) goto fail; select_peripheral(PA(10), PERIPH_A, 0); /* CLK */ select_peripheral(PA(11), PERIPH_A, 0); /* CMD */ select_peripheral(PA(12), PERIPH_A, 0); /* DATA0 */ select_peripheral(PA(13), PERIPH_A, 0); /* DATA1 */ select_peripheral(PA(14), PERIPH_A, 0); /* DATA2 */ select_peripheral(PA(15), PERIPH_A, 0); /* DATA3 */ if (gpio_is_valid(data->detect_pin)) at32_select_gpio(data->detect_pin, 0); if (gpio_is_valid(data->wp_pin)) at32_select_gpio(data->wp_pin, 0); atmel_mci0_pclk.dev = &pdev->dev; platform_device_add(pdev); return pdev; fail: platform_device_put(pdev); return NULL; } /* -------------------------------------------------------------------- * LCDC * -------------------------------------------------------------------- */ #if defined(CONFIG_CPU_AT32AP7000) || defined(CONFIG_CPU_AT32AP7002) static struct atmel_lcdfb_info atmel_lcdfb0_data; static struct resource atmel_lcdfb0_resource[] = { { .start = 0xff000000, .end = 0xff000fff, .flags = IORESOURCE_MEM, }, IRQ(1), { /* Placeholder for pre-allocated fb memory */ .start = 0x00000000, .end = 0x00000000, .flags = 0, }, }; DEFINE_DEV_DATA(atmel_lcdfb, 0); DEV_CLK(hck1, atmel_lcdfb0, hsb, 7); static struct clk atmel_lcdfb0_pixclk = { .name = "lcdc_clk", .dev = &atmel_lcdfb0_device.dev, .mode = genclk_mode, .get_rate = genclk_get_rate, .set_rate = genclk_set_rate, .set_parent = genclk_set_parent, .index = 7, }; struct platform_device *__init at32_add_device_lcdc(unsigned int id, struct atmel_lcdfb_info *data, unsigned long fbmem_start, unsigned long fbmem_len, unsigned int pin_config) { struct platform_device *pdev; struct atmel_lcdfb_info *info; struct fb_monspecs *monspecs; struct fb_videomode *modedb; unsigned int modedb_size; /* * Do a deep copy of the fb data, monspecs and modedb. Make * sure all allocations are done before setting up the * portmux. */ monspecs = kmemdup(data->default_monspecs, sizeof(struct fb_monspecs), GFP_KERNEL); if (!monspecs) return NULL; modedb_size = sizeof(struct fb_videomode) * monspecs->modedb_len; modedb = kmemdup(monspecs->modedb, modedb_size, GFP_KERNEL); if (!modedb) goto err_dup_modedb; monspecs->modedb = modedb; switch (id) { case 0: pdev = &atmel_lcdfb0_device; switch (pin_config) { case 0: select_peripheral(PC(19), PERIPH_A, 0); /* CC */ select_peripheral(PC(20), PERIPH_A, 0); /* HSYNC */ select_peripheral(PC(21), PERIPH_A, 0); /* PCLK */ select_peripheral(PC(22), PERIPH_A, 0); /* VSYNC */ select_peripheral(PC(23), PERIPH_A, 0); /* DVAL */ select_peripheral(PC(24), PERIPH_A, 0); /* MODE */ select_peripheral(PC(25), PERIPH_A, 0); /* PWR */ select_peripheral(PC(26), PERIPH_A, 0); /* DATA0 */ select_peripheral(PC(27), PERIPH_A, 0); /* DATA1 */ select_peripheral(PC(28), PERIPH_A, 0); /* DATA2 */ select_peripheral(PC(29), PERIPH_A, 0); /* DATA3 */ select_peripheral(PC(30), PERIPH_A, 0); /* DATA4 */ select_peripheral(PC(31), PERIPH_A, 0); /* DATA5 */ select_peripheral(PD(0), PERIPH_A, 0); /* DATA6 */ select_peripheral(PD(1), PERIPH_A, 0); /* DATA7 */ select_peripheral(PD(2), PERIPH_A, 0); /* DATA8 */ select_peripheral(PD(3), PERIPH_A, 0); /* DATA9 */ select_peripheral(PD(4), PERIPH_A, 0); /* DATA10 */ select_peripheral(PD(5), PERIPH_A, 0); /* DATA11 */ select_peripheral(PD(6), PERIPH_A, 0); /* DATA12 */ select_peripheral(PD(7), PERIPH_A, 0); /* DATA13 */ select_peripheral(PD(8), PERIPH_A, 0); /* DATA14 */ select_peripheral(PD(9), PERIPH_A, 0); /* DATA15 */ select_peripheral(PD(10), PERIPH_A, 0); /* DATA16 */ select_peripheral(PD(11), PERIPH_A, 0); /* DATA17 */ select_peripheral(PD(12), PERIPH_A, 0); /* DATA18 */ select_peripheral(PD(13), PERIPH_A, 0); /* DATA19 */ select_peripheral(PD(14), PERIPH_A, 0); /* DATA20 */ select_peripheral(PD(15), PERIPH_A, 0); /* DATA21 */ select_peripheral(PD(16), PERIPH_A, 0); /* DATA22 */ select_peripheral(PD(17), PERIPH_A, 0); /* DATA23 */ break; case 1: select_peripheral(PE(0), PERIPH_B, 0); /* CC */ select_peripheral(PC(20), PERIPH_A, 0); /* HSYNC */ select_peripheral(PC(21), PERIPH_A, 0); /* PCLK */ select_peripheral(PC(22), PERIPH_A, 0); /* VSYNC */ select_peripheral(PE(1), PERIPH_B, 0); /* DVAL */ select_peripheral(PE(2), PERIPH_B, 0); /* MODE */ select_peripheral(PC(25), PERIPH_A, 0); /* PWR */ select_peripheral(PE(3), PERIPH_B, 0); /* DATA0 */ select_peripheral(PE(4), PERIPH_B, 0); /* DATA1 */ select_peripheral(PE(5), PERIPH_B, 0); /* DATA2 */ select_peripheral(PE(6), PERIPH_B, 0); /* DATA3 */ select_peripheral(PE(7), PERIPH_B, 0); /* DATA4 */ select_peripheral(PC(31), PERIPH_A, 0); /* DATA5 */ select_peripheral(PD(0), PERIPH_A, 0); /* DATA6 */ select_peripheral(PD(1), PERIPH_A, 0); /* DATA7 */ select_peripheral(PE(8), PERIPH_B, 0); /* DATA8 */ select_peripheral(PE(9), PERIPH_B, 0); /* DATA9 */ select_peripheral(PE(10), PERIPH_B, 0); /* DATA10 */ select_peripheral(PE(11), PERIPH_B, 0); /* DATA11 */ select_peripheral(PE(12), PERIPH_B, 0); /* DATA12 */ select_peripheral(PD(7), PERIPH_A, 0); /* DATA13 */ select_peripheral(PD(8), PERIPH_A, 0); /* DATA14 */ select_peripheral(PD(9), PERIPH_A, 0); /* DATA15 */ select_peripheral(PE(13), PERIPH_B, 0); /* DATA16 */ select_peripheral(PE(14), PERIPH_B, 0); /* DATA17 */ select_peripheral(PE(15), PERIPH_B, 0); /* DATA18 */ select_peripheral(PE(16), PERIPH_B, 0); /* DATA19 */ select_peripheral(PE(17), PERIPH_B, 0); /* DATA20 */ select_peripheral(PE(18), PERIPH_B, 0); /* DATA21 */ select_peripheral(PD(16), PERIPH_A, 0); /* DATA22 */ select_peripheral(PD(17), PERIPH_A, 0); /* DATA23 */ break; default: goto err_invalid_id; } clk_set_parent(&atmel_lcdfb0_pixclk, &pll0); clk_set_rate(&atmel_lcdfb0_pixclk, clk_get_rate(&pll0)); break; default: goto err_invalid_id; } if (fbmem_len) { pdev->resource[2].start = fbmem_start; pdev->resource[2].end = fbmem_start + fbmem_len - 1; pdev->resource[2].flags = IORESOURCE_MEM; } info = pdev->dev.platform_data; memcpy(info, data, sizeof(struct atmel_lcdfb_info)); info->default_monspecs = monspecs; platform_device_register(pdev); return pdev; err_invalid_id: kfree(modedb); err_dup_modedb: kfree(monspecs); return NULL; } #endif /* -------------------------------------------------------------------- * PWM * -------------------------------------------------------------------- */ static struct resource atmel_pwm0_resource[] __initdata = { PBMEM(0xfff01400), IRQ(24), }; static struct clk atmel_pwm0_mck = { .name = "pwm_clk", .parent = &pbb_clk, .mode = pbb_clk_mode, .get_rate = pbb_clk_get_rate, .index = 5, }; struct platform_device *__init at32_add_device_pwm(u32 mask) { struct platform_device *pdev; if (!mask) return NULL; pdev = platform_device_alloc("atmel_pwm", 0); if (!pdev) return NULL; if (platform_device_add_resources(pdev, atmel_pwm0_resource, ARRAY_SIZE(atmel_pwm0_resource))) goto out_free_pdev; if (platform_device_add_data(pdev, &mask, sizeof(mask))) goto out_free_pdev; if (mask & (1 << 0)) select_peripheral(PA(28), PERIPH_A, 0); if (mask & (1 << 1)) select_peripheral(PA(29), PERIPH_A, 0); if (mask & (1 << 2)) select_peripheral(PA(21), PERIPH_B, 0); if (mask & (1 << 3)) select_peripheral(PA(22), PERIPH_B, 0); atmel_pwm0_mck.dev = &pdev->dev; platform_device_add(pdev); return pdev; out_free_pdev: platform_device_put(pdev); return NULL; } /* -------------------------------------------------------------------- * SSC * -------------------------------------------------------------------- */ static struct resource ssc0_resource[] = { PBMEM(0xffe01c00), IRQ(10), }; DEFINE_DEV(ssc, 0); DEV_CLK(pclk, ssc0, pba, 7); static struct resource ssc1_resource[] = { PBMEM(0xffe02000), IRQ(11), }; DEFINE_DEV(ssc, 1); DEV_CLK(pclk, ssc1, pba, 8); static struct resource ssc2_resource[] = { PBMEM(0xffe02400), IRQ(12), }; DEFINE_DEV(ssc, 2); DEV_CLK(pclk, ssc2, pba, 9); struct platform_device *__init at32_add_device_ssc(unsigned int id, unsigned int flags) { struct platform_device *pdev; switch (id) { case 0: pdev = &ssc0_device; if (flags & ATMEL_SSC_RF) select_peripheral(PA(21), PERIPH_A, 0); /* RF */ if (flags & ATMEL_SSC_RK) select_peripheral(PA(22), PERIPH_A, 0); /* RK */ if (flags & ATMEL_SSC_TK) select_peripheral(PA(23), PERIPH_A, 0); /* TK */ if (flags & ATMEL_SSC_TF) select_peripheral(PA(24), PERIPH_A, 0); /* TF */ if (flags & ATMEL_SSC_TD) select_peripheral(PA(25), PERIPH_A, 0); /* TD */ if (flags & ATMEL_SSC_RD) select_peripheral(PA(26), PERIPH_A, 0); /* RD */ break; case 1: pdev = &ssc1_device; if (flags & ATMEL_SSC_RF) select_peripheral(PA(0), PERIPH_B, 0); /* RF */ if (flags & ATMEL_SSC_RK) select_peripheral(PA(1), PERIPH_B, 0); /* RK */ if (flags & ATMEL_SSC_TK) select_peripheral(PA(2), PERIPH_B, 0); /* TK */ if (flags & ATMEL_SSC_TF) select_peripheral(PA(3), PERIPH_B, 0); /* TF */ if (flags & ATMEL_SSC_TD) select_peripheral(PA(4), PERIPH_B, 0); /* TD */ if (flags & ATMEL_SSC_RD) select_peripheral(PA(5), PERIPH_B, 0); /* RD */ break; case 2: pdev = &ssc2_device; if (flags & ATMEL_SSC_TD) select_peripheral(PB(13), PERIPH_A, 0); /* TD */ if (flags & ATMEL_SSC_RD) select_peripheral(PB(14), PERIPH_A, 0); /* RD */ if (flags & ATMEL_SSC_TK) select_peripheral(PB(15), PERIPH_A, 0); /* TK */ if (flags & ATMEL_SSC_TF) select_peripheral(PB(16), PERIPH_A, 0); /* TF */ if (flags & ATMEL_SSC_RF) select_peripheral(PB(17), PERIPH_A, 0); /* RF */ if (flags & ATMEL_SSC_RK) select_peripheral(PB(18), PERIPH_A, 0); /* RK */ break; default: return NULL; } platform_device_register(pdev); return pdev; } /* -------------------------------------------------------------------- * USB Device Controller * -------------------------------------------------------------------- */ static struct resource usba0_resource[] __initdata = { { .start = 0xff300000, .end = 0xff3fffff, .flags = IORESOURCE_MEM, }, { .start = 0xfff03000, .end = 0xfff033ff, .flags = IORESOURCE_MEM, }, IRQ(31), }; static struct clk usba0_pclk = { .name = "pclk", .parent = &pbb_clk, .mode = pbb_clk_mode, .get_rate = pbb_clk_get_rate, .index = 12, }; static struct clk usba0_hclk = { .name = "hclk", .parent = &hsb_clk, .mode = hsb_clk_mode, .get_rate = hsb_clk_get_rate, .index = 6, }; #define EP(nam, idx, maxpkt, maxbk, dma, isoc) \ [idx] = { \ .name = nam, \ .index = idx, \ .fifo_size = maxpkt, \ .nr_banks = maxbk, \ .can_dma = dma, \ .can_isoc = isoc, \ } static struct usba_ep_data at32_usba_ep[] __initdata = { EP("ep0", 0, 64, 1, 0, 0), EP("ep1", 1, 512, 2, 1, 1), EP("ep2", 2, 512, 2, 1, 1), EP("ep3-int", 3, 64, 3, 1, 0), EP("ep4-int", 4, 64, 3, 1, 0), EP("ep5", 5, 1024, 3, 1, 1), EP("ep6", 6, 1024, 3, 1, 1), }; #undef EP struct platform_device *__init at32_add_device_usba(unsigned int id, struct usba_platform_data *data) { /* * pdata doesn't have room for any endpoints, so we need to * append room for the ones we need right after it. */ struct { struct usba_platform_data pdata; struct usba_ep_data ep[7]; } usba_data; struct platform_device *pdev; if (id != 0) return NULL; pdev = platform_device_alloc("atmel_usba_udc", 0); if (!pdev) return NULL; if (platform_device_add_resources(pdev, usba0_resource, ARRAY_SIZE(usba0_resource))) goto out_free_pdev; if (data) usba_data.pdata.vbus_pin = data->vbus_pin; else usba_data.pdata.vbus_pin = -EINVAL; data = &usba_data.pdata; data->num_ep = ARRAY_SIZE(at32_usba_ep); memcpy(data->ep, at32_usba_ep, sizeof(at32_usba_ep)); if (platform_device_add_data(pdev, data, sizeof(usba_data))) goto out_free_pdev; if (data->vbus_pin >= 0) at32_select_gpio(data->vbus_pin, 0); usba0_pclk.dev = &pdev->dev; usba0_hclk.dev = &pdev->dev; platform_device_add(pdev); return pdev; out_free_pdev: platform_device_put(pdev); return NULL; } /* -------------------------------------------------------------------- * IDE / CompactFlash * -------------------------------------------------------------------- */ #if defined(CONFIG_CPU_AT32AP7000) || defined(CONFIG_CPU_AT32AP7001) static struct resource at32_smc_cs4_resource[] __initdata = { { .start = 0x04000000, .end = 0x07ffffff, .flags = IORESOURCE_MEM, }, IRQ(~0UL), /* Magic IRQ will be overridden */ }; static struct resource at32_smc_cs5_resource[] __initdata = { { .start = 0x20000000, .end = 0x23ffffff, .flags = IORESOURCE_MEM, }, IRQ(~0UL), /* Magic IRQ will be overridden */ }; static int __init at32_init_ide_or_cf(struct platform_device *pdev, unsigned int cs, unsigned int extint) { static unsigned int extint_pin_map[4] __initdata = { GPIO_PIN_PB(25), GPIO_PIN_PB(26), GPIO_PIN_PB(27), GPIO_PIN_PB(28), }; static bool common_pins_initialized __initdata = false; unsigned int extint_pin; int ret; if (extint >= ARRAY_SIZE(extint_pin_map)) return -EINVAL; extint_pin = extint_pin_map[extint]; switch (cs) { case 4: ret = platform_device_add_resources(pdev, at32_smc_cs4_resource, ARRAY_SIZE(at32_smc_cs4_resource)); if (ret) return ret; select_peripheral(PE(21), PERIPH_A, 0); /* NCS4 -> OE_N */ set_ebi_sfr_bits(HMATRIX_BIT(CS4A)); break; case 5: ret = platform_device_add_resources(pdev, at32_smc_cs5_resource, ARRAY_SIZE(at32_smc_cs5_resource)); if (ret) return ret; select_peripheral(PE(22), PERIPH_A, 0); /* NCS5 -> OE_N */ set_ebi_sfr_bits(HMATRIX_BIT(CS5A)); break; default: return -EINVAL; } if (!common_pins_initialized) { select_peripheral(PE(19), PERIPH_A, 0); /* CFCE1 -> CS0_N */ select_peripheral(PE(20), PERIPH_A, 0); /* CFCE2 -> CS1_N */ select_peripheral(PE(23), PERIPH_A, 0); /* CFRNW -> DIR */ select_peripheral(PE(24), PERIPH_A, 0); /* NWAIT <- IORDY */ common_pins_initialized = true; } at32_select_periph(extint_pin, GPIO_PERIPH_A, AT32_GPIOF_DEGLITCH); pdev->resource[1].start = EIM_IRQ_BASE + extint; pdev->resource[1].end = pdev->resource[1].start; return 0; } struct platform_device *__init at32_add_device_ide(unsigned int id, unsigned int extint, struct ide_platform_data *data) { struct platform_device *pdev; pdev = platform_device_alloc("at32_ide", id); if (!pdev) goto fail; if (platform_device_add_data(pdev, data, sizeof(struct ide_platform_data))) goto fail; if (at32_init_ide_or_cf(pdev, data->cs, extint)) goto fail; platform_device_add(pdev); return pdev; fail: platform_device_put(pdev); return NULL; } struct platform_device *__init at32_add_device_cf(unsigned int id, unsigned int extint, struct cf_platform_data *data) { struct platform_device *pdev; pdev = platform_device_alloc("at32_cf", id); if (!pdev) goto fail; if (platform_device_add_data(pdev, data, sizeof(struct cf_platform_data))) goto fail; if (at32_init_ide_or_cf(pdev, data->cs, extint)) goto fail; if (gpio_is_valid(data->detect_pin)) at32_select_gpio(data->detect_pin, AT32_GPIOF_DEGLITCH); if (gpio_is_valid(data->reset_pin)) at32_select_gpio(data->reset_pin, 0); if (gpio_is_valid(data->vcc_pin)) at32_select_gpio(data->vcc_pin, 0); /* READY is used as extint, so we can't select it as gpio */ platform_device_add(pdev); return pdev; fail: platform_device_put(pdev); return NULL; } #endif /* -------------------------------------------------------------------- * NAND Flash / SmartMedia * -------------------------------------------------------------------- */ static struct resource smc_cs3_resource[] __initdata = { { .start = 0x0c000000, .end = 0x0fffffff, .flags = IORESOURCE_MEM, }, { .start = 0xfff03c00, .end = 0xfff03fff, .flags = IORESOURCE_MEM, }, }; struct platform_device *__init at32_add_device_nand(unsigned int id, struct atmel_nand_data *data) { struct platform_device *pdev; if (id != 0 || !data) return NULL; pdev = platform_device_alloc("atmel_nand", id); if (!pdev) goto fail; if (platform_device_add_resources(pdev, smc_cs3_resource, ARRAY_SIZE(smc_cs3_resource))) goto fail; if (platform_device_add_data(pdev, data, sizeof(struct atmel_nand_data))) goto fail; set_ebi_sfr_bits(HMATRIX_BIT(CS3A)); if (data->enable_pin) at32_select_gpio(data->enable_pin, AT32_GPIOF_OUTPUT | AT32_GPIOF_HIGH); if (data->rdy_pin) at32_select_gpio(data->rdy_pin, 0); if (data->det_pin) at32_select_gpio(data->det_pin, 0); platform_device_add(pdev); return pdev; fail: platform_device_put(pdev); return NULL; } /* -------------------------------------------------------------------- * AC97C * -------------------------------------------------------------------- */ static struct resource atmel_ac97c0_resource[] __initdata = { PBMEM(0xfff02800), IRQ(29), }; static struct clk atmel_ac97c0_pclk = { .name = "pclk", .parent = &pbb_clk, .mode = pbb_clk_mode, .get_rate = pbb_clk_get_rate, .index = 10, }; struct platform_device *__init at32_add_device_ac97c(unsigned int id, struct ac97c_platform_data *data) { struct platform_device *pdev; struct ac97c_platform_data _data; if (id != 0) return NULL; pdev = platform_device_alloc("atmel_ac97c", id); if (!pdev) return NULL; if (platform_device_add_resources(pdev, atmel_ac97c0_resource, ARRAY_SIZE(atmel_ac97c0_resource))) goto fail; if (!data) { data = &_data; memset(data, 0, sizeof(struct ac97c_platform_data)); data->reset_pin = GPIO_PIN_NONE; } data->dma_rx_periph_id = 3; data->dma_tx_periph_id = 4; data->dma_controller_id = 0; if (platform_device_add_data(pdev, data, sizeof(struct ac97c_platform_data))) goto fail; select_peripheral(PB(20), PERIPH_B, 0); /* SDO */ select_peripheral(PB(21), PERIPH_B, 0); /* SYNC */ select_peripheral(PB(22), PERIPH_B, 0); /* SCLK */ select_peripheral(PB(23), PERIPH_B, 0); /* SDI */ /* TODO: gpio_is_valid(data->reset_pin) with kernel 2.6.26. */ if (data->reset_pin != GPIO_PIN_NONE) at32_select_gpio(data->reset_pin, 0); atmel_ac97c0_pclk.dev = &pdev->dev; platform_device_add(pdev); return pdev; fail: platform_device_put(pdev); return NULL; } /* -------------------------------------------------------------------- * ABDAC * -------------------------------------------------------------------- */ static struct resource abdac0_resource[] __initdata = { PBMEM(0xfff02000), IRQ(27), }; static struct clk abdac0_pclk = { .name = "pclk", .parent = &pbb_clk, .mode = pbb_clk_mode, .get_rate = pbb_clk_get_rate, .index = 8, }; static struct clk abdac0_sample_clk = { .name = "sample_clk", .mode = genclk_mode, .get_rate = genclk_get_rate, .set_rate = genclk_set_rate, .set_parent = genclk_set_parent, .index = 6, }; struct platform_device *__init at32_add_device_abdac(unsigned int id) { struct platform_device *pdev; if (id != 0) return NULL; pdev = platform_device_alloc("abdac", id); if (!pdev) return NULL; if (platform_device_add_resources(pdev, abdac0_resource, ARRAY_SIZE(abdac0_resource))) goto err_add_resources; select_peripheral(PB(20), PERIPH_A, 0); /* DATA1 */ select_peripheral(PB(21), PERIPH_A, 0); /* DATA0 */ select_peripheral(PB(22), PERIPH_A, 0); /* DATAN1 */ select_peripheral(PB(23), PERIPH_A, 0); /* DATAN0 */ abdac0_pclk.dev = &pdev->dev; abdac0_sample_clk.dev = &pdev->dev; platform_device_add(pdev); return pdev; err_add_resources: platform_device_put(pdev); return NULL; } /* -------------------------------------------------------------------- * GCLK * -------------------------------------------------------------------- */ static struct clk gclk0 = { .name = "gclk0", .mode = genclk_mode, .get_rate = genclk_get_rate, .set_rate = genclk_set_rate, .set_parent = genclk_set_parent, .index = 0, }; static struct clk gclk1 = { .name = "gclk1", .mode = genclk_mode, .get_rate = genclk_get_rate, .set_rate = genclk_set_rate, .set_parent = genclk_set_parent, .index = 1, }; static struct clk gclk2 = { .name = "gclk2", .mode = genclk_mode, .get_rate = genclk_get_rate, .set_rate = genclk_set_rate, .set_parent = genclk_set_parent, .index = 2, }; static struct clk gclk3 = { .name = "gclk3", .mode = genclk_mode, .get_rate = genclk_get_rate, .set_rate = genclk_set_rate, .set_parent = genclk_set_parent, .index = 3, }; static struct clk gclk4 = { .name = "gclk4", .mode = genclk_mode, .get_rate = genclk_get_rate, .set_rate = genclk_set_rate, .set_parent = genclk_set_parent, .index = 4, }; struct clk *at32_clock_list[] = { &osc32k, &osc0, &osc1, &pll0, &pll1, &cpu_clk, &hsb_clk, &pba_clk, &pbb_clk, &at32_pm_pclk, &at32_intc0_pclk, &hmatrix_clk, &ebi_clk, &hramc_clk, &sdramc_clk, &smc0_pclk, &smc0_mck, &pdc_hclk, &pdc_pclk, &dw_dmac0_hclk, &pico_clk, &pio0_mck, &pio1_mck, &pio2_mck, &pio3_mck, &pio4_mck, &at32_tcb0_t0_clk, &at32_tcb1_t0_clk, &atmel_psif0_pclk, &atmel_psif1_pclk, &atmel_usart0_usart, &atmel_usart1_usart, &atmel_usart2_usart, &atmel_usart3_usart, &atmel_pwm0_mck, #if defined(CONFIG_CPU_AT32AP7000) &macb0_hclk, &macb0_pclk, &macb1_hclk, &macb1_pclk, #endif &atmel_spi0_spi_clk, &atmel_spi1_spi_clk, &atmel_twi0_pclk, &atmel_mci0_pclk, #if defined(CONFIG_CPU_AT32AP7000) || defined(CONFIG_CPU_AT32AP7002) &atmel_lcdfb0_hck1, &atmel_lcdfb0_pixclk, #endif &ssc0_pclk, &ssc1_pclk, &ssc2_pclk, &usba0_hclk, &usba0_pclk, &atmel_ac97c0_pclk, &abdac0_pclk, &abdac0_sample_clk, &gclk0, &gclk1, &gclk2, &gclk3, &gclk4, }; unsigned int at32_nr_clocks = ARRAY_SIZE(at32_clock_list); void __init setup_platform(void) { u32 cpu_mask = 0, hsb_mask = 0, pba_mask = 0, pbb_mask = 0; int i; if (pm_readl(MCCTRL) & PM_BIT(PLLSEL)) { main_clock = &pll0; cpu_clk.parent = &pll0; } else { main_clock = &osc0; cpu_clk.parent = &osc0; } if (pm_readl(PLL0) & PM_BIT(PLLOSC)) pll0.parent = &osc1; if (pm_readl(PLL1) & PM_BIT(PLLOSC)) pll1.parent = &osc1; genclk_init_parent(&gclk0); genclk_init_parent(&gclk1); genclk_init_parent(&gclk2); genclk_init_parent(&gclk3); genclk_init_parent(&gclk4); #if defined(CONFIG_CPU_AT32AP7000) || defined(CONFIG_CPU_AT32AP7002) genclk_init_parent(&atmel_lcdfb0_pixclk); #endif genclk_init_parent(&abdac0_sample_clk); /* * Turn on all clocks that have at least one user already, and * turn off everything else. We only do this for module * clocks, and even though it isn't particularly pretty to * check the address of the mode function, it should do the * trick... */ for (i = 0; i < ARRAY_SIZE(at32_clock_list); i++) { struct clk *clk = at32_clock_list[i]; if (clk->users == 0) continue; if (clk->mode == &cpu_clk_mode) cpu_mask |= 1 << clk->index; else if (clk->mode == &hsb_clk_mode) hsb_mask |= 1 << clk->index; else if (clk->mode == &pba_clk_mode) pba_mask |= 1 << clk->index; else if (clk->mode == &pbb_clk_mode) pbb_mask |= 1 << clk->index; } pm_writel(CPU_MASK, cpu_mask); pm_writel(HSB_MASK, hsb_mask); pm_writel(PBA_MASK, pba_mask); pm_writel(PBB_MASK, pbb_mask); /* Initialize the port muxes */ at32_init_pio(&pio0_device); at32_init_pio(&pio1_device); at32_init_pio(&pio2_device); at32_init_pio(&pio3_device); at32_init_pio(&pio4_device); } struct gen_pool *sram_pool; static int __init sram_init(void) { struct gen_pool *pool; /* 1KiB granularity */ pool = gen_pool_create(10, -1); if (!pool) goto fail; if (gen_pool_add(pool, 0x24000000, 0x8000, -1)) goto err_pool_add; sram_pool = pool; return 0; err_pool_add: gen_pool_destroy(pool); fail: pr_err("Failed to create SRAM pool\n"); return -ENOMEM; } core_initcall(sram_init);