/* * linux/arch/arm26/mm/init.c * * Copyright (C) 1995-2002 Russell King * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/signal.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/types.h> #include <linux/ptrace.h> #include <linux/mman.h> #include <linux/mm.h> #include <linux/swap.h> #include <linux/smp.h> #include <linux/init.h> #include <linux/initrd.h> #include <linux/bootmem.h> #include <linux/blkdev.h> #include <linux/pfn.h> #include <asm/segment.h> #include <asm/mach-types.h> #include <asm/dma.h> #include <asm/hardware.h> #include <asm/setup.h> #include <asm/tlb.h> #include <asm/map.h> #define TABLE_SIZE PTRS_PER_PTE * sizeof(pte_t)) struct mmu_gather mmu_gathers[NR_CPUS]; extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; extern char _stext, _text, _etext, _end, __init_begin, __init_end; #ifdef CONFIG_XIP_KERNEL extern char _endtext, _sdata; #endif extern unsigned long phys_initrd_start; extern unsigned long phys_initrd_size; /* * The sole use of this is to pass memory configuration * data from paging_init to mem_init. */ static struct meminfo meminfo __initdata = { 0, }; /* * empty_zero_page is a special page that is used for * zero-initialized data and COW. */ struct page *empty_zero_page; void show_mem(void) { int free = 0, total = 0, reserved = 0; int shared = 0, cached = 0, slab = 0; struct page *page, *end; printk("Mem-info:\n"); show_free_areas(); printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); page = NODE_MEM_MAP(0); end = page + NODE_DATA(0)->node_spanned_pages; do { total++; if (PageReserved(page)) reserved++; else if (PageSwapCache(page)) cached++; else if (PageSlab(page)) slab++; else if (!page_count(page)) free++; else shared += page_count(page) - 1; page++; } while (page < end); printk("%d pages of RAM\n", total); printk("%d free pages\n", free); printk("%d reserved pages\n", reserved); printk("%d slab pages\n", slab); printk("%d pages shared\n", shared); printk("%d pages swap cached\n", cached); } struct node_info { unsigned int start; unsigned int end; int bootmap_pages; }; /* * FIXME: We really want to avoid allocating the bootmap bitmap * over the top of the initrd. Hopefully, this is located towards * the start of a bank, so if we allocate the bootmap bitmap at * the end, we won't clash. */ static unsigned int __init find_bootmap_pfn(struct meminfo *mi, unsigned int bootmap_pages) { unsigned int start_pfn, bootmap_pfn; unsigned int start, end; start_pfn = PFN_UP((unsigned long)&_end); bootmap_pfn = 0; /* ARM26 machines only have one node */ if (mi->bank->node != 0) BUG(); start = PFN_UP(mi->bank->start); end = PFN_DOWN(mi->bank->size + mi->bank->start); if (start < start_pfn) start = start_pfn; if (end <= start) BUG(); if (end - start >= bootmap_pages) bootmap_pfn = start; else BUG(); return bootmap_pfn; } /* * Scan the memory info structure and pull out: * - the end of memory * - the number of nodes * - the pfn range of each node * - the number of bootmem bitmap pages */ static void __init find_memend_and_nodes(struct meminfo *mi, struct node_info *np) { unsigned int memend_pfn = 0; nodes_clear(node_online_map); node_set_online(0); np->bootmap_pages = 0; if (mi->bank->size == 0) { BUG(); } /* * Get the start and end pfns for this bank */ np->start = PFN_UP(mi->bank->start); np->end = PFN_DOWN(mi->bank->start + mi->bank->size); if (memend_pfn < np->end) memend_pfn = np->end; /* * Calculate the number of pages we require to * store the bootmem bitmaps. */ np->bootmap_pages = bootmem_bootmap_pages(np->end - np->start); /* * This doesn't seem to be used by the Linux memory * manager any more. If we can get rid of it, we * also get rid of some of the stuff above as well. */ max_low_pfn = memend_pfn - PFN_DOWN(PHYS_OFFSET); max_pfn = memend_pfn - PFN_DOWN(PHYS_OFFSET); mi->end = memend_pfn << PAGE_SHIFT; } /* * Initialise the bootmem allocator for all nodes. This is called * early during the architecture specific initialisation. */ void __init bootmem_init(struct meminfo *mi) { struct node_info node_info; unsigned int bootmap_pfn; pg_data_t *pgdat = NODE_DATA(0); find_memend_and_nodes(mi, &node_info); bootmap_pfn = find_bootmap_pfn(mi, node_info.bootmap_pages); /* * Note that node 0 must always have some pages. */ if (node_info.end == 0) BUG(); /* * Initialise the bootmem allocator. */ init_bootmem_node(pgdat, bootmap_pfn, node_info.start, node_info.end); /* * Register all available RAM in this node with the bootmem allocator. */ free_bootmem_node(pgdat, mi->bank->start, mi->bank->size); /* * Register the kernel text and data with bootmem. * Note: with XIP we dont register .text since * its in ROM. */ #ifdef CONFIG_XIP_KERNEL reserve_bootmem_node(pgdat, __pa(&_sdata), &_end - &_sdata); #else reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext); #endif /* * And don't forget to reserve the allocator bitmap, * which will be freed later. */ reserve_bootmem_node(pgdat, bootmap_pfn << PAGE_SHIFT, node_info.bootmap_pages << PAGE_SHIFT); /* * These should likewise go elsewhere. They pre-reserve * the screen memory region at the start of main system * memory. FIXME - screen RAM is not 512K! */ reserve_bootmem_node(pgdat, 0x02000000, 0x00080000); #ifdef CONFIG_BLK_DEV_INITRD initrd_start = phys_initrd_start; initrd_end = initrd_start + phys_initrd_size; /* Achimedes machines only have one node, so initrd is in node 0 */ #ifdef CONFIG_XIP_KERNEL /* Only reserve initrd space if it is in RAM */ if(initrd_start && initrd_start < 0x03000000){ #else if(initrd_start){ #endif reserve_bootmem_node(pgdat, __pa(initrd_start), initrd_end - initrd_start); } #endif /* CONFIG_BLK_DEV_INITRD */ } /* * paging_init() sets up the page tables, initialises the zone memory * maps, and sets up the zero page, bad page and bad page tables. */ void __init paging_init(struct meminfo *mi) { void *zero_page; unsigned long zone_size[MAX_NR_ZONES]; unsigned long zhole_size[MAX_NR_ZONES]; struct bootmem_data *bdata; pg_data_t *pgdat; int i; memcpy(&meminfo, mi, sizeof(meminfo)); /* * allocate the zero page. Note that we count on this going ok. */ zero_page = alloc_bootmem_low_pages(PAGE_SIZE); /* * initialise the page tables. */ memtable_init(mi); flush_tlb_all(); /* * initialise the zones in node 0 (archimedes have only 1 node) */ for (i = 0; i < MAX_NR_ZONES; i++) { zone_size[i] = 0; zhole_size[i] = 0; } pgdat = NODE_DATA(0); bdata = pgdat->bdata; zone_size[0] = bdata->node_low_pfn - (bdata->node_boot_start >> PAGE_SHIFT); if (!zone_size[0]) BUG(); pgdat->node_mem_map = NULL; free_area_init_node(0, pgdat, zone_size, bdata->node_boot_start >> PAGE_SHIFT, zhole_size); /* * finish off the bad pages once * the mem_map is initialised */ memzero(zero_page, PAGE_SIZE); empty_zero_page = virt_to_page(zero_page); } static inline void free_area(unsigned long addr, unsigned long end, char *s) { unsigned int size = (end - addr) >> 10; for (; addr < end; addr += PAGE_SIZE) { struct page *page = virt_to_page(addr); ClearPageReserved(page); init_page_count(page); free_page(addr); totalram_pages++; } if (size && s) printk(KERN_INFO "Freeing %s memory: %dK\n", s, size); } /* * mem_init() marks the free areas in the mem_map and tells us how much * memory is free. This is done after various parts of the system have * claimed their memory after the kernel image. */ void __init mem_init(void) { unsigned int codepages, datapages, initpages; pg_data_t *pgdat = NODE_DATA(0); extern int sysctl_overcommit_memory; /* Note: data pages includes BSS */ #ifdef CONFIG_XIP_KERNEL codepages = &_endtext - &_text; datapages = &_end - &_sdata; #else codepages = &_etext - &_text; datapages = &_end - &_etext; #endif initpages = &__init_end - &__init_begin; high_memory = (void *)__va(meminfo.end); max_mapnr = virt_to_page(high_memory) - mem_map; /* this will put all unused low memory onto the freelists */ if (pgdat->node_spanned_pages != 0) totalram_pages += free_all_bootmem_node(pgdat); num_physpages = meminfo.bank[0].size >> PAGE_SHIFT; printk(KERN_INFO "Memory: %luMB total\n", num_physpages >> (20 - PAGE_SHIFT)); printk(KERN_NOTICE "Memory: %luKB available (%dK code, " "%dK data, %dK init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT-10), codepages >> 10, datapages >> 10, initpages >> 10); /* * Turn on overcommit on tiny machines */ if (PAGE_SIZE >= 16384 && num_physpages <= 128) { sysctl_overcommit_memory = OVERCOMMIT_ALWAYS; printk("Turning on overcommit\n"); } } void free_initmem(void){ #ifndef CONFIG_XIP_KERNEL free_area((unsigned long)(&__init_begin), (unsigned long)(&__init_end), "init"); #endif } #ifdef CONFIG_BLK_DEV_INITRD static int keep_initrd; void free_initrd_mem(unsigned long start, unsigned long end) { #ifdef CONFIG_XIP_KERNEL /* Only bin initrd if it is in RAM... */ if(!keep_initrd && start < 0x03000000) #else if (!keep_initrd) #endif free_area(start, end, "initrd"); } static int __init keepinitrd_setup(char *__unused) { keep_initrd = 1; return 1; } __setup("keepinitrd", keepinitrd_setup); #endif