/* * linux/arch/arm/common/rtctime.c * * Copyright (C) 2003 Deep Blue Solutions Ltd. * Based on sa1100-rtc.c, Nils Faerber, CIH, Nicolas Pitre. * Based on rtc.c by Paul Gortmaker * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/time.h> #include <linux/rtc.h> #include <linux/poll.h> #include <linux/proc_fs.h> #include <linux/miscdevice.h> #include <linux/spinlock.h> #include <linux/device.h> #include <asm/rtc.h> #include <asm/semaphore.h> static DECLARE_WAIT_QUEUE_HEAD(rtc_wait); static struct fasync_struct *rtc_async_queue; /* * rtc_lock protects rtc_irq_data */ static DEFINE_SPINLOCK(rtc_lock); static unsigned long rtc_irq_data; /* * rtc_sem protects rtc_inuse and rtc_ops */ static DECLARE_MUTEX(rtc_sem); static unsigned long rtc_inuse; static struct rtc_ops *rtc_ops; #define rtc_epoch 1900UL static const unsigned char days_in_month[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; #define LEAPS_THRU_END_OF(y) ((y)/4 - (y)/100 + (y)/400) #define LEAP_YEAR(year) ((!(year % 4) && (year % 100)) || !(year % 400)) static int month_days(unsigned int month, unsigned int year) { return days_in_month[month] + (LEAP_YEAR(year) && month == 1); } /* * Convert seconds since 01-01-1970 00:00:00 to Gregorian date. */ void rtc_time_to_tm(unsigned long time, struct rtc_time *tm) { int days, month, year; days = time / 86400; time -= days * 86400; tm->tm_wday = (days + 4) % 7; year = 1970 + days / 365; days -= (year - 1970) * 365 + LEAPS_THRU_END_OF(year - 1) - LEAPS_THRU_END_OF(1970 - 1); if (days < 0) { year -= 1; days += 365 + LEAP_YEAR(year); } tm->tm_year = year - 1900; tm->tm_yday = days + 1; for (month = 0; month < 11; month++) { int newdays; newdays = days - month_days(month, year); if (newdays < 0) break; days = newdays; } tm->tm_mon = month; tm->tm_mday = days + 1; tm->tm_hour = time / 3600; time -= tm->tm_hour * 3600; tm->tm_min = time / 60; tm->tm_sec = time - tm->tm_min * 60; } EXPORT_SYMBOL(rtc_time_to_tm); /* * Does the rtc_time represent a valid date/time? */ int rtc_valid_tm(struct rtc_time *tm) { if (tm->tm_year < 70 || tm->tm_mon >= 12 || tm->tm_mday < 1 || tm->tm_mday > month_days(tm->tm_mon, tm->tm_year + 1900) || tm->tm_hour >= 24 || tm->tm_min >= 60 || tm->tm_sec >= 60) return -EINVAL; return 0; } EXPORT_SYMBOL(rtc_valid_tm); /* * Convert Gregorian date to seconds since 01-01-1970 00:00:00. */ int rtc_tm_to_time(struct rtc_time *tm, unsigned long *time) { *time = mktime(tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec); return 0; } EXPORT_SYMBOL(rtc_tm_to_time); /* * Calculate the next alarm time given the requested alarm time mask * and the current time. * * FIXME: for now, we just copy the alarm time because we're lazy (and * is therefore buggy - setting a 10am alarm at 8pm will not result in * the alarm triggering.) */ void rtc_next_alarm_time(struct rtc_time *next, struct rtc_time *now, struct rtc_time *alrm) { next->tm_year = now->tm_year; next->tm_mon = now->tm_mon; next->tm_mday = now->tm_mday; next->tm_hour = alrm->tm_hour; next->tm_min = alrm->tm_min; next->tm_sec = alrm->tm_sec; } static inline int rtc_read_time(struct rtc_ops *ops, struct rtc_time *tm) { memset(tm, 0, sizeof(struct rtc_time)); return ops->read_time(tm); } static inline int rtc_set_time(struct rtc_ops *ops, struct rtc_time *tm) { int ret; ret = rtc_valid_tm(tm); if (ret == 0) ret = ops->set_time(tm); return ret; } static inline int rtc_read_alarm(struct rtc_ops *ops, struct rtc_wkalrm *alrm) { int ret = -EINVAL; if (ops->read_alarm) { memset(alrm, 0, sizeof(struct rtc_wkalrm)); ret = ops->read_alarm(alrm); } return ret; } static inline int rtc_set_alarm(struct rtc_ops *ops, struct rtc_wkalrm *alrm) { int ret = -EINVAL; if (ops->set_alarm) ret = ops->set_alarm(alrm); return ret; } void rtc_update(unsigned long num, unsigned long events) { spin_lock(&rtc_lock); rtc_irq_data = (rtc_irq_data + (num << 8)) | events; spin_unlock(&rtc_lock); wake_up_interruptible(&rtc_wait); kill_fasync(&rtc_async_queue, SIGIO, POLL_IN); } EXPORT_SYMBOL(rtc_update); static ssize_t rtc_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { DECLARE_WAITQUEUE(wait, current); unsigned long data; ssize_t ret; if (count < sizeof(unsigned long)) return -EINVAL; add_wait_queue(&rtc_wait, &wait); do { __set_current_state(TASK_INTERRUPTIBLE); spin_lock_irq(&rtc_lock); data = rtc_irq_data; rtc_irq_data = 0; spin_unlock_irq(&rtc_lock); if (data != 0) { ret = 0; break; } if (file->f_flags & O_NONBLOCK) { ret = -EAGAIN; break; } if (signal_pending(current)) { ret = -ERESTARTSYS; break; } schedule(); } while (1); set_current_state(TASK_RUNNING); remove_wait_queue(&rtc_wait, &wait); if (ret == 0) { ret = put_user(data, (unsigned long __user *)buf); if (ret == 0) ret = sizeof(unsigned long); } return ret; } static unsigned int rtc_poll(struct file *file, poll_table *wait) { unsigned long data; poll_wait(file, &rtc_wait, wait); spin_lock_irq(&rtc_lock); data = rtc_irq_data; spin_unlock_irq(&rtc_lock); return data != 0 ? POLLIN | POLLRDNORM : 0; } static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { struct rtc_ops *ops = file->private_data; struct rtc_time tm; struct rtc_wkalrm alrm; void __user *uarg = (void __user *)arg; int ret = -EINVAL; switch (cmd) { case RTC_ALM_READ: ret = rtc_read_alarm(ops, &alrm); if (ret) break; ret = copy_to_user(uarg, &alrm.time, sizeof(tm)); if (ret) ret = -EFAULT; break; case RTC_ALM_SET: ret = copy_from_user(&alrm.time, uarg, sizeof(tm)); if (ret) { ret = -EFAULT; break; } alrm.enabled = 0; alrm.pending = 0; alrm.time.tm_mday = -1; alrm.time.tm_mon = -1; alrm.time.tm_year = -1; alrm.time.tm_wday = -1; alrm.time.tm_yday = -1; alrm.time.tm_isdst = -1; ret = rtc_set_alarm(ops, &alrm); break; case RTC_RD_TIME: ret = rtc_read_time(ops, &tm); if (ret) break; ret = copy_to_user(uarg, &tm, sizeof(tm)); if (ret) ret = -EFAULT; break; case RTC_SET_TIME: if (!capable(CAP_SYS_TIME)) { ret = -EACCES; break; } ret = copy_from_user(&tm, uarg, sizeof(tm)); if (ret) { ret = -EFAULT; break; } ret = rtc_set_time(ops, &tm); break; case RTC_EPOCH_SET: #ifndef rtc_epoch /* * There were no RTC clocks before 1900. */ if (arg < 1900) { ret = -EINVAL; break; } if (!capable(CAP_SYS_TIME)) { ret = -EACCES; break; } rtc_epoch = arg; ret = 0; #endif break; case RTC_EPOCH_READ: ret = put_user(rtc_epoch, (unsigned long __user *)uarg); break; case RTC_WKALM_SET: ret = copy_from_user(&alrm, uarg, sizeof(alrm)); if (ret) { ret = -EFAULT; break; } ret = rtc_set_alarm(ops, &alrm); break; case RTC_WKALM_RD: ret = rtc_read_alarm(ops, &alrm); if (ret) break; ret = copy_to_user(uarg, &alrm, sizeof(alrm)); if (ret) ret = -EFAULT; break; default: if (ops->ioctl) ret = ops->ioctl(cmd, arg); break; } return ret; } static int rtc_open(struct inode *inode, struct file *file) { int ret; down(&rtc_sem); if (rtc_inuse) { ret = -EBUSY; } else if (!rtc_ops || !try_module_get(rtc_ops->owner)) { ret = -ENODEV; } else { file->private_data = rtc_ops; ret = rtc_ops->open ? rtc_ops->open() : 0; if (ret == 0) { spin_lock_irq(&rtc_lock); rtc_irq_data = 0; spin_unlock_irq(&rtc_lock); rtc_inuse = 1; } } up(&rtc_sem); return ret; } static int rtc_release(struct inode *inode, struct file *file) { struct rtc_ops *ops = file->private_data; if (ops->release) ops->release(); spin_lock_irq(&rtc_lock); rtc_irq_data = 0; spin_unlock_irq(&rtc_lock); module_put(rtc_ops->owner); rtc_inuse = 0; return 0; } static int rtc_fasync(int fd, struct file *file, int on) { return fasync_helper(fd, file, on, &rtc_async_queue); } static struct file_operations rtc_fops = { .owner = THIS_MODULE, .llseek = no_llseek, .read = rtc_read, .poll = rtc_poll, .ioctl = rtc_ioctl, .open = rtc_open, .release = rtc_release, .fasync = rtc_fasync, }; static struct miscdevice rtc_miscdev = { .minor = RTC_MINOR, .name = "rtc", .fops = &rtc_fops, }; static int rtc_read_proc(char *page, char **start, off_t off, int count, int *eof, void *data) { struct rtc_ops *ops = data; struct rtc_wkalrm alrm; struct rtc_time tm; char *p = page; if (rtc_read_time(ops, &tm) == 0) { p += sprintf(p, "rtc_time\t: %02d:%02d:%02d\n" "rtc_date\t: %04d-%02d-%02d\n" "rtc_epoch\t: %04lu\n", tm.tm_hour, tm.tm_min, tm.tm_sec, tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, rtc_epoch); } if (rtc_read_alarm(ops, &alrm) == 0) { p += sprintf(p, "alrm_time\t: "); if ((unsigned int)alrm.time.tm_hour <= 24) p += sprintf(p, "%02d:", alrm.time.tm_hour); else p += sprintf(p, "**:"); if ((unsigned int)alrm.time.tm_min <= 59) p += sprintf(p, "%02d:", alrm.time.tm_min); else p += sprintf(p, "**:"); if ((unsigned int)alrm.time.tm_sec <= 59) p += sprintf(p, "%02d\n", alrm.time.tm_sec); else p += sprintf(p, "**\n"); p += sprintf(p, "alrm_date\t: "); if ((unsigned int)alrm.time.tm_year <= 200) p += sprintf(p, "%04d-", alrm.time.tm_year + 1900); else p += sprintf(p, "****-"); if ((unsigned int)alrm.time.tm_mon <= 11) p += sprintf(p, "%02d-", alrm.time.tm_mon + 1); else p += sprintf(p, "**-"); if ((unsigned int)alrm.time.tm_mday <= 31) p += sprintf(p, "%02d\n", alrm.time.tm_mday); else p += sprintf(p, "**\n"); p += sprintf(p, "alrm_wakeup\t: %s\n", alrm.enabled ? "yes" : "no"); p += sprintf(p, "alrm_pending\t: %s\n", alrm.pending ? "yes" : "no"); } if (ops->proc) p += ops->proc(p); return p - page; } int register_rtc(struct rtc_ops *ops) { int ret = -EBUSY; down(&rtc_sem); if (rtc_ops == NULL) { rtc_ops = ops; ret = misc_register(&rtc_miscdev); if (ret == 0) create_proc_read_entry("driver/rtc", 0, NULL, rtc_read_proc, ops); } up(&rtc_sem); return ret; } EXPORT_SYMBOL(register_rtc); void unregister_rtc(struct rtc_ops *rtc) { down(&rtc_sem); if (rtc == rtc_ops) { remove_proc_entry("driver/rtc", NULL); misc_deregister(&rtc_miscdev); rtc_ops = NULL; } up(&rtc_sem); } EXPORT_SYMBOL(unregister_rtc);