/* * linux/arch/arm/mm/consistent.c * * Copyright (C) 2000-2004 Russell King * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * DMA uncached mapping support. */ #include <linux/module.h> #include <linux/mm.h> #include <linux/slab.h> #include <linux/errno.h> #include <linux/list.h> #include <linux/init.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include <asm/memory.h> #include <asm/cacheflush.h> #include <asm/tlbflush.h> #include <asm/sizes.h> /* Sanity check size */ #if (CONSISTENT_DMA_SIZE % SZ_2M) #error "CONSISTENT_DMA_SIZE must be multiple of 2MiB" #endif #define CONSISTENT_END (0xffe00000) #define CONSISTENT_BASE (CONSISTENT_END - CONSISTENT_DMA_SIZE) #define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT) #define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT) #define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT) /* * These are the page tables (2MB each) covering uncached, DMA consistent allocations */ static pte_t *consistent_pte[NUM_CONSISTENT_PTES]; static DEFINE_SPINLOCK(consistent_lock); /* * VM region handling support. * * This should become something generic, handling VM region allocations for * vmalloc and similar (ioremap, module space, etc). * * I envisage vmalloc()'s supporting vm_struct becoming: * * struct vm_struct { * struct vm_region region; * unsigned long flags; * struct page **pages; * unsigned int nr_pages; * unsigned long phys_addr; * }; * * get_vm_area() would then call vm_region_alloc with an appropriate * struct vm_region head (eg): * * struct vm_region vmalloc_head = { * .vm_list = LIST_HEAD_INIT(vmalloc_head.vm_list), * .vm_start = VMALLOC_START, * .vm_end = VMALLOC_END, * }; * * However, vmalloc_head.vm_start is variable (typically, it is dependent on * the amount of RAM found at boot time.) I would imagine that get_vm_area() * would have to initialise this each time prior to calling vm_region_alloc(). */ struct vm_region { struct list_head vm_list; unsigned long vm_start; unsigned long vm_end; struct page *vm_pages; int vm_active; }; static struct vm_region consistent_head = { .vm_list = LIST_HEAD_INIT(consistent_head.vm_list), .vm_start = CONSISTENT_BASE, .vm_end = CONSISTENT_END, }; static struct vm_region * vm_region_alloc(struct vm_region *head, size_t size, gfp_t gfp) { unsigned long addr = head->vm_start, end = head->vm_end - size; unsigned long flags; struct vm_region *c, *new; new = kmalloc(sizeof(struct vm_region), gfp); if (!new) goto out; spin_lock_irqsave(&consistent_lock, flags); list_for_each_entry(c, &head->vm_list, vm_list) { if ((addr + size) < addr) goto nospc; if ((addr + size) <= c->vm_start) goto found; addr = c->vm_end; if (addr > end) goto nospc; } found: /* * Insert this entry _before_ the one we found. */ list_add_tail(&new->vm_list, &c->vm_list); new->vm_start = addr; new->vm_end = addr + size; new->vm_active = 1; spin_unlock_irqrestore(&consistent_lock, flags); return new; nospc: spin_unlock_irqrestore(&consistent_lock, flags); kfree(new); out: return NULL; } static struct vm_region *vm_region_find(struct vm_region *head, unsigned long addr) { struct vm_region *c; list_for_each_entry(c, &head->vm_list, vm_list) { if (c->vm_active && c->vm_start == addr) goto out; } c = NULL; out: return c; } #ifdef CONFIG_HUGETLB_PAGE #error ARM Coherent DMA allocator does not (yet) support huge TLB #endif static void * __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp, pgprot_t prot) { struct page *page; struct vm_region *c; unsigned long order; u64 mask = ISA_DMA_THRESHOLD, limit; if (!consistent_pte[0]) { printk(KERN_ERR "%s: not initialised\n", __func__); dump_stack(); return NULL; } if (dev) { mask = dev->coherent_dma_mask; /* * Sanity check the DMA mask - it must be non-zero, and * must be able to be satisfied by a DMA allocation. */ if (mask == 0) { dev_warn(dev, "coherent DMA mask is unset\n"); goto no_page; } if ((~mask) & ISA_DMA_THRESHOLD) { dev_warn(dev, "coherent DMA mask %#llx is smaller " "than system GFP_DMA mask %#llx\n", mask, (unsigned long long)ISA_DMA_THRESHOLD); goto no_page; } } /* * Sanity check the allocation size. */ size = PAGE_ALIGN(size); limit = (mask + 1) & ~mask; if ((limit && size >= limit) || size >= (CONSISTENT_END - CONSISTENT_BASE)) { printk(KERN_WARNING "coherent allocation too big " "(requested %#x mask %#llx)\n", size, mask); goto no_page; } order = get_order(size); if (mask != 0xffffffff) gfp |= GFP_DMA; page = alloc_pages(gfp, order); if (!page) goto no_page; /* * Invalidate any data that might be lurking in the * kernel direct-mapped region for device DMA. */ { unsigned long kaddr = (unsigned long)page_address(page); memset(page_address(page), 0, size); dmac_flush_range(kaddr, kaddr + size); } /* * Allocate a virtual address in the consistent mapping region. */ c = vm_region_alloc(&consistent_head, size, gfp & ~(__GFP_DMA | __GFP_HIGHMEM)); if (c) { pte_t *pte; struct page *end = page + (1 << order); int idx = CONSISTENT_PTE_INDEX(c->vm_start); u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1); pte = consistent_pte[idx] + off; c->vm_pages = page; split_page(page, order); /* * Set the "dma handle" */ *handle = page_to_dma(dev, page); do { BUG_ON(!pte_none(*pte)); /* * x86 does not mark the pages reserved... */ SetPageReserved(page); set_pte(pte, mk_pte(page, prot)); page++; pte++; off++; if (off >= PTRS_PER_PTE) { off = 0; pte = consistent_pte[++idx]; } } while (size -= PAGE_SIZE); /* * Free the otherwise unused pages. */ while (page < end) { __free_page(page); page++; } return (void *)c->vm_start; } if (page) __free_pages(page, order); no_page: *handle = ~0; return NULL; } /* * Allocate DMA-coherent memory space and return both the kernel remapped * virtual and bus address for that space. */ void * dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp) { if (arch_is_coherent()) { void *virt; virt = kmalloc(size, gfp); if (!virt) return NULL; *handle = virt_to_dma(dev, virt); return virt; } return __dma_alloc(dev, size, handle, gfp, pgprot_noncached(pgprot_kernel)); } EXPORT_SYMBOL(dma_alloc_coherent); /* * Allocate a writecombining region, in much the same way as * dma_alloc_coherent above. */ void * dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp) { return __dma_alloc(dev, size, handle, gfp, pgprot_writecombine(pgprot_kernel)); } EXPORT_SYMBOL(dma_alloc_writecombine); static int dma_mmap(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size) { unsigned long flags, user_size, kern_size; struct vm_region *c; int ret = -ENXIO; user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; spin_lock_irqsave(&consistent_lock, flags); c = vm_region_find(&consistent_head, (unsigned long)cpu_addr); spin_unlock_irqrestore(&consistent_lock, flags); if (c) { unsigned long off = vma->vm_pgoff; kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT; if (off < kern_size && user_size <= (kern_size - off)) { vma->vm_flags |= VM_RESERVED; ret = remap_pfn_range(vma, vma->vm_start, page_to_pfn(c->vm_pages) + off, user_size << PAGE_SHIFT, vma->vm_page_prot); } } return ret; } int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size) { vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); return dma_mmap(dev, vma, cpu_addr, dma_addr, size); } EXPORT_SYMBOL(dma_mmap_coherent); int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size) { vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); return dma_mmap(dev, vma, cpu_addr, dma_addr, size); } EXPORT_SYMBOL(dma_mmap_writecombine); /* * free a page as defined by the above mapping. * Must not be called with IRQs disabled. */ void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle) { struct vm_region *c; unsigned long flags, addr; pte_t *ptep; int idx; u32 off; WARN_ON(irqs_disabled()); if (arch_is_coherent()) { kfree(cpu_addr); return; } size = PAGE_ALIGN(size); spin_lock_irqsave(&consistent_lock, flags); c = vm_region_find(&consistent_head, (unsigned long)cpu_addr); if (!c) goto no_area; c->vm_active = 0; spin_unlock_irqrestore(&consistent_lock, flags); if ((c->vm_end - c->vm_start) != size) { printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n", __func__, c->vm_end - c->vm_start, size); dump_stack(); size = c->vm_end - c->vm_start; } idx = CONSISTENT_PTE_INDEX(c->vm_start); off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1); ptep = consistent_pte[idx] + off; addr = c->vm_start; do { pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep); unsigned long pfn; ptep++; addr += PAGE_SIZE; off++; if (off >= PTRS_PER_PTE) { off = 0; ptep = consistent_pte[++idx]; } if (!pte_none(pte) && pte_present(pte)) { pfn = pte_pfn(pte); if (pfn_valid(pfn)) { struct page *page = pfn_to_page(pfn); /* * x86 does not mark the pages reserved... */ ClearPageReserved(page); __free_page(page); continue; } } printk(KERN_CRIT "%s: bad page in kernel page table\n", __func__); } while (size -= PAGE_SIZE); flush_tlb_kernel_range(c->vm_start, c->vm_end); spin_lock_irqsave(&consistent_lock, flags); list_del(&c->vm_list); spin_unlock_irqrestore(&consistent_lock, flags); kfree(c); return; no_area: spin_unlock_irqrestore(&consistent_lock, flags); printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n", __func__, cpu_addr); dump_stack(); } EXPORT_SYMBOL(dma_free_coherent); /* * Initialise the consistent memory allocation. */ static int __init consistent_init(void) { pgd_t *pgd; pmd_t *pmd; pte_t *pte; int ret = 0, i = 0; u32 base = CONSISTENT_BASE; do { pgd = pgd_offset(&init_mm, base); pmd = pmd_alloc(&init_mm, pgd, base); if (!pmd) { printk(KERN_ERR "%s: no pmd tables\n", __func__); ret = -ENOMEM; break; } WARN_ON(!pmd_none(*pmd)); pte = pte_alloc_kernel(pmd, base); if (!pte) { printk(KERN_ERR "%s: no pte tables\n", __func__); ret = -ENOMEM; break; } consistent_pte[i++] = pte; base += (1 << PGDIR_SHIFT); } while (base < CONSISTENT_END); return ret; } core_initcall(consistent_init); /* * Make an area consistent for devices. * Note: Drivers should NOT use this function directly, as it will break * platforms with CONFIG_DMABOUNCE. * Use the driver DMA support - see dma-mapping.h (dma_sync_*) */ void consistent_sync(void *vaddr, size_t size, int direction) { unsigned long start = (unsigned long)vaddr; unsigned long end = start + size; switch (direction) { case DMA_FROM_DEVICE: /* invalidate only */ dmac_inv_range(start, end); break; case DMA_TO_DEVICE: /* writeback only */ dmac_clean_range(start, end); break; case DMA_BIDIRECTIONAL: /* writeback and invalidate */ dmac_flush_range(start, end); break; default: BUG(); } } EXPORT_SYMBOL(consistent_sync);