/*
Linux Driver for Mylex DAC960/AcceleRAID/eXtremeRAID PCI RAID Controllers
Copyright 1998-2001 by Leonard N. Zubkoff <lnz@dandelion.com>
Portions Copyright 2002 by Mylex (An IBM Business Unit)
This program is free software; you may redistribute and/or modify it under
the terms of the GNU General Public License Version 2 as published by the
Free Software Foundation.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY, without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for complete details.
*/
#define DAC960_DriverVersion "2.5.49"
#define DAC960_DriverDate "21 Aug 2007"
#include <linux/module.h>
#include <linux/types.h>
#include <linux/miscdevice.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/genhd.h>
#include <linux/hdreg.h>
#include <linux/blkpg.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/proc_fs.h>
#include <linux/reboot.h>
#include <linux/spinlock.h>
#include <linux/timer.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/jiffies.h>
#include <linux/random.h>
#include <linux/scatterlist.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include "DAC960.h"
#define DAC960_GAM_MINOR 252
static DAC960_Controller_T *DAC960_Controllers[DAC960_MaxControllers];
static int DAC960_ControllerCount;
static struct proc_dir_entry *DAC960_ProcDirectoryEntry;
static long disk_size(DAC960_Controller_T *p, int drive_nr)
{
if (p->FirmwareType == DAC960_V1_Controller) {
if (drive_nr >= p->LogicalDriveCount)
return 0;
return p->V1.LogicalDriveInformation[drive_nr].
LogicalDriveSize;
} else {
DAC960_V2_LogicalDeviceInfo_T *i =
p->V2.LogicalDeviceInformation[drive_nr];
if (i == NULL)
return 0;
return i->ConfigurableDeviceSize;
}
}
static int DAC960_open(struct block_device *bdev, fmode_t mode)
{
struct gendisk *disk = bdev->bd_disk;
DAC960_Controller_T *p = disk->queue->queuedata;
int drive_nr = (long)disk->private_data;
if (p->FirmwareType == DAC960_V1_Controller) {
if (p->V1.LogicalDriveInformation[drive_nr].
LogicalDriveState == DAC960_V1_LogicalDrive_Offline)
return -ENXIO;
} else {
DAC960_V2_LogicalDeviceInfo_T *i =
p->V2.LogicalDeviceInformation[drive_nr];
if (!i || i->LogicalDeviceState == DAC960_V2_LogicalDevice_Offline)
return -ENXIO;
}
check_disk_change(bdev);
if (!get_capacity(p->disks[drive_nr]))
return -ENXIO;
return 0;
}
static int DAC960_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
struct gendisk *disk = bdev->bd_disk;
DAC960_Controller_T *p = disk->queue->queuedata;
int drive_nr = (long)disk->private_data;
if (p->FirmwareType == DAC960_V1_Controller) {
geo->heads = p->V1.GeometryTranslationHeads;
geo->sectors = p->V1.GeometryTranslationSectors;
geo->cylinders = p->V1.LogicalDriveInformation[drive_nr].
LogicalDriveSize / (geo->heads * geo->sectors);
} else {
DAC960_V2_LogicalDeviceInfo_T *i =
p->V2.LogicalDeviceInformation[drive_nr];
switch (i->DriveGeometry) {
case DAC960_V2_Geometry_128_32:
geo->heads = 128;
geo->sectors = 32;
break;
case DAC960_V2_Geometry_255_63:
geo->heads = 255;
geo->sectors = 63;
break;
default:
DAC960_Error("Illegal Logical Device Geometry %d\n",
p, i->DriveGeometry);
return -EINVAL;
}
geo->cylinders = i->ConfigurableDeviceSize /
(geo->heads * geo->sectors);
}
return 0;
}
static int DAC960_media_changed(struct gendisk *disk)
{
DAC960_Controller_T *p = disk->queue->queuedata;
int drive_nr = (long)disk->private_data;
if (!p->LogicalDriveInitiallyAccessible[drive_nr])
return 1;
return 0;
}
static int DAC960_revalidate_disk(struct gendisk *disk)
{
DAC960_Controller_T *p = disk->queue->queuedata;
int unit = (long)disk->private_data;
set_capacity(disk, disk_size(p, unit));
return 0;
}
static struct block_device_operations DAC960_BlockDeviceOperations = {
.owner = THIS_MODULE,
.open = DAC960_open,
.getgeo = DAC960_getgeo,
.media_changed = DAC960_media_changed,
.revalidate_disk = DAC960_revalidate_disk,
};
/*
DAC960_AnnounceDriver announces the Driver Version and Date, Author's Name,
Copyright Notice, and Electronic Mail Address.
*/
static void DAC960_AnnounceDriver(DAC960_Controller_T *Controller)
{
DAC960_Announce("***** DAC960 RAID Driver Version "
DAC960_DriverVersion " of "
DAC960_DriverDate " *****\n", Controller);
DAC960_Announce("Copyright 1998-2001 by Leonard N. Zubkoff "
"<lnz@dandelion.com>\n", Controller);
}
/*
DAC960_Failure prints a standardized error message, and then returns false.
*/
static bool DAC960_Failure(DAC960_Controller_T *Controller,
unsigned char *ErrorMessage)
{
DAC960_Error("While configuring DAC960 PCI RAID Controller at\n",
Controller);
if (Controller->IO_Address == 0)
DAC960_Error("PCI Bus %d Device %d Function %d I/O Address N/A "
"PCI Address 0x%X\n", Controller,
Controller->Bus, Controller->Device,
Controller->Function, Controller->PCI_Address);
else DAC960_Error("PCI Bus %d Device %d Function %d I/O Address "
"0x%X PCI Address 0x%X\n", Controller,
Controller->Bus, Controller->Device,
Controller->Function, Controller->IO_Address,
Controller->PCI_Address);
DAC960_Error("%s FAILED - DETACHING\n", Controller, ErrorMessage);
return false;
}
/*
init_dma_loaf() and slice_dma_loaf() are helper functions for
aggregating the dma-mapped memory for a well-known collection of
data structures that are of different lengths.
These routines don't guarantee any alignment. The caller must
include any space needed for alignment in the sizes of the structures
that are passed in.
*/
static bool init_dma_loaf(struct pci_dev *dev, struct dma_loaf *loaf,
size_t len)
{
void *cpu_addr;
dma_addr_t dma_handle;
cpu_addr = pci_alloc_consistent(dev, len, &dma_handle);
if (cpu_addr == NULL)
return false;
loaf->cpu_free = loaf->cpu_base = cpu_addr;
loaf->dma_free =loaf->dma_base = dma_handle;
loaf->length = len;
memset(cpu_addr, 0, len);
return true;
}
static void *slice_dma_loaf(struct dma_loaf *loaf, size_t len,
dma_addr_t *dma_handle)
{
void *cpu_end = loaf->cpu_free + len;
void *cpu_addr = loaf->cpu_free;
BUG_ON(cpu_end > loaf->cpu_base + loaf->length);
*dma_handle = loaf->dma_free;
loaf->cpu_free = cpu_end;
loaf->dma_free += len;
return cpu_addr;
}
static void free_dma_loaf(struct pci_dev *dev, struct dma_loaf *loaf_handle)
{
if (loaf_handle->cpu_base != NULL)
pci_free_consistent(dev, loaf_handle->length,
loaf_handle->cpu_base, loaf_handle->dma_base);
}
/*
DAC960_CreateAuxiliaryStructures allocates and initializes the auxiliary
data structures for Controller. It returns true on success and false on
failure.
*/
static bool DAC960_CreateAuxiliaryStructures(DAC960_Controller_T *Controller)
{
int CommandAllocationLength, CommandAllocationGroupSize;
int CommandsRemaining = 0, CommandIdentifier, CommandGroupByteCount;
void *AllocationPointer = NULL;
void *ScatterGatherCPU = NULL;
dma_addr_t ScatterGatherDMA;
struct pci_pool *ScatterGatherPool;
void *RequestSenseCPU = NULL;
dma_addr_t RequestSenseDMA;
struct pci_pool *RequestSensePool = NULL;
if (Controller->FirmwareType == DAC960_V1_Controller)
{
CommandAllocationLength = offsetof(DAC960_Command_T, V1.EndMarker);
CommandAllocationGroupSize = DAC960_V1_CommandAllocationGroupSize;
ScatterGatherPool = pci_pool_create("DAC960_V1_ScatterGather",
Controller->PCIDevice,
DAC960_V1_ScatterGatherLimit * sizeof(DAC960_V1_ScatterGatherSegment_T),
sizeof(DAC960_V1_ScatterGatherSegment_T), 0);
if (ScatterGatherPool == NULL)
return DAC960_Failure(Controller,
"AUXILIARY STRUCTURE CREATION (SG)");
Controller->ScatterGatherPool = ScatterGatherPool;
}
else
{
CommandAllocationLength = offsetof(DAC960_Command_T, V2.EndMarker);
CommandAllocationGroupSize = DAC960_V2_CommandAllocationGroupSize;
ScatterGatherPool = pci_pool_create("DAC960_V2_ScatterGather",
Controller->PCIDevice,
DAC960_V2_ScatterGatherLimit * sizeof(DAC960_V2_ScatterGatherSegment_T),
sizeof(DAC960_V2_ScatterGatherSegment_T), 0);
if (ScatterGatherPool == NULL)
return DAC960_Failure(Controller,
"AUXILIARY STRUCTURE CREATION (SG)");
RequestSensePool = pci_pool_create("DAC960_V2_RequestSense",
Controller->PCIDevice, sizeof(DAC960_SCSI_RequestSense_T),
sizeof(int), 0);
if (RequestSensePool == NULL) {
pci_pool_destroy(ScatterGatherPool);
return DAC960_Failure(Controller,
"AUXILIARY STRUCTURE CREATION (SG)");
}
Controller->ScatterGatherPool = ScatterGatherPool;
Controller->V2.RequestSensePool = RequestSensePool;
}
Controller->CommandAllocationGroupSize = CommandAllocationGroupSize;
Controller->FreeCommands = NULL;
for (CommandIdentifier = 1;
CommandIdentifier <= Controller->DriverQueueDepth;
CommandIdentifier++)
{
DAC960_Command_T *Command;
if (--CommandsRemaining <= 0)
{
CommandsRemaining =
Controller->DriverQueueDepth - CommandIdentifier + 1;
if (CommandsRemaining > CommandAllocationGroupSize)
CommandsRemaining = CommandAllocationGroupSize;
CommandGroupByteCount =
CommandsRemaining * CommandAllocationLength;
AllocationPointer = kzalloc(CommandGroupByteCount, GFP_ATOMIC);
if (AllocationPointer == NULL)
return DAC960_Failure(Controller,
"AUXILIARY STRUCTURE CREATION");
}
Command = (DAC960_Command_T *) AllocationPointer;
AllocationPointer += CommandAllocationLength;
Command->CommandIdentifier = CommandIdentifier;
Command->Controller = Controller;
Command->Next = Controller->FreeCommands;
Controller->FreeCommands = Command;
Controller->Commands[CommandIdentifier-1] = Command;
ScatterGatherCPU = pci_pool_alloc(ScatterGatherPool, GFP_ATOMIC,
&ScatterGatherDMA);
if (ScatterGatherCPU == NULL)
return DAC960_Failure(Controller, "AUXILIARY STRUCTURE CREATION");
if (RequestSensePool != NULL) {
RequestSenseCPU = pci_pool_alloc(RequestSensePool, GFP_ATOMIC,
&RequestSenseDMA);
if (RequestSenseCPU == NULL) {
pci_pool_free(ScatterGatherPool, ScatterGatherCPU,
ScatterGatherDMA);
return DAC960_Failure(Controller,
"AUXILIARY STRUCTURE CREATION");
}
}
if (Controller->FirmwareType == DAC960_V1_Controller) {
Command->cmd_sglist = Command->V1.ScatterList;
Command->V1.ScatterGatherList =
(DAC960_V1_ScatterGatherSegment_T *)ScatterGatherCPU;
Command->V1.ScatterGatherListDMA = ScatterGatherDMA;
sg_init_table(Command->cmd_sglist, DAC960_V1_ScatterGatherLimit);
} else {
Command->cmd_sglist = Command->V2.ScatterList;
Command->V2.ScatterGatherList =
(DAC960_V2_ScatterGatherSegment_T *)ScatterGatherCPU;
Command->V2.ScatterGatherListDMA = ScatterGatherDMA;
Command->V2.RequestSense =
(DAC960_SCSI_RequestSense_T *)RequestSenseCPU;
Command->V2.RequestSenseDMA = RequestSenseDMA;
sg_init_table(Command->cmd_sglist, DAC960_V2_ScatterGatherLimit);
}
}
return true;
}
/*
DAC960_DestroyAuxiliaryStructures deallocates the auxiliary data
structures for Controller.
*/
static void DAC960_DestroyAuxiliaryStructures(DAC960_Controller_T *Controller)
{
int i;
struct pci_pool *ScatterGatherPool = Controller->ScatterGatherPool;
struct pci_pool *RequestSensePool = NULL;
void *ScatterGatherCPU;
dma_addr_t ScatterGatherDMA;
void *RequestSenseCPU;
dma_addr_t RequestSenseDMA;
DAC960_Command_T *CommandGroup = NULL;
if (Controller->FirmwareType == DAC960_V2_Controller)
RequestSensePool = Controller->V2.RequestSensePool;
Controller->FreeCommands = NULL;
for (i = 0; i < Controller->DriverQueueDepth; i++)
{
DAC960_Command_T *Command = Controller->Commands[i];
if (Command == NULL)
continue;
if (Controller->FirmwareType == DAC960_V1_Controller) {
ScatterGatherCPU = (void *)Command->V1.ScatterGatherList;
ScatterGatherDMA = Command->V1.ScatterGatherListDMA;
RequestSenseCPU = NULL;
RequestSenseDMA = (dma_addr_t)0;
} else {
ScatterGatherCPU = (void *)Command->V2.ScatterGatherList;
ScatterGatherDMA = Command->V2.ScatterGatherListDMA;
RequestSenseCPU = (void *)Command->V2.RequestSense;
RequestSenseDMA = Command->V2.RequestSenseDMA;
}
if (ScatterGatherCPU != NULL)
pci_pool_free(ScatterGatherPool, ScatterGatherCPU, ScatterGatherDMA);
if (RequestSenseCPU != NULL)
pci_pool_free(RequestSensePool, RequestSenseCPU, RequestSenseDMA);
if ((Command->CommandIdentifier
% Controller->CommandAllocationGroupSize) == 1) {
/*
* We can't free the group of commands until all of the
* request sense and scatter gather dma structures are free.
* Remember the beginning of the group, but don't free it
* until we've reached the beginning of the next group.
*/
kfree(CommandGroup);
CommandGroup = Command;
}
Controller->Commands[i] = NULL;
}
kfree(CommandGroup);
if (Controller->CombinedStatusBuffer != NULL)
{
kfree(Controller->CombinedStatusBuffer);
Controller->CombinedStatusBuffer = NULL;
Controller->CurrentStatusBuffer = NULL;
}
if (ScatterGatherPool != NULL)
pci_pool_destroy(ScatterGatherPool);
if (Controller->FirmwareType == DAC960_V1_Controller)
return;
if (RequestSensePool != NULL)
pci_pool_destroy(RequestSensePool);
for (i = 0; i < DAC960_MaxLogicalDrives; i++) {
kfree(Controller->V2.LogicalDeviceInformation[i]);
Controller->V2.LogicalDeviceInformation[i] = NULL;
}
for (i = 0; i < DAC960_V2_MaxPhysicalDevices; i++)
{
kfree(Controller->V2.PhysicalDeviceInformation[i]);
Controller->V2.PhysicalDeviceInformation[i] = NULL;
kfree(Controller->V2.InquiryUnitSerialNumber[i]);
Controller->V2.InquiryUnitSerialNumber[i] = NULL;
}
}
/*
DAC960_V1_ClearCommand clears critical fields of Command for DAC960 V1
Firmware Controllers.
*/
static inline void DAC960_V1_ClearCommand(DAC960_Command_T *Command)
{
DAC960_V1_CommandMailbox_T *CommandMailbox = &Command->V1.CommandMailbox;
memset(CommandMailbox, 0, sizeof(DAC960_V1_CommandMailbox_T));
Command->V1.CommandStatus = 0;
}
/*
DAC960_V2_ClearCommand clears critical fields of Command for DAC960 V2
Firmware Controllers.
*/
static inline void DAC960_V2_ClearCommand(DAC960_Command_T *Command)
{
DAC960_V2_CommandMailbox_T *CommandMailbox = &Command->V2.CommandMailbox;
memset(CommandMailbox, 0, sizeof(DAC960_V2_CommandMailbox_T));
Command->V2.CommandStatus = 0;
}
/*
DAC960_AllocateCommand allocates a Command structure from Controller's
free list. During driver initialization, a special initialization command
has been placed on the free list to guarantee that command allocation can
never fail.
*/
static inline DAC960_Command_T *DAC960_AllocateCommand(DAC960_Controller_T
*Controller)
{
DAC960_Command_T *Command = Controller->FreeCommands;
if (Command == NULL) return NULL;
Controller->FreeCommands = Command->Next;
Command->Next = NULL;
return Command;
}
/*
DAC960_DeallocateCommand deallocates Command, returning it to Controller's
free list.
*/
static inline void DAC960_DeallocateCommand(DAC960_Command_T *Command)
{
DAC960_Controller_T *Controller = Command->Controller;
Command->Request = NULL;
Command->Next = Controller->FreeCommands;
Controller->FreeCommands = Command;
}
/*
DAC960_WaitForCommand waits for a wake_up on Controller's Command Wait Queue.
*/
static void DAC960_WaitForCommand(DAC960_Controller_T *Controller)
{
spin_unlock_irq(&Controller->queue_lock);
__wait_event(Controller->CommandWaitQueue, Controller->FreeCommands);
spin_lock_irq(&Controller->queue_lock);
}
/*
DAC960_GEM_QueueCommand queues Command for DAC960 GEM Series Controllers.
*/
static void DAC960_GEM_QueueCommand(DAC960_Command_T *Command)
{
DAC960_Controller_T *Controller = Command->Controller;
void __iomem *ControllerBaseAddress = Controller->BaseAddress;
DAC960_V2_CommandMailbox_T *CommandMailbox = &Command->V2.CommandMailbox;
DAC960_V2_CommandMailbox_T *NextCommandMailbox =
Controller->V2.NextCommandMailbox;
CommandMailbox->Common.CommandIdentifier = Command->CommandIdentifier;
DAC960_GEM_WriteCommandMailbox(NextCommandMailbox, CommandMailbox);
if (Controller->V2.PreviousCommandMailbox1->Words[0] == 0 ||
Controller->V2.PreviousCommandMailbox2->Words[0] == 0)
DAC960_GEM_MemoryMailboxNewCommand(ControllerBaseAddress);
Controller->V2.PreviousCommandMailbox2 =
Controller->V2.PreviousCommandMailbox1;
Controller->V2.PreviousCommandMailbox1 = NextCommandMailbox;
if (++NextCommandMailbox > Controller->V2.LastCommandMailbox)
NextCommandMailbox = Controller->V2.FirstCommandMailbox;
Controller->V2.NextCommandMailbox = NextCommandMailbox;
}
/*
DAC960_BA_QueueCommand queues Command for DAC960 BA Series Controllers.
*/
static void DAC960_BA_QueueCommand(DAC960_Command_T *Command)
{
DAC960_Controller_T *Controller = Command->Controller;
void __iomem *ControllerBaseAddress = Controller->BaseAddress;
DAC960_V2_CommandMailbox_T *CommandMailbox = &Command->V2.CommandMailbox;
DAC960_V2_CommandMailbox_T *NextCommandMailbox =
Controller->V2.NextCommandMailbox;
CommandMailbox->Common.CommandIdentifier = Command->CommandIdentifier;
DAC960_BA_WriteCommandMailbox(NextCommandMailbox, CommandMailbox);
if (Controller->V2.PreviousCommandMailbox1->Words[0] == 0 ||
Controller->V2.PreviousCommandMailbox2->Words[0] == 0)
DAC960_BA_MemoryMailboxNewCommand(ControllerBaseAddress);
Controller->V2.PreviousCommandMailbox2 =
Controller->V2.PreviousCommandMailbox1;
Controller->V2.PreviousCommandMailbox1 = NextCommandMailbox;
if (++NextCommandMailbox > Controller->V2.LastCommandMailbox)
NextCommandMailbox = Controller->V2.FirstCommandMailbox;
Controller->V2.NextCommandMailbox = NextCommandMailbox;
}
/*
DAC960_LP_QueueCommand queues Command for DAC960 LP Series Controllers.
*/
static void DAC960_LP_QueueCommand(DAC960_Command_T *Command)
{
DAC960_Controller_T *Controller = Command->Controller;
void __iomem *ControllerBaseAddress = Controller->BaseAddress;
DAC960_V2_CommandMailbox_T *CommandMailbox = &Command->V2.CommandMailbox;
DAC960_V2_CommandMailbox_T *NextCommandMailbox =
Controller->V2.NextCommandMailbox;
CommandMailbox->Common.CommandIdentifier = Command->CommandIdentifier;
DAC960_LP_WriteCommandMailbox(NextCommandMailbox, CommandMailbox);
if (Controller->V2.PreviousCommandMailbox1->Words[0] == 0 ||
Controller->V2.PreviousCommandMailbox2->Words[0] == 0)
DAC960_LP_MemoryMailboxNewCommand(ControllerBaseAddress);
Controller->V2.PreviousCommandMailbox2 =
Controller->V2.PreviousCommandMailbox1;
Controller->V2.PreviousCommandMailbox1 = NextCommandMailbox;
if (++NextCommandMailbox > Controller->V2.LastCommandMailbox)
NextCommandMailbox = Controller->V2.FirstCommandMailbox;
Controller->V2.NextCommandMailbox = NextCommandMailbox;
}
/*
DAC960_LA_QueueCommandDualMode queues Command for DAC960 LA Series
Controllers with Dual Mode Firmware.
*/
static void DAC960_LA_QueueCommandDualMode(DAC960_Command_T *Command)
{
DAC960_Controller_T *Controller = Command->Controller;
void __iomem *ControllerBaseAddress = Controller->BaseAddress;
DAC960_V1_CommandMailbox_T *CommandMailbox = &Command->V1.CommandMailbox;
DAC960_V1_CommandMailbox_T *NextCommandMailbox =
Controller->V1.NextCommandMailbox;
CommandMailbox->Common.CommandIdentifier = Command->CommandIdentifier;
DAC960_LA_WriteCommandMailbox(NextCommandMailbox, CommandMailbox);
if (Controller->V1.PreviousCommandMailbox1->Words[0] == 0 ||
Controller->V1.PreviousCommandMailbox2->Words[0] == 0)
DAC960_LA_MemoryMailboxNewCommand(ControllerBaseAddress);
Controller->V1.PreviousCommandMailbox2 =
Controller->V1.PreviousCommandMailbox1;
Controller->V1.PreviousCommandMailbox1 = NextCommandMailbox;
if (++NextCommandMailbox > Controller->V1.LastCommandMailbox)
NextCommandMailbox = Controller->V1.FirstCommandMailbox;
Controller->V1.NextCommandMailbox = NextCommandMailbox;
}
/*
DAC960_LA_QueueCommandSingleMode queues Command for DAC960 LA Series
Controllers with Single Mode Firmware.
*/
static void DAC960_LA_QueueCommandSingleMode(DAC960_Command_T *Command)
{
DAC960_Controller_T *Controller = Command->Controller;
void __iomem *ControllerBaseAddress = Controller->BaseAddress;
DAC960_V1_CommandMailbox_T *CommandMailbox = &Command->V1.CommandMailbox;
DAC960_V1_CommandMailbox_T *NextCommandMailbox =
Controller->V1.NextCommandMailbox;
CommandMailbox->Common.CommandIdentifier = Command->CommandIdentifier;
DAC960_LA_WriteCommandMailbox(NextCommandMailbox, CommandMailbox);
if (Controller->V1.PreviousCommandMailbox1->Words[0] == 0 ||
Controller->V1.PreviousCommandMailbox2->Words[0] == 0)
DAC960_LA_HardwareMailboxNewCommand(ControllerBaseAddress);
Controller->V1.PreviousCommandMailbox2 =
Controller->V1.PreviousCommandMailbox1;
Controller->V1.PreviousCommandMailbox1 = NextCommandMailbox;
if (++NextCommandMailbox > Controller->V1.LastCommandMailbox)
NextCommandMailbox = Controller->V1.FirstCommandMailbox;
Controller->V1.NextCommandMailbox = NextCommandMailbox;
}
/*
DAC960_PG_QueueCommandDualMode queues Command for DAC960 PG Series
Controllers with Dual Mode Firmware.
*/
static void DAC960_PG_QueueCommandDualMode(DAC960_Command_T *Command)
{
DAC960_Controller_T *Controller = Command->Controller;
void __iomem *ControllerBaseAddress = Controller->BaseAddress;
DAC960_V1_CommandMailbox_T *CommandMailbox = &Command->V1.CommandMailbox;
DAC960_V1_CommandMailbox_T *NextCommandMailbox =
Controller->V1.NextCommandMailbox;
CommandMailbox->Common.CommandIdentifier = Command->CommandIdentifier;
DAC960_PG_WriteCommandMailbox(NextCommandMailbox, CommandMailbox);
if (Controller->V1.PreviousCommandMailbox1->Words[0] == 0 ||
Controller->V1.PreviousCommandMailbox2->Words[0] == 0)
DAC960_PG_MemoryMailboxNewCommand(ControllerBaseAddress);
Controller->V1.PreviousCommandMailbox2 =
Controller->V1.PreviousCommandMailbox1;
Controller->V1.PreviousCommandMailbox1 = NextCommandMailbox;
if (++NextCommandMailbox > Controller->V1.LastCommandMailbox)
NextCommandMailbox = Controller->V1.FirstCommandMailbox;
Controller->V1.NextCommandMailbox = NextCommandMailbox;
}
/*
DAC960_PG_QueueCommandSingleMode queues Command for DAC960 PG Series
Controllers with Single Mode Firmware.
*/
static void DAC960_PG_QueueCommandSingleMode(DAC960_Command_T *Command)
{
DAC960_Controller_T *Controller = Command->Controller;
void __iomem *ControllerBaseAddress = Controller->BaseAddress;
DAC960_V1_CommandMailbox_T *CommandMailbox = &Command->V1.CommandMailbox;
DAC960_V1_CommandMailbox_T *NextCommandMailbox =
Controller->V1.NextCommandMailbox;
CommandMailbox->Common.CommandIdentifier = Command->CommandIdentifier;
DAC960_PG_WriteCommandMailbox(NextCommandMailbox, CommandMailbox);
if (Controller->V1.PreviousCommandMailbox1->Words[0] == 0 ||
Controller->V1.PreviousCommandMailbox2->Words[0] == 0)
DAC960_PG_HardwareMailboxNewCommand(ControllerBaseAddress);
Controller->V1.PreviousCommandMailbox2 =
Controller->V1.PreviousCommandMailbox1;
Controller->V1.PreviousCommandMailbox1 = NextCommandMailbox;
if (++NextCommandMailbox > Controller->V1.LastCommandMailbox)
NextCommandMailbox = Controller->V1.FirstCommandMailbox;
Controller->V1.NextCommandMailbox = NextCommandMailbox;
}
/*
DAC960_PD_QueueCommand queues Command for DAC960 PD Series Controllers.
*/
static void DAC960_PD_QueueCommand(DAC960_Command_T *Command)
{
DAC960_Controller_T *Controller = Command->Controller;
void __iomem *ControllerBaseAddress = Controller->BaseAddress;
DAC960_V1_CommandMailbox_T *CommandMailbox = &Command->V1.CommandMailbox;
CommandMailbox->Common.CommandIdentifier = Command->CommandIdentifier;
while (DAC960_PD_MailboxFullP(ControllerBaseAddress))
udelay(1);
DAC960_PD_WriteCommandMailbox(ControllerBaseAddress, CommandMailbox);
DAC960_PD_NewCommand(ControllerBaseAddress);
}
/*
DAC960_P_QueueCommand queues Command for DAC960 P Series Controllers.
*/
static void DAC960_P_QueueCommand(DAC960_Command_T *Command)
{
DAC960_Controller_T *Controller = Command->Controller;
void __iomem *ControllerBaseAddress = Controller->BaseAddress;
DAC960_V1_CommandMailbox_T *CommandMailbox = &Command->V1.CommandMailbox;
CommandMailbox->Common.CommandIdentifier = Command->CommandIdentifier;
switch (CommandMailbox->Common.CommandOpcode)
{
case DAC960_V1_Enquiry:
CommandMailbox->Common.CommandOpcode = DAC960_V1_Enquiry_Old;
break;
case DAC960_V1_GetDeviceState:
CommandMailbox->Common.CommandOpcode = DAC960_V1_GetDeviceState_Old;
break;
case DAC960_V1_Read:
CommandMailbox->Common.CommandOpcode = DAC960_V1_Read_Old;
DAC960_PD_To_P_TranslateReadWriteCommand(CommandMailbox);
break;
case DAC960_V1_Write:
CommandMailbox->Common.CommandOpcode = DAC960_V1_Write_Old;
DAC960_PD_To_P_TranslateReadWriteCommand(CommandMailbox);
break;
case DAC960_V1_ReadWithScatterGather:
CommandMailbox->Common.CommandOpcode =
DAC960_V1_ReadWithScatterGather_Old;
DAC960_PD_To_P_TranslateReadWriteCommand(CommandMailbox);
break;
case DAC960_V1_WriteWithScatterGather:
CommandMailbox->Common.CommandOpcode =
DAC960_V1_WriteWithScatterGather_Old;
DAC960_PD_To_P_TranslateReadWriteCommand(CommandMailbox);
break;
default:
break;
}
while (DAC960_PD_MailboxFullP(ControllerBaseAddress))
udelay(1);
DAC960_PD_WriteCommandMailbox(ControllerBaseAddress, CommandMailbox);
DAC960_PD_NewCommand(ControllerBaseAddress);
}
/*
DAC960_ExecuteCommand executes Command and waits for completion.
*/
static void DAC960_ExecuteCommand(DAC960_Command_T *Command)
{
DAC960_Controller_T *Controller = Command->Controller;
DECLARE_COMPLETION_ONSTACK(Completion);
unsigned long flags;
Command->Completion = &Completion;
spin_lock_irqsave(&Controller->queue_lock, flags);
DAC960_QueueCommand(Command);
spin_unlock_irqrestore(&Controller->queue_lock, flags);
if (in_interrupt())
return;
wait_for_completion(&Completion);
}
/*
DAC960_V1_ExecuteType3 executes a DAC960 V1 Firmware Controller Type 3
Command and waits for completion. It returns true on success and false
on failure.
*/
static bool DAC960_V1_ExecuteType3(DAC960_Controller_T *Controller,
DAC960_V1_CommandOpcode_T CommandOpcode,
dma_addr_t DataDMA)
{
DAC960_Command_T *Command = DAC960_AllocateCommand(Controller);
DAC960_V1_CommandMailbox_T *CommandMailbox = &Command->V1.CommandMailbox;
DAC960_V1_CommandStatus_T CommandStatus;
DAC960_V1_ClearCommand(Command);
Command->CommandType = DAC960_ImmediateCommand;
CommandMailbox->Type3.CommandOpcode = CommandOpcode;
CommandMailbox->Type3.BusAddress = DataDMA;
DAC960_ExecuteCommand(Command);
CommandStatus = Command->V1.CommandStatus;
DAC960_DeallocateCommand(Command);
return (CommandStatus == DAC960_V1_NormalCompletion);
}
/*
DAC960_V1_ExecuteTypeB executes a DAC960 V1 Firmware Controller Type 3B
Command and waits for completion. It returns true on success and false
on failure.
*/
static bool DAC960_V1_ExecuteType3B(DAC960_Controller_T *Controller,
DAC960_V1_CommandOpcode_T CommandOpcode,
unsigned char CommandOpcode2,
dma_addr_t DataDMA)
{
DAC960_Command_T *Command = DAC960_AllocateCommand(Controller);
DAC960_V1_CommandMailbox_T *CommandMailbox = &Command->V1.CommandMailbox;
DAC960_V1_CommandStatus_T CommandStatus;
DAC960_V1_ClearCommand(Command);
Command->CommandType = DAC960_ImmediateCommand;
CommandMailbox->Type3B.CommandOpcode = CommandOpcode;
CommandMailbox->Type3B.CommandOpcode2 = CommandOpcode2;
CommandMailbox->Type3B.BusAddress = DataDMA;
DAC960_ExecuteCommand(Command);
CommandStatus = Command->V1.CommandStatus;
DAC960_DeallocateCommand(Command);
return (CommandStatus == DAC960_V1_NormalCompletion);
}
/*
DAC960_V1_ExecuteType3D executes a DAC960 V1 Firmware Controller Type 3D
Command and waits for completion. It returns true on success and false
on failure.
*/
static bool DAC960_V1_ExecuteType3D(DAC960_Controller_T *Controller,
DAC960_V1_CommandOpcode_T CommandOpcode,
unsigned char Channel,
unsigned char TargetID,
dma_addr_t DataDMA)
{
DAC960_Command_T *Command = DAC960_AllocateCommand(Controller);
DAC960_V1_CommandMailbox_T *CommandMailbox = &Command->V1.CommandMailbox;
DAC960_V1_CommandStatus_T CommandStatus;
DAC960_V1_ClearCommand(Command);
Command->CommandType = DAC960_ImmediateCommand;
CommandMailbox->Type3D.CommandOpcode = CommandOpcode;
CommandMailbox->Type3D.Channel = Channel;
CommandMailbox->Type3D.TargetID = TargetID;
CommandMailbox->Type3D.BusAddress = DataDMA;
DAC960_ExecuteCommand(Command);
CommandStatus = Command->V1.CommandStatus;
DAC960_DeallocateCommand(Command);
return (CommandStatus == DAC960_V1_NormalCompletion);
}
/*
DAC960_V2_GeneralInfo executes a DAC960 V2 Firmware General Information
Reading IOCTL Command and waits for completion. It returns true on success
and false on failure.
Return data in The controller's HealthStatusBuffer, which is dma-able memory
*/
static bool DAC960_V2_GeneralInfo(DAC960_Controller_T *Controller)
{
DAC960_Command_T *Command = DAC960_AllocateCommand(Controller);
DAC960_V2_CommandMailbox_T *CommandMailbox = &Command->V2.CommandMailbox;
DAC960_V2_CommandStatus_T CommandStatus;
DAC960_V2_ClearCommand(Command);
Command->CommandType = DAC960_ImmediateCommand;
CommandMailbox->Common.CommandOpcode = DAC960_V2_IOCTL;
CommandMailbox->Common.CommandControlBits
.DataTransferControllerToHost = true;
CommandMailbox->Common.CommandControlBits
.NoAutoRequestSense = true;
CommandMailbox->Common.DataTransferSize = sizeof(DAC960_V2_HealthStatusBuffer_T);
CommandMailbox->Common.IOCTL_Opcode = DAC960_V2_GetHealthStatus;
CommandMailbox->Common.DataTransferMemoryAddress
.ScatterGatherSegments[0]
.SegmentDataPointer =
Controller->V2.HealthStatusBufferDMA;
CommandMailbox->Common.DataTransferMemoryAddress
.ScatterGatherSegments[0]
.SegmentByteCount =
CommandMailbox->Common.DataTransferSize;
DAC960_ExecuteCommand(Command);
CommandStatus = Command->V2.CommandStatus;
DAC960_DeallocateCommand(Command);
return (CommandStatus == DAC960_V2_NormalCompletion);
}
/*
DAC960_V2_ControllerInfo executes a DAC960 V2 Firmware Controller
Information Reading IOCTL Command and waits for completion. It returns
true on success and false on failure.
Data is returned in the controller's V2.NewControllerInformation dma-able
memory buffer.
*/
static bool DAC960_V2_NewControllerInfo(DAC960_Controller_T *Controller)
{
DAC960_Command_T *Command = DAC960_AllocateCommand(Controller);
DAC960_V2_CommandMailbox_T *CommandMailbox = &Command->V2.CommandMailbox;
DAC960_V2_CommandStatus_T CommandStatus;
DAC960_V2_ClearCommand(Command);
Command->CommandType = DAC960_ImmediateCommand;
CommandMailbox->ControllerInfo.CommandOpcode = DAC960_V2_IOCTL;
CommandMailbox->ControllerInfo.CommandControlBits
.DataTransferControllerToHost = true;
CommandMailbox->ControllerInfo.CommandControlBits
.NoAutoRequestSense = true;
CommandMailbox->ControllerInfo.DataTransferSize = sizeof(DAC960_V2_ControllerInfo_T);
CommandMailbox->ControllerInfo.ControllerNumber = 0;
CommandMailbox->ControllerInfo.IOCTL_Opcode = DAC960_V2_GetControllerInfo;
CommandMailbox->ControllerInfo.DataTransferMemoryAddress
.ScatterGatherSegments[0]
.SegmentDataPointer =
Controller->V2.NewControllerInformationDMA;
CommandMailbox->ControllerInfo.DataTransferMemoryAddress
.ScatterGatherSegments[0]
.SegmentByteCount =
CommandMailbox->ControllerInfo.DataTransferSize;
DAC960_ExecuteCommand(Command);
CommandStatus = Command->V2.CommandStatus;
DAC960_DeallocateCommand(Command);
return (CommandStatus == DAC960_V2_NormalCompletion);
}
/*
DAC960_V2_LogicalDeviceInfo executes a DAC960 V2 Firmware Controller Logical
Device Information Reading IOCTL Command and waits for completion. It
returns true on success and false on failure.
Data is returned in the controller's V2.NewLogicalDeviceInformation
*/
static bool DAC960_V2_NewLogicalDeviceInfo(DAC960_Controller_T *Controller,
unsigned short LogicalDeviceNumber)
{
DAC960_Command_T *Command = DAC960_AllocateCommand(Controller);
DAC960_V2_CommandMailbox_T *CommandMailbox = &Command->V2.CommandMailbox;
DAC960_V2_CommandStatus_T CommandStatus;
DAC960_V2_ClearCommand(Command);
Command->CommandType = DAC960_ImmediateCommand;
CommandMailbox->LogicalDeviceInfo.CommandOpcode =
DAC960_V2_IOCTL;
CommandMailbox->LogicalDeviceInfo.CommandControlBits
.DataTransferControllerToHost = true;
CommandMailbox->LogicalDeviceInfo.CommandControlBits
.NoAutoRequestSense = true;
CommandMailbox->LogicalDeviceInfo.DataTransferSize =
sizeof(DAC960_V2_LogicalDeviceInfo_T);
CommandMailbox->LogicalDeviceInfo.LogicalDevice.LogicalDeviceNumber =
LogicalDeviceNumber;
CommandMailbox->LogicalDeviceInfo.IOCTL_Opcode = DAC960_V2_GetLogicalDeviceInfoValid;
CommandMailbox->LogicalDeviceInfo.DataTransferMemoryAddress
.ScatterGatherSegments[0]
.SegmentDataPointer =
Controller->V2.NewLogicalDeviceInformationDMA;
CommandMailbox->LogicalDeviceInfo.DataTransferMemoryAddress
.ScatterGatherSegments[0]
.SegmentByteCount =
CommandMailbox->LogicalDeviceInfo.DataTransferSize;
DAC960_ExecuteCommand(Command);
CommandStatus = Command->V2.CommandStatus;
DAC960_DeallocateCommand(Command);
return (CommandStatus == DAC960_V2_NormalCompletion);
}
/*
DAC960_V2_PhysicalDeviceInfo executes a DAC960 V2 Firmware Controller "Read
Physical Device Information" IOCTL Command and waits for completion. It
returns true on success and false on failure.
The Channel, TargetID, LogicalUnit arguments should be 0 the first time
this function is called for a given controller. This will return data
for the "first" device on that controller. The returned data includes a
Channel, TargetID, LogicalUnit that can be passed in to this routine to
get data for the NEXT device on that controller.
Data is stored in the controller's V2.NewPhysicalDeviceInfo dma-able
memory buffer.
*/
static bool DAC960_V2_NewPhysicalDeviceInfo(DAC960_Controller_T *Controller,
unsigned char Channel,
unsigned char TargetID,
unsigned char LogicalUnit)
{
DAC960_Command_T *Command = DAC960_AllocateCommand(Controller);
DAC960_V2_CommandMailbox_T *CommandMailbox = &Command->V2.CommandMailbox;
DAC960_V2_CommandStatus_T CommandStatus;
DAC960_V2_ClearCommand(Command);
Command->CommandType = DAC960_ImmediateCommand;
CommandMailbox->PhysicalDeviceInfo.CommandOpcode = DAC960_V2_IOCTL;
CommandMailbox->PhysicalDeviceInfo.CommandControlBits
.DataTransferControllerToHost = true;
CommandMailbox->PhysicalDeviceInfo.CommandControlBits
.NoAutoRequestSense = true;
CommandMailbox->PhysicalDeviceInfo.DataTransferSize =
sizeof(DAC960_V2_PhysicalDeviceInfo_T);
CommandMailbox->PhysicalDeviceInfo.PhysicalDevice.LogicalUnit = LogicalUnit;
CommandMailbox->PhysicalDeviceInfo.PhysicalDevice.TargetID = TargetID;
CommandMailbox->PhysicalDeviceInfo.PhysicalDevice.Channel = Channel;
CommandMailbox->PhysicalDeviceInfo.IOCTL_Opcode =
DAC960_V2_GetPhysicalDeviceInfoValid;
CommandMailbox->PhysicalDeviceInfo.DataTransferMemoryAddress
.ScatterGatherSegments[0]
.SegmentDataPointer =
Controller->V2.NewPhysicalDeviceInformationDMA;
CommandMailbox->PhysicalDeviceInfo.DataTransferMemoryAddress
.ScatterGatherSegments[0]
.SegmentByteCount =
CommandMailbox->PhysicalDeviceInfo.DataTransferSize;
DAC960_ExecuteCommand(Command);
CommandStatus = Command->V2.CommandStatus;
DAC960_DeallocateCommand(Command);
return (CommandStatus == DAC960_V2_NormalCompletion);
}
static void DAC960_V2_ConstructNewUnitSerialNumber(
DAC960_Controller_T *Controller,
DAC960_V2_CommandMailbox_T *CommandMailbox, int Channel, int TargetID,
int LogicalUnit)
{
CommandMailbox->SCSI_10.CommandOpcode = DAC960_V2_SCSI_10_Passthru;
CommandMailbox->SCSI_10.CommandControlBits
.DataTransferControllerToHost = true;
CommandMailbox->SCSI_10.CommandControlBits
.NoAutoRequestSense = true;
CommandMailbox->SCSI_10.DataTransferSize =
sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T);
CommandMailbox->SCSI_10.PhysicalDevice.LogicalUnit = LogicalUnit;
CommandMailbox->SCSI_10.PhysicalDevice.TargetID = TargetID;
CommandMailbox->SCSI_10.PhysicalDevice.Channel = Channel;
CommandMailbox->SCSI_10.CDBLength = 6;
CommandMailbox->SCSI_10.SCSI_CDB[0] = 0x12; /* INQUIRY */
CommandMailbox->SCSI_10.SCSI_CDB[1] = 1; /* EVPD = 1 */
CommandMailbox->SCSI_10.SCSI_CDB[2] = 0x80; /* Page Code */
CommandMailbox->SCSI_10.SCSI_CDB[3] = 0; /* Reserved */
CommandMailbox->SCSI_10.SCSI_CDB[4] =
sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T);
CommandMailbox->SCSI_10.SCSI_CDB[5] = 0; /* Control */
CommandMailbox->SCSI_10.DataTransferMemoryAddress
.ScatterGatherSegments[0]
.SegmentDataPointer =
Controller->V2.NewInquiryUnitSerialNumberDMA;
CommandMailbox->SCSI_10.DataTransferMemoryAddress
.ScatterGatherSegments[0]
.SegmentByteCount =
CommandMailbox->SCSI_10.DataTransferSize;
}
/*
DAC960_V2_NewUnitSerialNumber executes an SCSI pass-through
Inquiry command to a SCSI device identified by Channel number,
Target id, Logical Unit Number. This function Waits for completion
of the command.
The return data includes Unit Serial Number information for the
specified device.
Data is stored in the controller's V2.NewPhysicalDeviceInfo dma-able
memory buffer.
*/
static bool DAC960_V2_NewInquiryUnitSerialNumber(DAC960_Controller_T *Controller,
int Channel, int TargetID, int LogicalUnit)
{
DAC960_Command_T *Command;
DAC960_V2_CommandMailbox_T *CommandMailbox;
DAC960_V2_CommandStatus_T CommandStatus;
Command = DAC960_AllocateCommand(Controller);
CommandMailbox = &Command->V2.CommandMailbox;
DAC960_V2_ClearCommand(Command);
Command->CommandType = DAC960_ImmediateCommand;
DAC960_V2_ConstructNewUnitSerialNumber(Controller, CommandMailbox,
Channel, TargetID, LogicalUnit);
DAC960_ExecuteCommand(Command);
CommandStatus = Command->V2.CommandStatus;
DAC960_DeallocateCommand(Command);
return (CommandStatus == DAC960_V2_NormalCompletion);
}
/*
DAC960_V2_DeviceOperation executes a DAC960 V2 Firmware Controller Device
Operation IOCTL Command and waits for completion. It returns true on
success and false on failure.
*/
static bool DAC960_V2_DeviceOperation(DAC960_Controller_T *Controller,
DAC960_V2_IOCTL_Opcode_T IOCTL_Opcode,
DAC960_V2_OperationDevice_T
OperationDevice)
{
DAC960_Command_T *Command = DAC960_AllocateCommand(Controller);
DAC960_V2_CommandMailbox_T *CommandMailbox = &Command->V2.CommandMailbox;
DAC960_V2_CommandStatus_T CommandStatus;
DAC960_V2_ClearCommand(Command);
Command->CommandType = DAC960_ImmediateCommand;
CommandMailbox->DeviceOperation.CommandOpcode = DAC960_V2_IOCTL;
CommandMailbox->DeviceOperation.CommandControlBits
.DataTransferControllerToHost = true;
CommandMailbox->DeviceOperation.CommandControlBits
.NoAutoRequestSense = true;
CommandMailbox->DeviceOperation.IOCTL_Opcode = IOCTL_Opcode;
CommandMailbox->DeviceOperation.OperationDevice = OperationDevice;
DAC960_ExecuteCommand(Command);
CommandStatus = Command->V2.CommandStatus;
DAC960_DeallocateCommand(Command);
return (CommandStatus == DAC960_V2_NormalCompletion);
}
/*
DAC960_V1_EnableMemoryMailboxInterface enables the Memory Mailbox Interface
for DAC960 V1 Firmware Controllers.
PD and P controller types have no memory mailbox, but still need the
other dma mapped memory.
*/
static bool DAC960_V1_EnableMemoryMailboxInterface(DAC960_Controller_T
*Controller)
{
void __iomem *ControllerBaseAddress = Controller->BaseAddress;
DAC960_HardwareType_T hw_type = Controller->HardwareType;
struct pci_dev *PCI_Device = Controller->PCIDevice;
struct dma_loaf *DmaPages = &Controller->DmaPages;
size_t DmaPagesSize;
size_t CommandMailboxesSize;
size_t StatusMailboxesSize;
DAC960_V1_CommandMailbox_T *CommandMailboxesMemory;
dma_addr_t CommandMailboxesMemoryDMA;
DAC960_V1_StatusMailbox_T *StatusMailboxesMemory;
dma_addr_t StatusMailboxesMemoryDMA;
DAC960_V1_CommandMailbox_T CommandMailbox;
DAC960_V1_CommandStatus_T CommandStatus;
int TimeoutCounter;
int i;
if (pci_set_dma_mask(Controller->PCIDevice, DMA_32BIT_MASK))
return DAC960_Failure(Controller, "DMA mask out of range");
Controller->BounceBufferLimit = DMA_32BIT_MASK;
if ((hw_type == DAC960_PD_Controller) || (hw_type == DAC960_P_Controller)) {
CommandMailboxesSize = 0;
StatusMailboxesSize = 0;
} else {
CommandMailboxesSize = DAC960_V1_CommandMailboxCount * sizeof(DAC960_V1_CommandMailbox_T);
StatusMailboxesSize = DAC960_V1_StatusMailboxCount * sizeof(DAC960_V1_StatusMailbox_T);
}
DmaPagesSize = CommandMailboxesSize + StatusMailboxesSize +
sizeof(DAC960_V1_DCDB_T) + sizeof(DAC960_V1_Enquiry_T) +
sizeof(DAC960_V1_ErrorTable_T) + sizeof(DAC960_V1_EventLogEntry_T) +
sizeof(DAC960_V1_RebuildProgress_T) +
sizeof(DAC960_V1_LogicalDriveInformationArray_T) +
sizeof(DAC960_V1_BackgroundInitializationStatus_T) +
sizeof(DAC960_V1_DeviceState_T) + sizeof(DAC960_SCSI_Inquiry_T) +
sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T);
if (!init_dma_loaf(PCI_Device, DmaPages, DmaPagesSize))
return false;
if ((hw_type == DAC960_PD_Controller) || (hw_type == DAC960_P_Controller))
goto skip_mailboxes;
CommandMailboxesMemory = slice_dma_loaf(DmaPages,
CommandMailboxesSize, &CommandMailboxesMemoryDMA);
/* These are the base addresses for the command memory mailbox array */
Controller->V1.FirstCommandMailbox = CommandMailboxesMemory;
Controller->V1.FirstCommandMailboxDMA = CommandMailboxesMemoryDMA;
CommandMailboxesMemory += DAC960_V1_CommandMailboxCount - 1;
Controller->V1.LastCommandMailbox = CommandMailboxesMemory;
Controller->V1.NextCommandMailbox = Controller->V1.FirstCommandMailbox;
Controller->V1.PreviousCommandMailbox1 = Controller->V1.LastCommandMailbox;
Controller->V1.PreviousCommandMailbox2 =
Controller->V1.LastCommandMailbox - 1;
/* These are the base addresses for the status memory mailbox array */
StatusMailboxesMemory = slice_dma_loaf(DmaPages,
StatusMailboxesSize, &StatusMailboxesMemoryDMA);
Controller->V1.FirstStatusMailbox = StatusMailboxesMemory;
Controller->V1.FirstStatusMailboxDMA = StatusMailboxesMemoryDMA;
StatusMailboxesMemory += DAC960_V1_StatusMailboxCount - 1;
Controller->V1.LastStatusMailbox = StatusMailboxesMemory;
Controller->V1.NextStatusMailbox = Controller->V1.FirstStatusMailbox;
skip_mailboxes:
Controller->V1.MonitoringDCDB = slice_dma_loaf(DmaPages,
sizeof(DAC960_V1_DCDB_T),
&Controller->V1.MonitoringDCDB_DMA);
Controller->V1.NewEnquiry = slice_dma_loaf(DmaPages,
sizeof(DAC960_V1_Enquiry_T),
&Controller->V1.NewEnquiryDMA);
Controller->V1.NewErrorTable = slice_dma_loaf(DmaPages,
sizeof(DAC960_V1_ErrorTable_T),
&Controller->V1.NewErrorTableDMA);
Controller->V1.EventLogEntry = slice_dma_loaf(DmaPages,
sizeof(DAC960_V1_EventLogEntry_T),
&Controller->V1.EventLogEntryDMA);
Controller->V1.RebuildProgress = slice_dma_loaf(DmaPages,
sizeof(DAC960_V1_RebuildProgress_T),
&Controller->V1.RebuildProgressDMA);
Controller->V1.NewLogicalDriveInformation = slice_dma_loaf(DmaPages,
sizeof(DAC960_V1_LogicalDriveInformationArray_T),
&Controller->V1.NewLogicalDriveInformationDMA);
Controller->V1.BackgroundInitializationStatus = slice_dma_loaf(DmaPages,
sizeof(DAC960_V1_BackgroundInitializationStatus_T),
&Controller->V1.BackgroundInitializationStatusDMA);
Controller->V1.NewDeviceState = slice_dma_loaf(DmaPages,
sizeof(DAC960_V1_DeviceState_T),
&Controller->V1.NewDeviceStateDMA);
Controller->V1.NewInquiryStandardData = slice_dma_loaf(DmaPages,
sizeof(DAC960_SCSI_Inquiry_T),
&Controller->V1.NewInquiryStandardDataDMA);
Controller->V1.NewInquiryUnitSerialNumber = slice_dma_loaf(DmaPages,
sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T),
&Controller->V1.NewInquiryUnitSerialNumberDMA);
if ((hw_type == DAC960_PD_Controller) || (hw_type == DAC960_P_Controller))
return true;
/* Enable the Memory Mailbox Interface. */
Controller->V1.DualModeMemoryMailboxInterface = true;
CommandMailbox.TypeX.CommandOpcode = 0x2B;
CommandMailbox.TypeX.CommandIdentifier = 0;
CommandMailbox.TypeX.CommandOpcode2 = 0x14;
CommandMailbox.TypeX.CommandMailboxesBusAddress =
Controller->V1.FirstCommandMailboxDMA;
CommandMailbox.TypeX.StatusMailboxesBusAddress =
Controller->V1.FirstStatusMailboxDMA;
#define TIMEOUT_COUNT 1000000
for (i = 0; i < 2; i++)
switch (Controller->HardwareType)
{
case DAC960_LA_Controller:
TimeoutCounter = TIMEOUT_COUNT;
while (--TimeoutCounter >= 0)
{
if (!DAC960_LA_HardwareMailboxFullP(ControllerBaseAddress))
break;
udelay(10);
}
if (TimeoutCounter < 0) return false;
DAC960_LA_WriteHardwareMailbox(ControllerBaseAddress, &CommandMailbox);
DAC960_LA_HardwareMailboxNewCommand(ControllerBaseAddress);
TimeoutCounter = TIMEOUT_COUNT;
while (--TimeoutCounter >= 0)
{
if (DAC960_LA_HardwareMailboxStatusAvailableP(
ControllerBaseAddress))
break;
udelay(10);
}
if (TimeoutCounter < 0) return false;
CommandStatus = DAC960_LA_ReadStatusRegister(ControllerBaseAddress);
DAC960_LA_AcknowledgeHardwareMailboxInterrupt(ControllerBaseAddress);
DAC960_LA_AcknowledgeHardwareMailboxStatus(ControllerBaseAddress);
if (CommandStatus == DAC960_V1_NormalCompletion) return true;
Controller->V1.DualModeMemoryMailboxInterface = false;
CommandMailbox.TypeX.CommandOpcode2 = 0x10;
break;
case DAC960_PG_Controller:
TimeoutCounter = TIMEOUT_COUNT;
while (--TimeoutCounter >= 0)
{
if (!DAC960_PG_HardwareMailboxFullP(ControllerBaseAddress))
break;
udelay(10);
}
if (TimeoutCounter < 0) return false;
DAC960_PG_WriteHardwareMailbox(ControllerBaseAddress, &CommandMailbox);
DAC960_PG_HardwareMailboxNewCommand(ControllerBaseAddress);
TimeoutCounter = TIMEOUT_COUNT;
while (--TimeoutCounter >= 0)
{
if (DAC960_PG_HardwareMailboxStatusAvailableP(
ControllerBaseAddress))
break;
udelay(10);
}
if (TimeoutCounter < 0) return false;
CommandStatus = DAC960_PG_ReadStatusRegister(ControllerBaseAddress);
DAC960_PG_AcknowledgeHardwareMailboxInterrupt(ControllerBaseAddress);
DAC960_PG_AcknowledgeHardwareMailboxStatus(ControllerBaseAddress);
if (CommandStatus == DAC960_V1_NormalCompletion) return true;
Controller->V1.DualModeMemoryMailboxInterface = false;
CommandMailbox.TypeX.CommandOpcode2 = 0x10;
break;
default:
DAC960_Failure(Controller, "Unknown Controller Type\n");
break;
}
return false;
}
/*
DAC960_V2_EnableMemoryMailboxInterface enables the Memory Mailbox Interface
for DAC960 V2 Firmware Controllers.
Aggregate the space needed for the controller's memory mailbox and
the other data structures that will be targets of dma transfers with
the controller. Allocate a dma-mapped region of memory to hold these
structures. Then, save CPU pointers and dma_addr_t values to reference
the structures that are contained in that region.
*/
static bool DAC960_V2_EnableMemoryMailboxInterface(DAC960_Controller_T
*Controller)
{
void __iomem *ControllerBaseAddress = Controller->BaseAddress;
struct pci_dev *PCI_Device = Controller->PCIDevice;
struct dma_loaf *DmaPages = &Controller->DmaPages;
size_t DmaPagesSize;
size_t CommandMailboxesSize;
size_t StatusMailboxesSize;
DAC960_V2_CommandMailbox_T *CommandMailboxesMemory;
dma_addr_t CommandMailboxesMemoryDMA;
DAC960_V2_StatusMailbox_T *StatusMailboxesMemory;
dma_addr_t StatusMailboxesMemoryDMA;
DAC960_V2_CommandMailbox_T *CommandMailbox;
dma_addr_t CommandMailboxDMA;
DAC960_V2_CommandStatus_T CommandStatus;
if (!pci_set_dma_mask(Controller->PCIDevice, DMA_64BIT_MASK))
Controller->BounceBufferLimit = DMA_64BIT_MASK;
else if (!pci_set_dma_mask(Controller->PCIDevice, DMA_32BIT_MASK))
Controller->BounceBufferLimit = DMA_32BIT_MASK;
else
return DAC960_Failure(Controller, "DMA mask out of range");
/* This is a temporary dma mapping, used only in the scope of this function */
CommandMailbox = pci_alloc_consistent(PCI_Device,
sizeof(DAC960_V2_CommandMailbox_T), &CommandMailboxDMA);
if (CommandMailbox == NULL)
return false;
CommandMailboxesSize = DAC960_V2_CommandMailboxCount * sizeof(DAC960_V2_CommandMailbox_T);
StatusMailboxesSize = DAC960_V2_StatusMailboxCount * sizeof(DAC960_V2_StatusMailbox_T);
DmaPagesSize =
CommandMailboxesSize + StatusMailboxesSize +
sizeof(DAC960_V2_HealthStatusBuffer_T) +
sizeof(DAC960_V2_ControllerInfo_T) +
sizeof(DAC960_V2_LogicalDeviceInfo_T) +
sizeof(DAC960_V2_PhysicalDeviceInfo_T) +
sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T) +
sizeof(DAC960_V2_Event_T) +
sizeof(DAC960_V2_PhysicalToLogicalDevice_T);
if (!init_dma_loaf(PCI_Device, DmaPages, DmaPagesSize)) {
pci_free_consistent(PCI_Device, sizeof(DAC960_V2_CommandMailbox_T),
CommandMailbox, CommandMailboxDMA);
return false;
}
CommandMailboxesMemory = slice_dma_loaf(DmaPages,
CommandMailboxesSize, &CommandMailboxesMemoryDMA);
/* These are the base addresses for the command memory mailbox array */
Controller->V2.FirstCommandMailbox = CommandMailboxesMemory;
Controller->V2.FirstCommandMailboxDMA = CommandMailboxesMemoryDMA;
CommandMailboxesMemory += DAC960_V2_CommandMailboxCount - 1;
Controller->V2.LastCommandMailbox = CommandMailboxesMemory;
Controller->V2.NextCommandMailbox = Controller->V2.FirstCommandMailbox;
Controller->V2.PreviousCommandMailbox1 = Controller->V2.LastCommandMailbox;
Controller->V2.PreviousCommandMailbox2 =
Controller->V2.LastCommandMailbox - 1;
/* These are the base addresses for the status memory mailbox array */
StatusMailboxesMemory = slice_dma_loaf(DmaPages,
StatusMailboxesSize, &StatusMailboxesMemoryDMA);
Controller->V2.FirstStatusMailbox = StatusMailboxesMemory;
Controller->V2.FirstStatusMailboxDMA = StatusMailboxesMemoryDMA;
StatusMailboxesMemory += DAC960_V2_StatusMailboxCount - 1;
Controller->V2.LastStatusMailbox = StatusMailboxesMemory;
Controller->V2.NextStatusMailbox = Controller->V2.FirstStatusMailbox;
Controller->V2.HealthStatusBuffer = slice_dma_loaf(DmaPages,
sizeof(DAC960_V2_HealthStatusBuffer_T),
&Controller->V2.HealthStatusBufferDMA);
Controller->V2.NewControllerInformation = slice_dma_loaf(DmaPages,
sizeof(DAC960_V2_ControllerInfo_T),
&Controller->V2.NewControllerInformationDMA);
Controller->V2.NewLogicalDeviceInformation = slice_dma_loaf(DmaPages,
sizeof(DAC960_V2_LogicalDeviceInfo_T),
&Controller->V2.NewLogicalDeviceInformationDMA);
Controller->V2.NewPhysicalDeviceInformation = slice_dma_loaf(DmaPages,
sizeof(DAC960_V2_PhysicalDeviceInfo_T),
&Controller->V2.NewPhysicalDeviceInformationDMA);
Controller->V2.NewInquiryUnitSerialNumber = slice_dma_loaf(DmaPages,
sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T),
&Controller->V2.NewInquiryUnitSerialNumberDMA);
Controller->V2.Event = slice_dma_loaf(DmaPages,
sizeof(DAC960_V2_Event_T),
&Controller->V2.EventDMA);
Controller->V2.PhysicalToLogicalDevice = slice_dma_loaf(DmaPages,
sizeof(DAC960_V2_PhysicalToLogicalDevice_T),
&Controller->V2.PhysicalToLogicalDeviceDMA);
/*
Enable the Memory Mailbox Interface.
I don't know why we can't just use one of the memory mailboxes
we just allocated to do this, instead of using this temporary one.
Try this change later.
*/
memset(CommandMailbox, 0, sizeof(DAC960_V2_CommandMailbox_T));
CommandMailbox->SetMemoryMailbox.CommandIdentifier = 1;
CommandMailbox->SetMemoryMailbox.CommandOpcode = DAC960_V2_IOCTL;
CommandMailbox->SetMemoryMailbox.CommandControlBits.NoAutoRequestSense = true;
CommandMailbox->SetMemoryMailbox.FirstCommandMailboxSizeKB =
(DAC960_V2_CommandMailboxCount * sizeof(DAC960_V2_CommandMailbox_T)) >> 10;
CommandMailbox->SetMemoryMailbox.FirstStatusMailboxSizeKB =
(DAC960_V2_StatusMailboxCount * sizeof(DAC960_V2_StatusMailbox_T)) >> 10;
CommandMailbox->SetMemoryMailbox.SecondCommandMailboxSizeKB = 0;
CommandMailbox->SetMemoryMailbox.SecondStatusMailboxSizeKB = 0;
CommandMailbox->SetMemoryMailbox.RequestSenseSize = 0;
CommandMailbox->SetMemoryMailbox.IOCTL_Opcode = DAC960_V2_SetMemoryMailbox;
CommandMailbox->SetMemoryMailbox.HealthStatusBufferSizeKB = 1;
CommandMailbox->SetMemoryMailbox.HealthStatusBufferBusAddress =
Controller->V2.HealthStatusBufferDMA;
CommandMailbox->SetMemoryMailbox.FirstCommandMailboxBusAddress =
Controller->V2.FirstCommandMailboxDMA;
CommandMailbox->SetMemoryMailbox.FirstStatusMailboxBusAddress =
Controller->V2.FirstStatusMailboxDMA;
switch (Controller->HardwareType)
{
case DAC960_GEM_Controller:
while (DAC960_GEM_HardwareMailboxFullP(ControllerBaseAddress))
udelay(1);
DAC960_GEM_WriteHardwareMailbox(ControllerBaseAddress, CommandMailboxDMA);
DAC960_GEM_HardwareMailboxNewCommand(ControllerBaseAddress);
while (!DAC960_GEM_HardwareMailboxStatusAvailableP(ControllerBaseAddress))
udelay(1);
CommandStatus = DAC960_GEM_ReadCommandStatus(ControllerBaseAddress);
DAC960_GEM_AcknowledgeHardwareMailboxInterrupt(ControllerBaseAddress);
DAC960_GEM_AcknowledgeHardwareMailboxStatus(ControllerBaseAddress);
break;
case DAC960_BA_Controller:
while (DAC960_BA_HardwareMailboxFullP(ControllerBaseAddress))
udelay(1);
DAC960_BA_WriteHardwareMailbox(ControllerBaseAddress, CommandMailboxDMA);
DAC960_BA_HardwareMailboxNewCommand(ControllerBaseAddress);
while (!DAC960_BA_HardwareMailboxStatusAvailableP(ControllerBaseAddress))
udelay(1);
CommandStatus = DAC960_BA_ReadCommandStatus(ControllerBaseAddress);
DAC960_BA_AcknowledgeHardwareMailboxInterrupt(ControllerBaseAddress);
DAC960_BA_AcknowledgeHardwareMailboxStatus(ControllerBaseAddress);
break;
case DAC960_LP_Controller:
while (DAC960_LP_HardwareMailboxFullP(ControllerBaseAddress))
udelay(1);
DAC960_LP_WriteHardwareMailbox(ControllerBaseAddress, CommandMailboxDMA);
DAC960_LP_HardwareMailboxNewCommand(ControllerBaseAddress);
while (!DAC960_LP_HardwareMailboxStatusAvailableP(ControllerBaseAddress))
udelay(1);
CommandStatus = DAC960_LP_ReadCommandStatus(ControllerBaseAddress);
DAC960_LP_AcknowledgeHardwareMailboxInterrupt(ControllerBaseAddress);
DAC960_LP_AcknowledgeHardwareMailboxStatus(ControllerBaseAddress);
break;
default:
DAC960_Failure(Controller, "Unknown Controller Type\n");
CommandStatus = DAC960_V2_AbormalCompletion;
break;
}
pci_free_consistent(PCI_Device, sizeof(DAC960_V2_CommandMailbox_T),
CommandMailbox, CommandMailboxDMA);
return (CommandStatus == DAC960_V2_NormalCompletion);
}
/*
DAC960_V1_ReadControllerConfiguration reads the Configuration Information
from DAC960 V1 Firmware Controllers and initializes the Controller structure.
*/
static bool DAC960_V1_ReadControllerConfiguration(DAC960_Controller_T
*Controller)
{
DAC960_V1_Enquiry2_T *Enquiry2;
dma_addr_t Enquiry2DMA;
DAC960_V1_Config2_T *Config2;
dma_addr_t Config2DMA;
int LogicalDriveNumber, Channel, TargetID;
struct dma_loaf local_dma;
if (!init_dma_loaf(Controller->PCIDevice, &local_dma,
sizeof(DAC960_V1_Enquiry2_T) + sizeof(DAC960_V1_Config2_T)))
return DAC960_Failure(Controller, "LOGICAL DEVICE ALLOCATION");
Enquiry2 = slice_dma_loaf(&local_dma, sizeof(DAC960_V1_Enquiry2_T), &Enquiry2DMA);
Config2 = slice_dma_loaf(&local_dma, sizeof(DAC960_V1_Config2_T), &Config2DMA);
if (!DAC960_V1_ExecuteType3(Controller, DAC960_V1_Enquiry,
Controller->V1.NewEnquiryDMA)) {
free_dma_loaf(Controller->PCIDevice, &local_dma);
return DAC960_Failure(Controller, "ENQUIRY");
}
memcpy(&Controller->V1.Enquiry, Controller->V1.NewEnquiry,
sizeof(DAC960_V1_Enquiry_T));
if (!DAC960_V1_ExecuteType3(Controller, DAC960_V1_Enquiry2, Enquiry2DMA)) {
free_dma_loaf(Controller->PCIDevice, &local_dma);
return DAC960_Failure(Controller, "ENQUIRY2");
}
if (!DAC960_V1_ExecuteType3(Controller, DAC960_V1_ReadConfig2, Config2DMA)) {
free_dma_loaf(Controller->PCIDevice, &local_dma);
return DAC960_Failure(Controller, "READ CONFIG2");
}
if (!DAC960_V1_ExecuteType3(Controller, DAC960_V1_GetLogicalDriveInformation,
Controller->V1.NewLogicalDriveInformationDMA)) {
free_dma_loaf(Controller->PCIDevice, &local_dma);
return DAC960_Failure(Controller, "GET LOGICAL DRIVE INFORMATION");
}
memcpy(&Controller->V1.LogicalDriveInformation,
Controller->V1.NewLogicalDriveInformation,
sizeof(DAC960_V1_LogicalDriveInformationArray_T));
for (Channel = 0; Channel < Enquiry2->ActualChannels; Channel++)
for (TargetID = 0; TargetID < Enquiry2->MaxTargets; TargetID++) {
if (!DAC960_V1_ExecuteType3D(Controller, DAC960_V1_GetDeviceState,
Channel, TargetID,
Controller->V1.NewDeviceStateDMA)) {
free_dma_loaf(Controller->PCIDevice, &local_dma);
return DAC960_Failure(Controller, "GET DEVICE STATE");
}
memcpy(&Controller->V1.DeviceState[Channel][TargetID],
Controller->V1.NewDeviceState, sizeof(DAC960_V1_DeviceState_T));
}
/*
Initialize the Controller Model Name and Full Model Name fields.
*/
switch (Enquiry2->HardwareID.SubModel)
{
case DAC960_V1_P_PD_PU:
if (Enquiry2->SCSICapability.BusSpeed == DAC960_V1_Ultra)
strcpy(Controller->ModelName, "DAC960PU");
else strcpy(Controller->ModelName, "DAC960PD");
break;
case DAC960_V1_PL:
strcpy(Controller->ModelName, "DAC960PL");
break;
case DAC960_V1_PG:
strcpy(Controller->ModelName, "DAC960PG");
break;
case DAC960_V1_PJ:
strcpy(Controller->ModelName, "DAC960PJ");
break;
case DAC960_V1_PR:
strcpy(Controller->ModelName, "DAC960PR");
break;
case DAC960_V1_PT:
strcpy(Controller->ModelName, "DAC960PT");
break;
case DAC960_V1_PTL0:
strcpy(Controller->ModelName, "DAC960PTL0");
break;
case DAC960_V1_PRL:
strcpy(Controller->ModelName, "DAC960PRL");
break;
case DAC960_V1_PTL1:
strcpy(Controller->ModelName, "DAC960PTL1");
break;
case DAC960_V1_1164P:
strcpy(Controller->ModelName, "DAC1164P");
break;
default:
free_dma_loaf(Controller->PCIDevice, &local_dma);
return DAC960_Failure(Controller, "MODEL VERIFICATION");
}
strcpy(Controller->FullModelName, "Mylex ");
strcat(Controller->FullModelName, Controller->ModelName);
/*
Initialize the Controller Firmware Version field and verify that it
is a supported firmware version. The supported firmware versions are:
DAC1164P 5.06 and above
DAC960PTL/PRL/PJ/PG 4.06 and above
DAC960PU/PD/PL 3.51 and above
DAC960PU/PD/PL/P 2.73 and above
*/
#if defined(CONFIG_ALPHA)
/*
DEC Alpha machines were often equipped with DAC960 cards that were
OEMed from Mylex, and had their own custom firmware. Version 2.70,
the last custom FW revision to be released by DEC for these older
controllers, appears to work quite well with this driver.
Cards tested successfully were several versions each of the PD and
PU, called by DEC the KZPSC and KZPAC, respectively, and having
the Manufacturer Numbers (from Mylex), usually on a sticker on the
back of the board, of:
KZPSC: D040347 (1-channel) or D040348 (2-channel) or D040349 (3-channel)
KZPAC: D040395 (1-channel) or D040396 (2-channel) or D040397 (3-channel)
*/
# define FIRMWARE_27X "2.70"
#else
# define FIRMWARE_27X "2.73"
#endif
if (Enquiry2->FirmwareID.MajorVersion == 0)
{
Enquiry2->FirmwareID.MajorVersion =
Controller->V1.Enquiry.MajorFirmwareVersion;
Enquiry2->FirmwareID.MinorVersion =
Controller->V1.Enquiry.MinorFirmwareVersion;
Enquiry2->FirmwareID.FirmwareType = '0';
Enquiry2->FirmwareID.TurnID = 0;
}
sprintf(Controller->FirmwareVersion, "%d.%02d-%c-%02d",
Enquiry2->FirmwareID.MajorVersion, Enquiry2->FirmwareID.MinorVersion,
Enquiry2->FirmwareID.FirmwareType, Enquiry2->FirmwareID.TurnID);
if (!((Controller->FirmwareVersion[0] == '5' &&
strcmp(Controller->FirmwareVersion, "5.06") >= 0) ||
(Controller->FirmwareVersion[0] == '4' &&
strcmp(Controller->FirmwareVersion, "4.06") >= 0) ||
(Controller->FirmwareVersion[0] == '3' &&
strcmp(Controller->FirmwareVersion, "3.51") >= 0) ||
(Controller->FirmwareVersion[0] == '2' &&
strcmp(Controller->FirmwareVersion, FIRMWARE_27X) >= 0)))
{
DAC960_Failure(Controller, "FIRMWARE VERSION VERIFICATION");
DAC960_Error("Firmware Version = '%s'\n", Controller,
Controller->FirmwareVersion);
free_dma_loaf(Controller->PCIDevice, &local_dma);
return false;
}
/*
Initialize the Controller Channels, Targets, Memory Size, and SAF-TE
Enclosure Management Enabled fields.
*/
Controller->Channels = Enquiry2->ActualChannels;
Controller->Targets = Enquiry2->MaxTargets;
Controller->MemorySize = Enquiry2->MemorySize >> 20;
Controller->V1.SAFTE_EnclosureManagementEnabled =
(Enquiry2->FaultManagementType == DAC960_V1_SAFTE);
/*
Initialize the Controller Queue Depth, Driver Queue Depth, Logical Drive
Count, Maximum Blocks per Command, Controller Scatter/Gather Limit, and
Driver Scatter/Gather Limit. The Driver Queue Depth must be at most one
less than the Controller Queue Depth to allow for an automatic drive
rebuild operation.
*/
Controller->ControllerQueueDepth = Controller->V1.Enquiry.MaxCommands;
Controller->DriverQueueDepth = Controller->ControllerQueueDepth - 1;
if (Controller->DriverQueueDepth > DAC960_MaxDriverQueueDepth)
Controller->DriverQueueDepth = DAC960_MaxDriverQueueDepth;
Controller->LogicalDriveCount =
Controller->V1.Enquiry.NumberOfLogicalDrives;
Controller->MaxBlocksPerCommand = Enquiry2->MaxBlocksPerCommand;
Controller->ControllerScatterGatherLimit = Enquiry2->MaxScatterGatherEntries;
Controller->DriverScatterGatherLimit =
Controller->ControllerScatterGatherLimit;
if (Controller->DriverScatterGatherLimit > DAC960_V1_ScatterGatherLimit)
Controller->DriverScatterGatherLimit = DAC960_V1_ScatterGatherLimit;
/*
Initialize the Stripe Size, Segment Size, and Geometry Translation.
*/
Controller->V1.StripeSize = Config2->BlocksPerStripe * Config2->BlockFactor
>> (10 - DAC960_BlockSizeBits);
Controller->V1.SegmentSize = Config2->BlocksPerCacheLine * Config2->BlockFactor
>> (10 - DAC960_BlockSizeBits);
switch (Config2->DriveGeometry)
{
case DAC960_V1_Geometry_128_32:
Controller->V1.GeometryTranslationHeads = 128;
Controller->V1.GeometryTranslationSectors = 32;
break;
case DAC960_V1_Geometry_255_63:
Controller->V1.GeometryTranslationHeads = 255;
Controller->V1.GeometryTranslationSectors = 63;
break;
default:
free_dma_loaf(Controller->PCIDevice, &local_dma);
return DAC960_Failure(Controller, "CONFIG2 DRIVE GEOMETRY");
}
/*
Initialize the Background Initialization Status.
*/
if ((Controller->FirmwareVersion[0] == '4' &&
strcmp(Controller->FirmwareVersion, "4.08") >= 0) ||
(Controller->FirmwareVersion[0] == '5' &&
strcmp(Controller->FirmwareVersion, "5.08") >= 0))
{
Controller->V1.BackgroundInitializationStatusSupported = true;
DAC960_V1_ExecuteType3B(Controller,
DAC960_V1_BackgroundInitializationControl, 0x20,
Controller->
V1.BackgroundInitializationStatusDMA);
memcpy(&Controller->V1.LastBackgroundInitializationStatus,
Controller->V1.BackgroundInitializationStatus,
sizeof(DAC960_V1_BackgroundInitializationStatus_T));
}
/*
Initialize the Logical Drive Initially Accessible flag.
*/
for (LogicalDriveNumber = 0;
LogicalDriveNumber < Controller->LogicalDriveCount;
LogicalDriveNumber++)
if (Controller->V1.LogicalDriveInformation
[LogicalDriveNumber].LogicalDriveState !=
DAC960_V1_LogicalDrive_Offline)
Controller->LogicalDriveInitiallyAccessible[LogicalDriveNumber] = true;
Controller->V1.LastRebuildStatus = DAC960_V1_NoRebuildOrCheckInProgress;
free_dma_loaf(Controller->PCIDevice, &local_dma);
return true;
}
/*
DAC960_V2_ReadControllerConfiguration reads the Configuration Information
from DAC960 V2 Firmware Controllers and initializes the Controller structure.
*/
static bool DAC960_V2_ReadControllerConfiguration(DAC960_Controller_T
*Controller)
{
DAC960_V2_ControllerInfo_T *ControllerInfo =
&Controller->V2.ControllerInformation;
unsigned short LogicalDeviceNumber = 0;
int ModelNameLength;
/* Get data into dma-able area, then copy into permanant location */
if (!DAC960_V2_NewControllerInfo(Controller))
return DAC960_Failure(Controller, "GET CONTROLLER INFO");
memcpy(ControllerInfo, Controller->V2.NewControllerInformation,
sizeof(DAC960_V2_ControllerInfo_T));
if (!DAC960_V2_GeneralInfo(Controller))
return DAC960_Failure(Controller, "GET HEALTH STATUS");
/*
Initialize the Controller Model Name and Full Model Name fields.
*/
ModelNameLength = sizeof(ControllerInfo->ControllerName);
if (ModelNameLength > sizeof(Controller->ModelName)-1)
ModelNameLength = sizeof(Controller->ModelName)-1;
memcpy(Controller->ModelName, ControllerInfo->ControllerName,
ModelNameLength);
ModelNameLength--;
while (Controller->ModelName[ModelNameLength] == ' ' ||
Controller->ModelName[ModelNameLength] == '\0')
ModelNameLength--;
Controller->ModelName[++ModelNameLength] = '\0';
strcpy(Controller->FullModelName, "Mylex ");
strcat(Controller->FullModelName, Controller->ModelName);
/*
Initialize the Controller Firmware Version field.
*/
sprintf(Controller->FirmwareVersion, "%d.%02d-%02d",
ControllerInfo->FirmwareMajorVersion,
ControllerInfo->FirmwareMinorVersion,
ControllerInfo->FirmwareTurnNumber);
if (ControllerInfo->FirmwareMajorVersion == 6 &&
ControllerInfo->FirmwareMinorVersion == 0 &&
ControllerInfo->FirmwareTurnNumber < 1)
{
DAC960_Info("FIRMWARE VERSION %s DOES NOT PROVIDE THE CONTROLLER\n",
Controller, Controller->FirmwareVersion);
DAC960_Info("STATUS MONITORING FUNCTIONALITY NEEDED BY THIS DRIVER.\n",
Controller);
DAC960_Info("PLEASE UPGRADE TO VERSION 6.00-01 OR ABOVE.\n",
Controller);
}
/*
Initialize the Controller Channels, Targets, and Memory Size.
*/
Controller->Channels = ControllerInfo->NumberOfPhysicalChannelsPresent;
Controller->Targets =
ControllerInfo->MaximumTargetsPerChannel
[ControllerInfo->NumberOfPhysicalChannelsPresent-1];
Controller->MemorySize = ControllerInfo->MemorySizeMB;
/*
Initialize the Controller Queue Depth, Driver Queue Depth, Logical Drive
Count, Maximum Blocks per Command, Controller Scatter/Gather Limit, and
Driver Scatter/Gather Limit. The Driver Queue Depth must be at most one
less than the Controller Queue Depth to allow for an automatic drive
rebuild operation.
*/
Controller->ControllerQueueDepth = ControllerInfo->MaximumParallelCommands;
Controller->DriverQueueDepth = Controller->ControllerQueueDepth - 1;
if (Controller->DriverQueueDepth > DAC960_MaxDriverQueueDepth)
Controller->DriverQueueDepth = DAC960_MaxDriverQueueDepth;
Controller->LogicalDriveCount = ControllerInfo->LogicalDevicesPresent;
Controller->MaxBlocksPerCommand =
ControllerInfo->MaximumDataTransferSizeInBlocks;
Controller->ControllerScatterGatherLimit =
ControllerInfo->MaximumScatterGatherEntries;
Controller->DriverScatterGatherLimit =
Controller->ControllerScatterGatherLimit;
if (Controller->DriverScatterGatherLimit > DAC960_V2_ScatterGatherLimit)
Controller->DriverScatterGatherLimit = DAC960_V2_ScatterGatherLimit;
/*
Initialize the Logical Device Information.
*/
while (true)
{
DAC960_V2_LogicalDeviceInfo_T *NewLogicalDeviceInfo =
Controller->V2.NewLogicalDeviceInformation;
DAC960_V2_LogicalDeviceInfo_T *LogicalDeviceInfo;
DAC960_V2_PhysicalDevice_T PhysicalDevice;
if (!DAC960_V2_NewLogicalDeviceInfo(Controller, LogicalDeviceNumber))
break;
LogicalDeviceNumber = NewLogicalDeviceInfo->LogicalDeviceNumber;
if (LogicalDeviceNumber >= DAC960_MaxLogicalDrives) {
DAC960_Error("DAC960: Logical Drive Number %d not supported\n",
Controller, LogicalDeviceNumber);
break;
}
if (NewLogicalDeviceInfo->DeviceBlockSizeInBytes != DAC960_BlockSize) {
DAC960_Error("DAC960: Logical Drive Block Size %d not supported\n",
Controller, NewLogicalDeviceInfo->DeviceBlockSizeInBytes);
LogicalDeviceNumber++;
continue;
}
PhysicalDevice.Controller = 0;
PhysicalDevice.Channel = NewLogicalDeviceInfo->Channel;
PhysicalDevice.TargetID = NewLogicalDeviceInfo->TargetID;
PhysicalDevice.LogicalUnit = NewLogicalDeviceInfo->LogicalUnit;
Controller->V2.LogicalDriveToVirtualDevice[LogicalDeviceNumber] =
PhysicalDevice;
if (NewLogicalDeviceInfo->LogicalDeviceState !=
DAC960_V2_LogicalDevice_Offline)
Controller->LogicalDriveInitiallyAccessible[LogicalDeviceNumber] = true;
LogicalDeviceInfo = kmalloc(sizeof(DAC960_V2_LogicalDeviceInfo_T),
GFP_ATOMIC);
if (LogicalDeviceInfo == NULL)
return DAC960_Failure(Controller, "LOGICAL DEVICE ALLOCATION");
Controller->V2.LogicalDeviceInformation[LogicalDeviceNumber] =
LogicalDeviceInfo;
memcpy(LogicalDeviceInfo, NewLogicalDeviceInfo,
sizeof(DAC960_V2_LogicalDeviceInfo_T));
LogicalDeviceNumber++;
}
return true;
}
/*
DAC960_ReportControllerConfiguration reports the Configuration Information
for Controller.
*/
static bool DAC960_ReportControllerConfiguration(DAC960_Controller_T
*Controller)
{
DAC960_Info("Configuring Mylex %s PCI RAID Controller\n",
Controller, Controller->ModelName);
DAC960_Info(" Firmware Version: %s, Channels: %d, Memory Size: %dMB\n",
Controller, Controller->FirmwareVersion,
Controller->Channels, Controller->MemorySize);
DAC960_Info(" PCI Bus: %d, Device: %d, Function: %d, I/O Address: ",
Controller, Controller->Bus,
Controller->Device, Controller->Function);
if (Controller->IO_Address == 0)
DAC960_Info("Unassigned\n", Controller);
else DAC960_Info("0x%X\n", Controller, Controller->IO_Address);
DAC960_Info(" PCI Address: 0x%X mapped at 0x%lX, IRQ Channel: %d\n",
Controller, Controller->PCI_Address,
(unsigned long) Controller->BaseAddress,
Controller->IRQ_Channel);
DAC960_Info(" Controller Queue Depth: %d, "
"Maximum Blocks per Command: %d\n",
Controller, Controller->ControllerQueueDepth,
Controller->MaxBlocksPerCommand);
DAC960_Info(" Driver Queue Depth: %d, "
"Scatter/Gather Limit: %d of %d Segments\n",
Controller, Controller->DriverQueueDepth,
Controller->DriverScatterGatherLimit,
Controller->ControllerScatterGatherLimit);
if (Controller->FirmwareType == DAC960_V1_Controller)
{
DAC960_Info(" Stripe Size: %dKB, Segment Size: %dKB, "
"BIOS Geometry: %d/%d\n", Controller,
Controller->V1.StripeSize,
Controller->V1.SegmentSize,
Controller->V1.GeometryTranslationHeads,
Controller->V1.GeometryTranslationSectors);
if (Controller->V1.SAFTE_EnclosureManagementEnabled)
DAC960_Info(" SAF-TE Enclosure Management Enabled\n", Controller);
}
return true;
}
/*
DAC960_V1_ReadDeviceConfiguration reads the Device Configuration Information
for DAC960 V1 Firmware Controllers by requesting the SCSI Inquiry and SCSI
Inquiry Unit Serial Number information for each device connected to
Controller.
*/
static bool DAC960_V1_ReadDeviceConfiguration(DAC960_Controller_T
*Controller)
{
struct dma_loaf local_dma;
dma_addr_t DCDBs_dma[DAC960_V1_MaxChannels];
DAC960_V1_DCDB_T *DCDBs_cpu[DAC960_V1_MaxChannels];
dma_addr_t SCSI_Inquiry_dma[DAC960_V1_MaxChannels];
DAC960_SCSI_Inquiry_T *SCSI_Inquiry_cpu[DAC960_V1_MaxChannels];
dma_addr_t SCSI_NewInquiryUnitSerialNumberDMA[DAC960_V1_MaxChannels];
DAC960_SCSI_Inquiry_UnitSerialNumber_T *SCSI_NewInquiryUnitSerialNumberCPU[DAC960_V1_MaxChannels];
struct completion Completions[DAC960_V1_MaxChannels];
unsigned long flags;
int Channel, TargetID;
if (!init_dma_loaf(Controller->PCIDevice, &local_dma,
DAC960_V1_MaxChannels*(sizeof(DAC960_V1_DCDB_T) +
sizeof(DAC960_SCSI_Inquiry_T) +
sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T))))
return DAC960_Failure(Controller,
"DMA ALLOCATION FAILED IN ReadDeviceConfiguration");
for (Channel = 0; Channel < Controller->Channels; Channel++) {
DCDBs_cpu[Channel] = slice_dma_loaf(&local_dma,
sizeof(DAC960_V1_DCDB_T), DCDBs_dma + Channel);
SCSI_Inquiry_cpu[Channel] = slice_dma_loaf(&local_dma,
sizeof(DAC960_SCSI_Inquiry_T),
SCSI_Inquiry_dma + Channel);
SCSI_NewInquiryUnitSerialNumberCPU[Channel] = slice_dma_loaf(&local_dma,
sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T),
SCSI_NewInquiryUnitSerialNumberDMA + Channel);
}
for (TargetID = 0; TargetID < Controller->Targets; TargetID++)
{
/*
* For each channel, submit a probe for a device on that channel.
* The timeout interval for a device that is present is 10 seconds.
* With this approach, the timeout periods can elapse in parallel
* on each channel.
*/
for (Channel = 0; Channel < Controller->Channels; Channel++)
{
dma_addr_t NewInquiryStandardDataDMA = SCSI_Inquiry_dma[Channel];
DAC960_V1_DCDB_T *DCDB = DCDBs_cpu[Channel];
dma_addr_t DCDB_dma = DCDBs_dma[Channel];
DAC960_Command_T *Command = Controller->Commands[Channel];
struct completion *Completion = &Completions[Channel];
init_completion(Completion);
DAC960_V1_ClearCommand(Command);
Command->CommandType = DAC960_ImmediateCommand;
Command->Completion = Completion;
Command->V1.CommandMailbox.Type3.CommandOpcode = DAC960_V1_DCDB;
Command->V1.CommandMailbox.Type3.BusAddress = DCDB_dma;
DCDB->Channel = Channel;
DCDB->TargetID = TargetID;
DCDB->Direction = DAC960_V1_DCDB_DataTransferDeviceToSystem;
DCDB->EarlyStatus = false;
DCDB->Timeout = DAC960_V1_DCDB_Timeout_10_seconds;
DCDB->NoAutomaticRequestSense = false;
DCDB->DisconnectPermitted = true;
DCDB->TransferLength = sizeof(DAC960_SCSI_Inquiry_T);
DCDB->BusAddress = NewInquiryStandardDataDMA;
DCDB->CDBLength = 6;
DCDB->TransferLengthHigh4 = 0;
DCDB->SenseLength = sizeof(DCDB->SenseData);
DCDB->CDB[0] = 0x12; /* INQUIRY */
DCDB->CDB[1] = 0; /* EVPD = 0 */
DCDB->CDB[2] = 0; /* Page Code */
DCDB->CDB[3] = 0; /* Reserved */
DCDB->CDB[4] = sizeof(DAC960_SCSI_Inquiry_T);
DCDB->CDB[5] = 0; /* Control */
spin_lock_irqsave(&Controller->queue_lock, flags);
DAC960_QueueCommand(Command);
spin_unlock_irqrestore(&Controller->queue_lock, flags);
}
/*
* Wait for the problems submitted in the previous loop
* to complete. On the probes that are successful,
* get the serial number of the device that was found.
*/
for (Channel = 0; Channel < Controller->Channels; Channel++)
{
DAC960_SCSI_Inquiry_T *InquiryStandardData =
&Controller->V1.InquiryStandardData[Channel][TargetID];
DAC960_SCSI_Inquiry_T *NewInquiryStandardData = SCSI_Inquiry_cpu[Channel];
dma_addr_t NewInquiryUnitSerialNumberDMA =
SCSI_NewInquiryUnitSerialNumberDMA[Channel];
DAC960_SCSI_Inquiry_UnitSerialNumber_T *NewInquiryUnitSerialNumber =
SCSI_NewInquiryUnitSerialNumberCPU[Channel];
DAC960_SCSI_Inquiry_UnitSerialNumber_T *InquiryUnitSerialNumber =
&Controller->V1.InquiryUnitSerialNumber[Channel][TargetID];
DAC960_Command_T *Command = Controller->Commands[Channel];
DAC960_V1_DCDB_T *DCDB = DCDBs_cpu[Channel];
struct completion *Completion = &Completions[Channel];
wait_for_completion(Completion);
if (Command->V1.CommandStatus != DAC960_V1_NormalCompletion) {
memset(InquiryStandardData, 0, sizeof(DAC960_SCSI_Inquiry_T));
InquiryStandardData->PeripheralDeviceType = 0x1F;
continue;
} else
memcpy(InquiryStandardData, NewInquiryStandardData, sizeof(DAC960_SCSI_Inquiry_T));
/* Preserve Channel and TargetID values from the previous loop */
Command->Completion = Completion;
DCDB->TransferLength = sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T);
DCDB->BusAddress = NewInquiryUnitSerialNumberDMA;
DCDB->SenseLength = sizeof(DCDB->SenseData);
DCDB->CDB[0] = 0x12; /* INQUIRY */
DCDB->CDB[1] = 1; /* EVPD = 1 */
DCDB->CDB[2] = 0x80; /* Page Code */
DCDB->CDB[3] = 0; /* Reserved */
DCDB->CDB[4] = sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T);
DCDB->CDB[5] = 0; /* Control */
spin_lock_irqsave(&Controller->queue_lock, flags);
DAC960_QueueCommand(Command);
spin_unlock_irqrestore(&Controller->queue_lock, flags);
wait_for_completion(Completion);
if (Command->V1.CommandStatus != DAC960_V1_NormalCompletion) {
memset(InquiryUnitSerialNumber, 0,
sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T));
InquiryUnitSerialNumber->PeripheralDeviceType = 0x1F;
} else
memcpy(InquiryUnitSerialNumber, NewInquiryUnitSerialNumber,
sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T));
}
}
free_dma_loaf(Controller->PCIDevice, &local_dma);
return true;
}
/*
DAC960_V2_ReadDeviceConfiguration reads the Device Configuration Information
for DAC960 V2 Firmware Controllers by requesting the Physical Device
Information and SCSI Inquiry Unit Serial Number information for each
device connected to Controller.
*/
static bool DAC960_V2_ReadDeviceConfiguration(DAC960_Controller_T
*Controller)
{
unsigned char Channel = 0, TargetID = 0, LogicalUnit = 0;
unsigned short PhysicalDeviceIndex = 0;
while (true)
{
DAC960_V2_PhysicalDeviceInfo_T *NewPhysicalDeviceInfo =
Controller->V2.NewPhysicalDeviceInformation;
DAC960_V2_PhysicalDeviceInfo_T *PhysicalDeviceInfo;
DAC960_SCSI_Inquiry_UnitSerialNumber_T *NewInquiryUnitSerialNumber =
Controller->V2.NewInquiryUnitSerialNumber;
DAC960_SCSI_Inquiry_UnitSerialNumber_T *InquiryUnitSerialNumber;
if (!DAC960_V2_NewPhysicalDeviceInfo(Controller, Channel, TargetID, LogicalUnit))
break;
PhysicalDeviceInfo = kmalloc(sizeof(DAC960_V2_PhysicalDeviceInfo_T),
GFP_ATOMIC);
if (PhysicalDeviceInfo == NULL)
return DAC960_Failure(Controller, "PHYSICAL DEVICE ALLOCATION");
Controller->V2.PhysicalDeviceInformation[PhysicalDeviceIndex] =
PhysicalDeviceInfo;
memcpy(PhysicalDeviceInfo, NewPhysicalDeviceInfo,
sizeof(DAC960_V2_PhysicalDeviceInfo_T));
InquiryUnitSerialNumber = kmalloc(
sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T), GFP_ATOMIC);
if (InquiryUnitSerialNumber == NULL) {
kfree(PhysicalDeviceInfo);
return DAC960_Failure(Controller, "SERIAL NUMBER ALLOCATION");
}
Controller->V2.InquiryUnitSerialNumber[PhysicalDeviceIndex] =
InquiryUnitSerialNumber;
Channel = NewPhysicalDeviceInfo->Channel;
TargetID = NewPhysicalDeviceInfo->TargetID;
LogicalUnit = NewPhysicalDeviceInfo->LogicalUnit;
/*
Some devices do NOT have Unit Serial Numbers.
This command fails for them. But, we still want to
remember those devices are there. Construct a
UnitSerialNumber structure for the failure case.
*/
if (!DAC960_V2_NewInquiryUnitSerialNumber(Controller, Channel, TargetID, LogicalUnit)) {
memset(InquiryUnitSerialNumber, 0,
sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T));
InquiryUnitSerialNumber->PeripheralDeviceType = 0x1F;
} else
memcpy(InquiryUnitSerialNumber, NewInquiryUnitSerialNumber,
sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T));
PhysicalDeviceIndex++;
LogicalUnit++;
}
return true;
}
/*
DAC960_SanitizeInquiryData sanitizes the Vendor, Model, Revision, and
Product Serial Number fields of the Inquiry Standard Data and Inquiry
Unit Serial Number structures.
*/
static void DAC960_SanitizeInquiryData(DAC960_SCSI_Inquiry_T
*InquiryStandardData,
DAC960_SCSI_Inquiry_UnitSerialNumber_T
*InquiryUnitSerialNumber,
unsigned char *Vendor,
unsigned char *Model,
unsigned char *Revision,
unsigned char *SerialNumber)
{
int SerialNumberLength, i;
if (InquiryStandardData->PeripheralDeviceType == 0x1F) return;
for (i = 0; i < sizeof(InquiryStandardData->VendorIdentification); i++)
{
unsigned char VendorCharacter =
InquiryStandardData->VendorIdentification[i];
Vendor[i] = (VendorCharacter >= ' ' && VendorCharacter <= '~'
? VendorCharacter : ' ');
}
Vendor[sizeof(InquiryStandardData->VendorIdentification)] = '\0';
for (i = 0; i < sizeof(InquiryStandardData->ProductIdentification); i++)
{
unsigned char ModelCharacter =
InquiryStandardData->ProductIdentification[i];
Model[i] = (ModelCharacter >= ' ' && ModelCharacter <= '~'
? ModelCharacter : ' ');
}
Model[sizeof(InquiryStandardData->ProductIdentification)] = '\0';
for (i = 0; i < sizeof(InquiryStandardData->ProductRevisionLevel); i++)
{
unsigned char RevisionCharacter =
InquiryStandardData->ProductRevisionLevel[i];
Revision[i] = (RevisionCharacter >= ' ' && RevisionCharacter <= '~'
? RevisionCharacter : ' ');
}
Revision[sizeof(InquiryStandardData->ProductRevisionLevel)] = '\0';
if (InquiryUnitSerialNumber->PeripheralDeviceType == 0x1F) return;
SerialNumberLength = InquiryUnitSerialNumber->PageLength;
if (SerialNumberLength >
sizeof(InquiryUnitSerialNumber->ProductSerialNumber))
SerialNumberLength = sizeof(InquiryUnitSerialNumber->ProductSerialNumber);
for (i = 0; i < SerialNumberLength; i++)
{
unsigned char SerialNumberCharacter =
InquiryUnitSerialNumber->ProductSerialNumber[i];
SerialNumber[i] =
(SerialNumberCharacter >= ' ' && SerialNumberCharacter <= '~'
? SerialNumberCharacter : ' ');
}
SerialNumber[SerialNumberLength] = '\0';
}
/*
DAC960_V1_ReportDeviceConfiguration reports the Device Configuration
Information for DAC960 V1 Firmware Controllers.
*/
static bool DAC960_V1_ReportDeviceConfiguration(DAC960_Controller_T
*Controller)
{
int LogicalDriveNumber, Channel, TargetID;
DAC960_Info(" Physical Devices:\n", Controller);
for (Channel = 0; Channel < Controller->Channels; Channel++)
for (TargetID = 0; TargetID < Controller->Targets; TargetID++)
{
DAC960_SCSI_Inquiry_T *InquiryStandardData =
&Controller->V1.InquiryStandardData[Channel][TargetID];
DAC960_SCSI_Inquiry_UnitSerialNumber_T *InquiryUnitSerialNumber =
&Controller->V1.InquiryUnitSerialNumber[Channel][TargetID];
DAC960_V1_DeviceState_T *DeviceState =
&Controller->V1.DeviceState[Channel][TargetID];
DAC960_V1_ErrorTableEntry_T *ErrorEntry =
&Controller->V1.ErrorTable.ErrorTableEntries[Channel][TargetID];
char Vendor[1+sizeof(InquiryStandardData->VendorIdentification)];
char Model[1+sizeof(InquiryStandardData->ProductIdentification)];
char Revision[1+sizeof(InquiryStandardData->ProductRevisionLevel)];
char SerialNumber[1+sizeof(InquiryUnitSerialNumber
->ProductSerialNumber)];
if (InquiryStandardData->PeripheralDeviceType == 0x1F) continue;
DAC960_SanitizeInquiryData(InquiryStandardData, InquiryUnitSerialNumber,
Vendor, Model, Revision, SerialNumber);
DAC960_Info(" %d:%d%s Vendor: %s Model: %s Revision: %s\n",
Controller, Channel, TargetID, (TargetID < 10 ? " " : ""),
Vendor, Model, Revision);
if (InquiryUnitSerialNumber->PeripheralDeviceType != 0x1F)
DAC960_Info(" Serial Number: %s\n", Controller, SerialNumber);
if (DeviceState->Present &&
DeviceState->DeviceType == DAC960_V1_DiskType)
{
if (Controller->V1.DeviceResetCount[Channel][TargetID] > 0)
DAC960_Info(" Disk Status: %s, %u blocks, %d resets\n",
Controller,
(DeviceState->DeviceState == DAC960_V1_Device_Dead
? "Dead"
: DeviceState->DeviceState
== DAC960_V1_Device_WriteOnly
? "Write-Only"
: DeviceState->DeviceState
== DAC960_V1_Device_Online
? "Online" : "Standby"),
DeviceState->DiskSize,
Controller->V1.DeviceResetCount[Channel][TargetID]);
else
DAC960_Info(" Disk Status: %s, %u blocks\n", Controller,
(DeviceState->DeviceState == DAC960_V1_Device_Dead
? "Dead"
: DeviceState->DeviceState
== DAC960_V1_Device_WriteOnly
? "Write-Only"
: DeviceState->DeviceState
== DAC960_V1_Device_Online
? "Online" : "Standby"),
DeviceState->DiskSize);
}
if (ErrorEntry->ParityErrorCount > 0 ||
ErrorEntry->SoftErrorCount > 0 ||
ErrorEntry->HardErrorCount > 0 ||
ErrorEntry->MiscErrorCount > 0)
DAC960_Info(" Errors - Parity: %d, Soft: %d, "
"Hard: %d, Misc: %d\n", Controller,
ErrorEntry->ParityErrorCount,
ErrorEntry->SoftErrorCount,
ErrorEntry->HardErrorCount,
ErrorEntry->MiscErrorCount);
}
DAC960_Info(" Logical Drives:\n", Controller);
for (LogicalDriveNumber = 0;
LogicalDriveNumber < Controller->LogicalDriveCount;
LogicalDriveNumber++)
{
DAC960_V1_LogicalDriveInformation_T *LogicalDriveInformation =
&Controller->V1.LogicalDriveInformation[LogicalDriveNumber];
DAC960_Info(" /dev/rd/c%dd%d: RAID-%d, %s, %u blocks, %s\n",
Controller, Controller->ControllerNumber, LogicalDriveNumber,
LogicalDriveInformation->RAIDLevel,
(LogicalDriveInformation->LogicalDriveState
== DAC960_V1_LogicalDrive_Online
? "Online"
: LogicalDriveInformation->LogicalDriveState
== DAC960_V1_LogicalDrive_Critical
? "Critical" : "Offline"),
LogicalDriveInformation->LogicalDriveSize,
(LogicalDriveInformation->WriteBack
? "Write Back" : "Write Thru"));
}
return true;
}
/*
DAC960_V2_ReportDeviceConfiguration reports the Device Configuration
Information for DAC960 V2 Firmware Controllers.
*/
static bool DAC960_V2_ReportDeviceConfiguration(DAC960_Controller_T
*Controller)
{
int PhysicalDeviceIndex, LogicalDriveNumber;
DAC960_Info(" Physical Devices:\n", Controller);
for (PhysicalDeviceIndex = 0;
PhysicalDeviceIndex < DAC960_V2_MaxPhysicalDevices;
PhysicalDeviceIndex++)
{
DAC960_V2_PhysicalDeviceInfo_T *PhysicalDeviceInfo =
Controller->V2.PhysicalDeviceInformation[PhysicalDeviceIndex];
DAC960_SCSI_Inquiry_T *InquiryStandardData =
(DAC960_SCSI_Inquiry_T *) &PhysicalDeviceInfo->SCSI_InquiryData;
DAC960_SCSI_Inquiry_UnitSerialNumber_T *InquiryUnitSerialNumber =
Controller->V2.InquiryUnitSerialNumber[PhysicalDeviceIndex];
char Vendor[1+sizeof(InquiryStandardData->VendorIdentification)];
char Model[1+sizeof(InquiryStandardData->ProductIdentification)];
char Revision[1+sizeof(InquiryStandardData->ProductRevisionLevel)];
char SerialNumber[1+sizeof(InquiryUnitSerialNumber->ProductSerialNumber)];
if (PhysicalDeviceInfo == NULL) break;
DAC960_SanitizeInquiryData(InquiryStandardData, InquiryUnitSerialNumber,
Vendor, Model, Revision, SerialNumber);
DAC960_Info(" %d:%d%s Vendor: %s Model: %s Revision: %s\n",
Controller,
PhysicalDeviceInfo->Channel,
PhysicalDeviceInfo->TargetID,
(PhysicalDeviceInfo->TargetID < 10 ? " " : ""),
Vendor, Model, Revision);
if (PhysicalDeviceInfo->NegotiatedSynchronousMegaTransfers == 0)
DAC960_Info(" %sAsynchronous\n", Controller,
(PhysicalDeviceInfo->NegotiatedDataWidthBits == 16
? "Wide " :""));
else
DAC960_Info(" %sSynchronous at %d MB/sec\n", Controller,
(PhysicalDeviceInfo->NegotiatedDataWidthBits == 16
? "Wide " :""),
(PhysicalDeviceInfo->NegotiatedSynchronousMegaTransfers
* PhysicalDeviceInfo->NegotiatedDataWidthBits/8));
if (InquiryUnitSerialNumber->PeripheralDeviceType != 0x1F)
DAC960_Info(" Serial Number: %s\n", Controller, SerialNumber);
if (PhysicalDeviceInfo->PhysicalDeviceState ==
DAC960_V2_Device_Unconfigured)
continue;
DAC960_Info(" Disk Status: %s, %u blocks\n", Controller,
(PhysicalDeviceInfo->PhysicalDeviceState
== DAC960_V2_Device_Online
? "Online"
: PhysicalDeviceInfo->PhysicalDeviceState
== DAC960_V2_Device_Rebuild
? "Rebuild"
: PhysicalDeviceInfo->PhysicalDeviceState
== DAC960_V2_Device_Missing
? "Missing"
: PhysicalDeviceInfo->PhysicalDeviceState
== DAC960_V2_Device_Critical
? "Critical"
: PhysicalDeviceInfo->PhysicalDeviceState
== DAC960_V2_Device_Dead
? "Dead"
: PhysicalDeviceInfo->PhysicalDeviceState
== DAC960_V2_Device_SuspectedDead
? "Suspected-Dead"
: PhysicalDeviceInfo->PhysicalDeviceState
== DAC960_V2_Device_CommandedOffline
? "Commanded-Offline"
: PhysicalDeviceInfo->PhysicalDeviceState
== DAC960_V2_Device_Standby
? "Standby" : "Unknown"),
PhysicalDeviceInfo->ConfigurableDeviceSize);
if (PhysicalDeviceInfo->ParityErrors == 0 &&
PhysicalDeviceInfo->SoftErrors == 0 &&
PhysicalDeviceInfo->HardErrors == 0 &&
PhysicalDeviceInfo->MiscellaneousErrors == 0 &&
PhysicalDeviceInfo->CommandTimeouts == 0 &&
PhysicalDeviceInfo->Retries == 0 &&
PhysicalDeviceInfo->Aborts == 0 &&
PhysicalDeviceInfo->PredictedFailuresDetected == 0)
continue;
DAC960_Info(" Errors - Parity: %d, Soft: %d, "
"Hard: %d, Misc: %d\n", Controller,
PhysicalDeviceInfo->ParityErrors,
PhysicalDeviceInfo->SoftErrors,
PhysicalDeviceInfo->HardErrors,
PhysicalDeviceInfo->MiscellaneousErrors);
DAC960_Info(" Timeouts: %d, Retries: %d, "
"Aborts: %d, Predicted: %d\n", Controller,
PhysicalDeviceInfo->CommandTimeouts,
PhysicalDeviceInfo->Retries,
PhysicalDeviceInfo->Aborts,
PhysicalDeviceInfo->PredictedFailuresDetected);
}
DAC960_Info(" Logical Drives:\n", Controller);
for (LogicalDriveNumber = 0;
LogicalDriveNumber < DAC960_MaxLogicalDrives;
LogicalDriveNumber++)
{
DAC960_V2_LogicalDeviceInfo_T *LogicalDeviceInfo =
Controller->V2.LogicalDeviceInformation[LogicalDriveNumber];
unsigned char *ReadCacheStatus[] = { "Read Cache Disabled",
"Read Cache Enabled",
"Read Ahead Enabled",
"Intelligent Read Ahead Enabled",
"-", "-", "-", "-" };
unsigned char *WriteCacheStatus[] = { "Write Cache Disabled",
"Logical Device Read Only",
"Write Cache Enabled",
"Intelligent Write Cache Enabled",
"-", "-", "-", "-" };
unsigned char *GeometryTranslation;
if (LogicalDeviceInfo == NULL) continue;
switch (LogicalDeviceInfo->DriveGeometry)
{
case DAC960_V2_Geometry_128_32:
GeometryTranslation = "128/32";
break;
case DAC960_V2_Geometry_255_63:
GeometryTranslation = "255/63";
break;
default:
GeometryTranslation = "Invalid";
DAC960_Error("Illegal Logical Device Geometry %d\n",
Controller, LogicalDeviceInfo->DriveGeometry);
break;
}
DAC960_Info(" /dev/rd/c%dd%d: RAID-%d, %s, %u blocks\n",
Controller, Controller->ControllerNumber, LogicalDriveNumber,
LogicalDeviceInfo->RAIDLevel,
(LogicalDeviceInfo->LogicalDeviceState
== DAC960_V2_LogicalDevice_Online
? "Online"
: LogicalDeviceInfo->LogicalDeviceState
== DAC960_V2_LogicalDevice_Critical
? "Critical" : "Offline"),
LogicalDeviceInfo->ConfigurableDeviceSize);
DAC960_Info(" Logical Device %s, BIOS Geometry: %s\n",
Controller,
(LogicalDeviceInfo->LogicalDeviceControl
.LogicalDeviceInitialized
? "Initialized" : "Uninitialized"),
GeometryTranslation);
if (LogicalDeviceInfo->StripeSize == 0)
{
if (LogicalDeviceInfo->CacheLineSize == 0)
DAC960_Info(" Stripe Size: N/A, "
"Segment Size: N/A\n", Controller);
else
DAC960_Info(" Stripe Size: N/A, "
"Segment Size: %dKB\n", Controller,
1 << (LogicalDeviceInfo->CacheLineSize - 2));
}
else
{
if (LogicalDeviceInfo->CacheLineSize == 0)
DAC960_Info(" Stripe Size: %dKB, "
"Segment Size: N/A\n", Controller,
1 << (LogicalDeviceInfo->StripeSize - 2));
else
DAC960_Info(" Stripe Size: %dKB, "
"Segment Size: %dKB\n", Controller,
1 << (LogicalDeviceInfo->StripeSize - 2),
1 << (LogicalDeviceInfo->CacheLineSize - 2));
}
DAC960_Info(" %s, %s\n", Controller,
ReadCacheStatus[
LogicalDeviceInfo->LogicalDeviceControl.ReadCache],
WriteCacheStatus[
LogicalDeviceInfo->LogicalDeviceControl.WriteCache]);
if (LogicalDeviceInfo->SoftErrors > 0 ||
LogicalDeviceInfo->CommandsFailed > 0 ||
LogicalDeviceInfo->DeferredWriteErrors)
DAC960_Info(" Errors - Soft: %d, Failed: %d, "
"Deferred Write: %d\n", Controller,
LogicalDeviceInfo->SoftErrors,
LogicalDeviceInfo->CommandsFailed,
LogicalDeviceInfo->DeferredWriteErrors);
}
return true;
}
/*
DAC960_RegisterBlockDevice registers the Block Device structures
associated with Controller.
*/
static bool DAC960_RegisterBlockDevice(DAC960_Controller_T *Controller)
{
int MajorNumber = DAC960_MAJOR + Controller->ControllerNumber;
int n;
/*
Register the Block Device Major Number for this DAC960 Controller.
*/
if (register_blkdev(MajorNumber, "dac960") < 0)
return false;
for (n = 0; n < DAC960_MaxLogicalDrives; n++) {
struct gendisk *disk = Controller->disks[n];
struct request_queue *RequestQueue;
/* for now, let all request queues share controller's lock */
RequestQueue = blk_init_queue(DAC960_RequestFunction,&Controller->queue_lock);
if (!RequestQueue) {
printk("DAC960: failure to allocate request queue\n");
continue;
}
Controller->RequestQueue[n] = RequestQueue;
blk_queue_bounce_limit(RequestQueue, Controller->BounceBufferLimit);
RequestQueue->queuedata = Controller;
blk_queue_max_hw_segments(RequestQueue, Controller->DriverScatterGatherLimit);
blk_queue_max_phys_segments(RequestQueue, Controller->DriverScatterGatherLimit);
blk_queue_max_sectors(RequestQueue, Controller->MaxBlocksPerCommand);
disk->queue = RequestQueue;
sprintf(disk->disk_name, "rd/c%dd%d", Controller->ControllerNumber, n);
disk->major = MajorNumber;
disk->first_minor = n << DAC960_MaxPartitionsBits;
disk->fops = &DAC960_BlockDeviceOperations;
}
/*
Indicate the Block Device Registration completed successfully,
*/
return true;
}
/*
DAC960_UnregisterBlockDevice unregisters the Block Device structures
associated with Controller.
*/
static void DAC960_UnregisterBlockDevice(DAC960_Controller_T *Controller)
{
int MajorNumber = DAC960_MAJOR + Controller->ControllerNumber;
int disk;
/* does order matter when deleting gendisk and cleanup in request queue? */
for (disk = 0; disk < DAC960_MaxLogicalDrives; disk++) {
del_gendisk(Controller->disks[disk]);
blk_cleanup_queue(Controller->RequestQueue[disk]);
Controller->RequestQueue[disk] = NULL;
}
/*
Unregister the Block Device Major Number for this DAC960 Controller.
*/
unregister_blkdev(MajorNumber, "dac960");
}
/*
DAC960_ComputeGenericDiskInfo computes the values for the Generic Disk
Information Partition Sector Counts and Block Sizes.
*/
static void DAC960_ComputeGenericDiskInfo(DAC960_Controller_T *Controller)
{
int disk;
for (disk = 0; disk < DAC960_MaxLogicalDrives; disk++)
set_capacity(Controller->disks[disk], disk_size(Controller, disk));
}
/*
DAC960_ReportErrorStatus reports Controller BIOS Messages passed through
the Error Status Register when the driver performs the BIOS handshaking.
It returns true for fatal errors and false otherwise.
*/
static bool DAC960_ReportErrorStatus(DAC960_Controller_T *Controller,
unsigned char ErrorStatus,
unsigned char Parameter0,
unsigned char Parameter1)
{
switch (ErrorStatus)
{
case 0x00:
DAC960_Notice("Physical Device %d:%d Not Responding\n",
Controller, Parameter1, Parameter0);
break;
case 0x08:
if (Controller->DriveSpinUpMessageDisplayed) break;
DAC960_Notice("Spinning Up Drives\n", Controller);
Controller->DriveSpinUpMessageDisplayed = true;
break;
case 0x30:
DAC960_Notice("Configuration Checksum Error\n", Controller);
break;
case 0x60:
DAC960_Notice("Mirror Race Recovery Failed\n", Controller);
break;
case 0x70:
DAC960_Notice("Mirror Race Recovery In Progress\n", Controller);
break;
case 0x90:
DAC960_Notice("Physical Device %d:%d COD Mismatch\n",
Controller, Parameter1, Parameter0);
break;
case 0xA0:
DAC960_Notice("Logical Drive Installation Aborted\n", Controller);
break;
case 0xB0:
DAC960_Notice("Mirror Race On A Critical Logical Drive\n", Controller);
break;
case 0xD0:
DAC960_Notice("New Controller Configuration Found\n", Controller);
break;
case 0xF0:
DAC960_Error("Fatal Memory Parity Error for Controller at\n", Controller);
return true;
default:
DAC960_Error("Unknown Initialization Error %02X for Controller at\n",
Controller, ErrorStatus);
return true;
}
return false;
}
/*
* DAC960_DetectCleanup releases the resources that were allocated
* during DAC960_DetectController(). DAC960_DetectController can
* has several internal failure points, so not ALL resources may
* have been allocated. It's important to free only
* resources that HAVE been allocated. The code below always
* tests that the resource has been allocated before attempting to
* free it.
*/
static void DAC960_DetectCleanup(DAC960_Controller_T *Controller)
{
int i;
/* Free the memory mailbox, status, and related structures */
free_dma_loaf(Controller->PCIDevice, &Controller->DmaPages);
if (Controller->MemoryMappedAddress) {
switch(Controller->HardwareType)
{
case DAC960_GEM_Controller:
DAC960_GEM_DisableInterrupts(Controller->BaseAddress);
break;
case DAC960_BA_Controller:
DAC960_BA_DisableInterrupts(Controller->BaseAddress);
break;
case DAC960_LP_Controller:
DAC960_LP_DisableInterrupts(Controller->BaseAddress);
break;
case DAC960_LA_Controller:
DAC960_LA_DisableInterrupts(Controller->BaseAddress);
break;
case DAC960_PG_Controller:
DAC960_PG_DisableInterrupts(Controller->BaseAddress);
break;
case DAC960_PD_Controller:
DAC960_PD_DisableInterrupts(Controller->BaseAddress);
break;
case DAC960_P_Controller:
DAC960_PD_DisableInterrupts(Controller->BaseAddress);
break;
}
iounmap(Controller->MemoryMappedAddress);
}
if (Controller->IRQ_Channel)
free_irq(Controller->IRQ_Channel, Controller);
if (Controller->IO_Address)
release_region(Controller->IO_Address, 0x80);
pci_disable_device(Controller->PCIDevice);
for (i = 0; (i < DAC960_MaxLogicalDrives) && Controller->disks[i]; i++)
put_disk(Controller->disks[i]);
DAC960_Controllers[Controller->ControllerNumber] = NULL;
kfree(Controller);
}
/*
DAC960_DetectController detects Mylex DAC960/AcceleRAID/eXtremeRAID
PCI RAID Controllers by interrogating the PCI Configuration Space for
Controller Type.
*/
static DAC960_Controller_T *
DAC960_DetectController(struct pci_dev *PCI_Device,
const struct pci_device_id *entry)
{
struct DAC960_privdata *privdata =
(struct DAC960_privdata *)entry->driver_data;
irq_handler_t InterruptHandler = privdata->InterruptHandler;
unsigned int MemoryWindowSize = privdata->MemoryWindowSize;
DAC960_Controller_T *Controller = NULL;
unsigned char DeviceFunction = PCI_Device->devfn;
unsigned char ErrorStatus, Parameter0, Parameter1;
unsigned int IRQ_Channel;
void __iomem *BaseAddress;
int i;
Controller = kzalloc(sizeof(DAC960_Controller_T), GFP_ATOMIC);
if (Controller == NULL) {
DAC960_Error("Unable to allocate Controller structure for "
"Controller at\n", NULL);
return NULL;
}
Controller->ControllerNumber = DAC960_ControllerCount;
DAC960_Controllers[DAC960_ControllerCount++] = Controller;
Controller->Bus = PCI_Device->bus->number;
Controller->FirmwareType = privdata->FirmwareType;
Controller->HardwareType = privdata->HardwareType;
Controller->Device = DeviceFunction >> 3;
Controller->Function = DeviceFunction & 0x7;
Controller->PCIDevice = PCI_Device;
strcpy(Controller->FullModelName, "DAC960");
if (pci_enable_device(PCI_Device))
goto Failure;
switch (Controller->HardwareType)
{
case DAC960_GEM_Controller:
Controller->PCI_Address = pci_resource_start(PCI_Device, 0);
break;
case DAC960_BA_Controller:
Controller->PCI_Address = pci_resource_start(PCI_Device, 0);
break;
case DAC960_LP_Controller:
Controller->PCI_Address = pci_resource_start(PCI_Device, 0);
break;
case DAC960_LA_Controller:
Controller->PCI_Address = pci_resource_start(PCI_Device, 0);
break;
case DAC960_PG_Controller:
Controller->PCI_Address = pci_resource_start(PCI_Device, 0);
break;
case DAC960_PD_Controller:
Controller->IO_Address = pci_resource_start(PCI_Device, 0);
Controller->PCI_Address = pci_resource_start(PCI_Device, 1);
break;
case DAC960_P_Controller:
Controller->IO_Address = pci_resource_start(PCI_Device, 0);
Controller->PCI_Address = pci_resource_start(PCI_Device, 1);
break;
}
pci_set_drvdata(PCI_Device, (void *)((long)Controller->ControllerNumber));
for (i = 0; i < DAC960_MaxLogicalDrives; i++) {
Controller->disks[i] = alloc_disk(1<<DAC960_MaxPartitionsBits);
if (!Controller->disks[i])
goto Failure;
Controller->disks[i]->private_data = (void *)((long)i);
}
init_waitqueue_head(&Controller->CommandWaitQueue);
init_waitqueue_head(&Controller->HealthStatusWaitQueue);
spin_lock_init(&Controller->queue_lock);
DAC960_AnnounceDriver(Controller);
/*
Map the Controller Register Window.
*/
if (MemoryWindowSize < PAGE_SIZE)
MemoryWindowSize = PAGE_SIZE;
Controller->MemoryMappedAddress =
ioremap_nocache(Controller->PCI_Address & PAGE_MASK, MemoryWindowSize);
Controller->BaseAddress =
Controller->MemoryMappedAddress + (Controller->PCI_Address & ~PAGE_MASK);
if (Controller->MemoryMappedAddress == NULL)
{
DAC960_Error("Unable to map Controller Register Window for "
"Controller at\n", Controller);
goto Failure;
}
BaseAddress = Controller->BaseAddress;
switch (Controller->HardwareType)
{
case DAC960_GEM_Controller:
DAC960_GEM_DisableInterrupts(BaseAddress);
DAC960_GEM_AcknowledgeHardwareMailboxStatus(BaseAddress);
udelay(1000);
while (DAC960_GEM_InitializationInProgressP(BaseAddress))
{
if (DAC960_GEM_ReadErrorStatus(BaseAddress, &ErrorStatus,
&Parameter0, &Parameter1) &&
DAC960_ReportErrorStatus(Controller, ErrorStatus,
Parameter0, Parameter1))
goto Failure;
udelay(10);
}
if (!DAC960_V2_EnableMemoryMailboxInterface(Controller))
{
DAC960_Error("Unable to Enable Memory Mailbox Interface "
"for Controller at\n", Controller);
goto Failure;
}
DAC960_GEM_EnableInterrupts(BaseAddress);
Controller->QueueCommand = DAC960_GEM_QueueCommand;
Controller->ReadControllerConfiguration =
DAC960_V2_ReadControllerConfiguration;
Controller->ReadDeviceConfiguration =
DAC960_V2_ReadDeviceConfiguration;
Controller->ReportDeviceConfiguration =
DAC960_V2_ReportDeviceConfiguration;
Controller->QueueReadWriteCommand =
DAC960_V2_QueueReadWriteCommand;
break;
case DAC960_BA_Controller:
DAC960_BA_DisableInterrupts(BaseAddress);
DAC960_BA_AcknowledgeHardwareMailboxStatus(BaseAddress);
udelay(1000);
while (DAC960_BA_InitializationInProgressP(BaseAddress))
{
if (DAC960_BA_ReadErrorStatus(BaseAddress, &ErrorStatus,
&Parameter0, &Parameter1) &&
DAC960_ReportErrorStatus(Controller, ErrorStatus,
Parameter0, Parameter1))
goto Failure;
udelay(10);
}
if (!DAC960_V2_EnableMemoryMailboxInterface(Controller))
{
DAC960_Error("Unable to Enable Memory Mailbox Interface "
"for Controller at\n", Controller);
goto Failure;
}
DAC960_BA_EnableInterrupts(BaseAddress);
Controller->QueueCommand = DAC960_BA_QueueCommand;
Controller->ReadControllerConfiguration =
DAC960_V2_ReadControllerConfiguration;
Controller->ReadDeviceConfiguration =
DAC960_V2_ReadDeviceConfiguration;
Controller->ReportDeviceConfiguration =
DAC960_V2_ReportDeviceConfiguration;
Controller->QueueReadWriteCommand =
DAC960_V2_QueueReadWriteCommand;
break;
case DAC960_LP_Controller:
DAC960_LP_DisableInterrupts(BaseAddress);
DAC960_LP_AcknowledgeHardwareMailboxStatus(BaseAddress);
udelay(1000);
while (DAC960_LP_InitializationInProgressP(BaseAddress))
{
if (DAC960_LP_ReadErrorStatus(BaseAddress, &ErrorStatus,
&Parameter0, &Parameter1) &&
DAC960_ReportErrorStatus(Controller, ErrorStatus,
Parameter0, Parameter1))
goto Failure;
udelay(10);
}
if (!DAC960_V2_EnableMemoryMailboxInterface(Controller))
{
DAC960_Error("Unable to Enable Memory Mailbox Interface "
"for Controller at\n", Controller);
goto Failure;
}
DAC960_LP_EnableInterrupts(BaseAddress);
Controller->QueueCommand = DAC960_LP_QueueCommand;
Controller->ReadControllerConfiguration =
DAC960_V2_ReadControllerConfiguration;
Controller->ReadDeviceConfiguration =
DAC960_V2_ReadDeviceConfiguration;
Controller->ReportDeviceConfiguration =
DAC960_V2_ReportDeviceConfiguration;
Controller->QueueReadWriteCommand =
DAC960_V2_QueueReadWriteCommand;
break;
case DAC960_LA_Controller:
DAC960_LA_DisableInterrupts(BaseAddress);
DAC960_LA_AcknowledgeHardwareMailboxStatus(BaseAddress);
udelay(1000);
while (DAC960_LA_InitializationInProgressP(BaseAddress))
{
if (DAC960_LA_ReadErrorStatus(BaseAddress, &ErrorStatus,
&Parameter0, &Parameter1) &&
DAC960_ReportErrorStatus(Controller, ErrorStatus,
Parameter0, Parameter1))
goto Failure;
udelay(10);
}
if (!DAC960_V1_EnableMemoryMailboxInterface(Controller))
{
DAC960_Error("Unable to Enable Memory Mailbox Interface "
"for Controller at\n", Controller);
goto Failure;
}
DAC960_LA_EnableInterrupts(BaseAddress);
if (Controller->V1.DualModeMemoryMailboxInterface)
Controller->QueueCommand = DAC960_LA_QueueCommandDualMode;
else Controller->QueueCommand = DAC960_LA_QueueCommandSingleMode;
Controller->ReadControllerConfiguration =
DAC960_V1_ReadControllerConfiguration;
Controller->ReadDeviceConfiguration =
DAC960_V1_ReadDeviceConfiguration;
Controller->ReportDeviceConfiguration =
DAC960_V1_ReportDeviceConfiguration;
Controller->QueueReadWriteCommand =
DAC960_V1_QueueReadWriteCommand;
break;
case DAC960_PG_Controller:
DAC960_PG_DisableInterrupts(BaseAddress);
DAC960_PG_AcknowledgeHardwareMailboxStatus(BaseAddress);
udelay(1000);
while (DAC960_PG_InitializationInProgressP(BaseAddress))
{
if (DAC960_PG_ReadErrorStatus(BaseAddress, &ErrorStatus,
&Parameter0, &Parameter1) &&
DAC960_ReportErrorStatus(Controller, ErrorStatus,
Parameter0, Parameter1))
goto Failure;
udelay(10);
}
if (!DAC960_V1_EnableMemoryMailboxInterface(Controller))
{
DAC960_Error("Unable to Enable Memory Mailbox Interface "
"for Controller at\n", Controller);
goto Failure;
}
DAC960_PG_EnableInterrupts(BaseAddress);
if (Controller->V1.DualModeMemoryMailboxInterface)
Controller->QueueCommand = DAC960_PG_QueueCommandDualMode;
else Controller->QueueCommand = DAC960_PG_QueueCommandSingleMode;
Controller->ReadControllerConfiguration =
DAC960_V1_ReadControllerConfiguration;
Controller->ReadDeviceConfiguration =
DAC960_V1_ReadDeviceConfiguration;
Controller->ReportDeviceConfiguration =
DAC960_V1_ReportDeviceConfiguration;
Controller->QueueReadWriteCommand =
DAC960_V1_QueueReadWriteCommand;
break;
case DAC960_PD_Controller:
if (!request_region(Controller->IO_Address, 0x80,
Controller->FullModelName)) {
DAC960_Error("IO port 0x%d busy for Controller at\n",
Controller, Controller->IO_Address);
goto Failure;
}
DAC960_PD_DisableInterrupts(BaseAddress);
DAC960_PD_AcknowledgeStatus(BaseAddress);
udelay(1000);
while (DAC960_PD_InitializationInProgressP(BaseAddress))
{
if (DAC960_PD_ReadErrorStatus(BaseAddress, &ErrorStatus,
&Parameter0, &Parameter1) &&
DAC960_ReportErrorStatus(Controller, ErrorStatus,
Parameter0, Parameter1))
goto Failure;
udelay(10);
}
if (!DAC960_V1_EnableMemoryMailboxInterface(Controller))
{
DAC960_Error("Unable to allocate DMA mapped memory "
"for Controller at\n", Controller);
goto Failure;
}
DAC960_PD_EnableInterrupts(BaseAddress);
Controller->QueueCommand = DAC960_PD_QueueCommand;
Controller->ReadControllerConfiguration =
DAC960_V1_ReadControllerConfiguration;
Controller->ReadDeviceConfiguration =
DAC960_V1_ReadDeviceConfiguration;
Controller->ReportDeviceConfiguration =
DAC960_V1_ReportDeviceConfiguration;
Controller->QueueReadWriteCommand =
DAC960_V1_QueueReadWriteCommand;
break;
case DAC960_P_Controller:
if (!request_region(Controller->IO_Address, 0x80,
Controller->FullModelName)){
DAC960_Error("IO port 0x%d busy for Controller at\n",
Controller, Controller->IO_Address);
goto Failure;
}
DAC960_PD_DisableInterrupts(BaseAddress);
DAC960_PD_AcknowledgeStatus(BaseAddress);
udelay(1000);
while (DAC960_PD_InitializationInProgressP(BaseAddress))
{
if (DAC960_PD_ReadErrorStatus(BaseAddress, &ErrorStatus,
&Parameter0, &Parameter1) &&
DAC960_ReportErrorStatus(Controller, ErrorStatus,
Parameter0, Parameter1))
goto Failure;
udelay(10);
}
if (!DAC960_V1_EnableMemoryMailboxInterface(Controller))
{
DAC960_Error("Unable to allocate DMA mapped memory"
"for Controller at\n", Controller);
goto Failure;
}
DAC960_PD_EnableInterrupts(BaseAddress);
Controller->QueueCommand = DAC960_P_QueueCommand;
Controller->ReadControllerConfiguration =
DAC960_V1_ReadControllerConfiguration;
Controller->ReadDeviceConfiguration =
DAC960_V1_ReadDeviceConfiguration;
Controller->ReportDeviceConfiguration =
DAC960_V1_ReportDeviceConfiguration;
Controller->QueueReadWriteCommand =
DAC960_V1_QueueReadWriteCommand;
break;
}
/*
Acquire shared access to the IRQ Channel.
*/
IRQ_Channel = PCI_Device->irq;
if (request_irq(IRQ_Channel, InterruptHandler, IRQF_SHARED,
Controller->FullModelName, Controller) < 0)
{
DAC960_Error("Unable to acquire IRQ Channel %d for Controller at\n",
Controller, Controller->IRQ_Channel);
goto Failure;
}
Controller->IRQ_Channel = IRQ_Channel;
Controller->InitialCommand.CommandIdentifier = 1;
Controller->InitialCommand.Controller = Controller;
Controller->Commands[0] = &Controller->InitialCommand;
Controller->FreeCommands = &Controller->InitialCommand;
return Controller;
Failure:
if (Controller->IO_Address == 0)
DAC960_Error("PCI Bus %d Device %d Function %d I/O Address N/A "
"PCI Address 0x%X\n", Controller,
Controller->Bus, Controller->Device,
Controller->Function, Controller->PCI_Address);
else
DAC960_Error("PCI Bus %d Device %d Function %d I/O Address "
"0x%X PCI Address 0x%X\n", Controller,
Controller->Bus, Controller->Device,
Controller->Function, Controller->IO_Address,
Controller->PCI_Address);
DAC960_DetectCleanup(Controller);
DAC960_ControllerCount--;
return NULL;
}
/*
DAC960_InitializeController initializes Controller.
*/
static bool
DAC960_InitializeController(DAC960_Controller_T *Controller)
{
if (DAC960_ReadControllerConfiguration(Controller) &&
DAC960_ReportControllerConfiguration(Controller) &&
DAC960_CreateAuxiliaryStructures(Controller) &&
DAC960_ReadDeviceConfiguration(Controller) &&
DAC960_ReportDeviceConfiguration(Controller) &&
DAC960_RegisterBlockDevice(Controller))
{
/*
Initialize the Monitoring Timer.
*/
init_timer(&Controller->MonitoringTimer);
Controller->MonitoringTimer.expires =
jiffies + DAC960_MonitoringTimerInterval;
Controller->MonitoringTimer.data = (unsigned long) Controller;
Controller->MonitoringTimer.function = DAC960_MonitoringTimerFunction;
add_timer(&Controller->MonitoringTimer);
Controller->ControllerInitialized = true;
return true;
}
return false;
}
/*
DAC960_FinalizeController finalizes Controller.
*/
static void DAC960_FinalizeController(DAC960_Controller_T *Controller)
{
if (Controller->ControllerInitialized)
{
unsigned long flags;
/*
* Acquiring and releasing lock here eliminates
* a very low probability race.
*
* The code below allocates controller command structures
* from the free list without holding the controller lock.
* This is safe assuming there is no other activity on
* the controller at the time.
*
* But, there might be a monitoring command still
* in progress. Setting the Shutdown flag while holding
* the lock ensures that there is no monitoring command
* in the interrupt handler currently, and any monitoring
* commands that complete from this time on will NOT return
* their command structure to the free list.
*/
spin_lock_irqsave(&Controller->queue_lock, flags);
Controller->ShutdownMonitoringTimer = 1;
spin_unlock_irqrestore(&Controller->queue_lock, flags);
del_timer_sync(&Controller->MonitoringTimer);
if (Controller->FirmwareType == DAC960_V1_Controller)
{
DAC960_Notice("Flushing Cache...", Controller);
DAC960_V1_ExecuteType3(Controller, DAC960_V1_Flush, 0);
DAC960_Notice("done\n", Controller);
if (Controller->HardwareType == DAC960_PD_Controller)
release_region(Controller->IO_Address, 0x80);
}
else
{
DAC960_Notice("Flushing Cache...", Controller);
DAC960_V2_DeviceOperation(Controller, DAC960_V2_PauseDevice,
DAC960_V2_RAID_Controller);
DAC960_Notice("done\n", Controller);
}
}
DAC960_UnregisterBlockDevice(Controller);
DAC960_DestroyAuxiliaryStructures(Controller);
DAC960_DestroyProcEntries(Controller);
DAC960_DetectCleanup(Controller);
}
/*
DAC960_Probe verifies controller's existence and
initializes the DAC960 Driver for that controller.
*/
static int
DAC960_Probe(struct pci_dev *dev, const struct pci_device_id *entry)
{
int disk;
DAC960_Controller_T *Controller;
if (DAC960_ControllerCount == DAC960_MaxControllers)
{
DAC960_Error("More than %d DAC960 Controllers detected - "
"ignoring from Controller at\n",
NULL, DAC960_MaxControllers);
return -ENODEV;
}
Controller = DAC960_DetectController(dev, entry);
if (!Controller)
return -ENODEV;
if (!DAC960_InitializeController(Controller)) {
DAC960_FinalizeController(Controller);
return -ENODEV;
}
for (disk = 0; disk < DAC960_MaxLogicalDrives; disk++) {
set_capacity(Controller->disks[disk], disk_size(Controller, disk));
add_disk(Controller->disks[disk]);
}
DAC960_CreateProcEntries(Controller);
return 0;
}
/*
DAC960_Finalize finalizes the DAC960 Driver.
*/
static void DAC960_Remove(struct pci_dev *PCI_Device)
{
int Controller_Number = (long)pci_get_drvdata(PCI_Device);
DAC960_Controller_T *Controller = DAC960_Controllers[Controller_Number];
if (Controller != NULL)
DAC960_FinalizeController(Controller);
}
/*
DAC960_V1_QueueReadWriteCommand prepares and queues a Read/Write Command for
DAC960 V1 Firmware Controllers.
*/
static void DAC960_V1_QueueReadWriteCommand(DAC960_Command_T *Command)
{
DAC960_Controller_T *Controller = Command->Controller;
DAC960_V1_CommandMailbox_T *CommandMailbox = &Command->V1.CommandMailbox;
DAC960_V1_ScatterGatherSegment_T *ScatterGatherList =
Command->V1.ScatterGatherList;
struct scatterlist *ScatterList = Command->V1.ScatterList;
DAC960_V1_ClearCommand(Command);
if (Command->SegmentCount == 1)
{
if (Command->DmaDirection == PCI_DMA_FROMDEVICE)
CommandMailbox->Type5.CommandOpcode = DAC960_V1_Read;
else
CommandMailbox->Type5.CommandOpcode = DAC960_V1_Write;
CommandMailbox->Type5.LD.TransferLength = Command->BlockCount;
CommandMailbox->Type5.LD.LogicalDriveNumber = Command->LogicalDriveNumber;
CommandMailbox->Type5.LogicalBlockAddress = Command->BlockNumber;
CommandMailbox->Type5.BusAddress =
(DAC960_BusAddress32_T)sg_dma_address(ScatterList);
}
else
{
int i;
if (Command->DmaDirection == PCI_DMA_FROMDEVICE)
CommandMailbox->Type5.CommandOpcode = DAC960_V1_ReadWithScatterGather;
else
CommandMailbox->Type5.CommandOpcode = DAC960_V1_WriteWithScatterGather;
CommandMailbox->Type5.LD.TransferLength = Command->BlockCount;
CommandMailbox->Type5.LD.LogicalDriveNumber = Command->LogicalDriveNumber;
CommandMailbox->Type5.LogicalBlockAddress = Command->BlockNumber;
CommandMailbox->Type5.BusAddress = Command->V1.ScatterGatherListDMA;
CommandMailbox->Type5.ScatterGatherCount = Command->SegmentCount;
for (i = 0; i < Command->SegmentCount; i++, ScatterList++, ScatterGatherList++) {
ScatterGatherList->SegmentDataPointer =
(DAC960_BusAddress32_T)sg_dma_address(ScatterList);
ScatterGatherList->SegmentByteCount =
(DAC960_ByteCount32_T)sg_dma_len(ScatterList);
}
}
DAC960_QueueCommand(Command);
}
/*
DAC960_V2_QueueReadWriteCommand prepares and queues a Read/Write Command for
DAC960 V2 Firmware Controllers.
*/
static void DAC960_V2_QueueReadWriteCommand(DAC960_Command_T *Command)
{
DAC960_Controller_T *Controller = Command->Controller;
DAC960_V2_CommandMailbox_T *CommandMailbox = &Command->V2.CommandMailbox;
struct scatterlist *ScatterList = Command->V2.ScatterList;
DAC960_V2_ClearCommand(Command);
CommandMailbox->SCSI_10.CommandOpcode = DAC960_V2_SCSI_10;
CommandMailbox->SCSI_10.CommandControlBits.DataTransferControllerToHost =
(Command->DmaDirection == PCI_DMA_FROMDEVICE);
CommandMailbox->SCSI_10.DataTransferSize =
Command->BlockCount << DAC960_BlockSizeBits;
CommandMailbox->SCSI_10.RequestSenseBusAddress = Command->V2.RequestSenseDMA;
CommandMailbox->SCSI_10.PhysicalDevice =
Controller->V2.LogicalDriveToVirtualDevice[Command->LogicalDriveNumber];
CommandMailbox->SCSI_10.RequestSenseSize = sizeof(DAC960_SCSI_RequestSense_T);
CommandMailbox->SCSI_10.CDBLength = 10;
CommandMailbox->SCSI_10.SCSI_CDB[0] =
(Command->DmaDirection == PCI_DMA_FROMDEVICE ? 0x28 : 0x2A);
CommandMailbox->SCSI_10.SCSI_CDB[2] = Command->BlockNumber >> 24;
CommandMailbox->SCSI_10.SCSI_CDB[3] = Command->BlockNumber >> 16;
CommandMailbox->SCSI_10.SCSI_CDB[4] = Command->BlockNumber >> 8;
CommandMailbox->SCSI_10.SCSI_CDB[5] = Command->BlockNumber;
CommandMailbox->SCSI_10.SCSI_CDB[7] = Command->BlockCount >> 8;
CommandMailbox->SCSI_10.SCSI_CDB[8] = Command->BlockCount;
if (Command->SegmentCount == 1)
{
CommandMailbox->SCSI_10.DataTransferMemoryAddress
.ScatterGatherSegments[0]
.SegmentDataPointer =
(DAC960_BusAddress64_T)sg_dma_address(ScatterList);
CommandMailbox->SCSI_10.DataTransferMemoryAddress
.ScatterGatherSegments[0]
.SegmentByteCount =
CommandMailbox->SCSI_10.DataTransferSize;
}
else
{
DAC960_V2_ScatterGatherSegment_T *ScatterGatherList;
int i;
if (Command->SegmentCount > 2)
{
ScatterGatherList = Command->V2.ScatterGatherList;
CommandMailbox->SCSI_10.CommandControlBits
.AdditionalScatterGatherListMemory = true;
CommandMailbox->SCSI_10.DataTransferMemoryAddress
.ExtendedScatterGather.ScatterGatherList0Length = Command->SegmentCount;
CommandMailbox->SCSI_10.DataTransferMemoryAddress
.ExtendedScatterGather.ScatterGatherList0Address =
Command->V2.ScatterGatherListDMA;
}
else
ScatterGatherList = CommandMailbox->SCSI_10.DataTransferMemoryAddress
.ScatterGatherSegments;
for (i = 0; i < Command->SegmentCount; i++, ScatterList++, ScatterGatherList++) {
ScatterGatherList->SegmentDataPointer =
(DAC960_BusAddress64_T)sg_dma_address(ScatterList);
ScatterGatherList->SegmentByteCount =
(DAC960_ByteCount64_T)sg_dma_len(ScatterList);
}
}
DAC960_QueueCommand(Command);
}
static int DAC960_process_queue(DAC960_Controller_T *Controller, struct request_queue *req_q)
{
struct request *Request;
DAC960_Command_T *Command;
while(1) {
Request = elv_next_request(req_q);
if (!Request)
return 1;
Command = DAC960_AllocateCommand(Controller);
if (Command == NULL)
return 0;
if (rq_data_dir(Request) == READ) {
Command->DmaDirection = PCI_DMA_FROMDEVICE;
Command->CommandType = DAC960_ReadCommand;
} else {
Command->DmaDirection = PCI_DMA_TODEVICE;
Command->CommandType = DAC960_WriteCommand;
}
Command->Completion = Request->end_io_data;
Command->LogicalDriveNumber = (long)Request->rq_disk->private_data;
Command->BlockNumber = Request->sector;
Command->BlockCount = Request->nr_sectors;
Command->Request = Request;
blkdev_dequeue_request(Request);
Command->SegmentCount = blk_rq_map_sg(req_q,
Command->Request, Command->cmd_sglist);
/* pci_map_sg MAY change the value of SegCount */
Command->SegmentCount = pci_map_sg(Controller->PCIDevice, Command->cmd_sglist,
Command->SegmentCount, Command->DmaDirection);
DAC960_QueueReadWriteCommand(Command);
}
}
/*
DAC960_ProcessRequest attempts to remove one I/O Request from Controller's
I/O Request Queue and queues it to the Controller. WaitForCommand is true if
this function should wait for a Command to become available if necessary.
This function returns true if an I/O Request was queued and false otherwise.
*/
static void DAC960_ProcessRequest(DAC960_Controller_T *controller)
{
int i;
if (!controller->ControllerInitialized)
return;
/* Do this better later! */
for (i = controller->req_q_index; i < DAC960_MaxLogicalDrives; i++) {
struct request_queue *req_q = controller->RequestQueue[i];
if (req_q == NULL)
continue;
if (!DAC960_process_queue(controller, req_q)) {
controller->req_q_index = i;
return;
}
}
if (controller->req_q_index == 0)
return;
for (i = 0; i < controller->req_q_index; i++) {
struct request_queue *req_q = controller->RequestQueue[i];
if (req_q == NULL)
continue;
if (!DAC960_process_queue(controller, req_q)) {
controller->req_q_index = i;
return;
}
}
}
/*
DAC960_queue_partial_rw extracts one bio from the request already
associated with argument command, and construct a new command block to retry I/O
only on that bio. Queue that command to the controller.
This function re-uses a previously-allocated Command,
there is no failure mode from trying to allocate a command.
*/
static void DAC960_queue_partial_rw(DAC960_Command_T *Command)
{
DAC960_Controller_T *Controller = Command->Controller;
struct request *Request = Command->Request;
struct request_queue *req_q = Controller->RequestQueue[Command->LogicalDriveNumber];
if (Command->DmaDirection == PCI_DMA_FROMDEVICE)
Command->CommandType = DAC960_ReadRetryCommand;
else
Command->CommandType = DAC960_WriteRetryCommand;
/*
* We could be more efficient with these mapping requests
* and map only the portions that we need. But since this
* code should almost never be called, just go with a
* simple coding.
*/
(void)blk_rq_map_sg(req_q, Command->Request, Command->cmd_sglist);
(void)pci_map_sg(Controller->PCIDevice, Command->cmd_sglist, 1, Command->DmaDirection);
/*
* Resubmitting the request sector at a time is really tedious.
* But, this should almost never happen. So, we're willing to pay
* this price so that in the end, as much of the transfer is completed
* successfully as possible.
*/
Command->SegmentCount = 1;
Command->BlockNumber = Request->sector;
Command->BlockCount = 1;
DAC960_QueueReadWriteCommand(Command);
return;
}
/*
DAC960_RequestFunction is the I/O Request Function for DAC960 Controllers.
*/
static void DAC960_RequestFunction(struct request_queue *RequestQueue)
{
DAC960_ProcessRequest(RequestQueue->queuedata);
}
/*
DAC960_ProcessCompletedBuffer performs completion processing for an
individual Buffer.
*/
static inline bool DAC960_ProcessCompletedRequest(DAC960_Command_T *Command,
bool SuccessfulIO)
{
struct request *Request = Command->Request;
int Error = SuccessfulIO ? 0 : -EIO;
pci_unmap_sg(Command->Controller->PCIDevice, Command->cmd_sglist,
Command->SegmentCount, Command->DmaDirection);
if (!__blk_end_request(Request, Error, Command->BlockCount << 9)) {
if (Command->Completion) {
complete(Command->Completion);
Command->Completion = NULL;
}
return true;
}
return false;
}
/*
DAC960_V1_ReadWriteError prints an appropriate error message for Command
when an error occurs on a Read or Write operation.
*/
static void DAC960_V1_ReadWriteError(DAC960_Command_T *Command)
{
DAC960_Controller_T *Controller = Command->Controller;
unsigned char *CommandName = "UNKNOWN";
switch (Command->CommandType)
{
case DAC960_ReadCommand:
case DAC960_ReadRetryCommand:
CommandName = "READ";
break;
case DAC960_WriteCommand:
case DAC960_WriteRetryCommand:
CommandName = "WRITE";
break;
case DAC960_MonitoringCommand:
case DAC960_ImmediateCommand:
case DAC960_QueuedCommand:
break;
}
switch (Command->V1.CommandStatus)
{
case DAC960_V1_IrrecoverableDataError:
DAC960_Error("Irrecoverable Data Error on %s:\n",
Controller, CommandName);
break;
case DAC960_V1_LogicalDriveNonexistentOrOffline:
DAC960_Error("Logical Drive Nonexistent or Offline on %s:\n",
Controller, CommandName);
break;
case DAC960_V1_AccessBeyondEndOfLogicalDrive:
DAC960_Error("Attempt to Access Beyond End of Logical Drive "
"on %s:\n", Controller, CommandName);
break;
case DAC960_V1_BadDataEncountered:
DAC960_Error("Bad Data Encountered on %s:\n", Controller, CommandName);
break;
default:
DAC960_Error("Unexpected Error Status %04X on %s:\n",
Controller, Command->V1.CommandStatus, CommandName);
break;
}
DAC960_Error(" /dev/rd/c%dd%d: absolute blocks %u..%u\n",
Controller, Controller->ControllerNumber,
Command->LogicalDriveNumber, Command->BlockNumber,
Command->BlockNumber + Command->BlockCount - 1);
}
/*
DAC960_V1_ProcessCompletedCommand performs completion processing for Command
for DAC960 V1 Firmware Controllers.
*/
static void DAC960_V1_ProcessCompletedCommand(DAC960_Command_T *Command)
{
DAC960_Controller_T *Controller = Command->Controller;
DAC960_CommandType_T CommandType = Command->CommandType;
DAC960_V1_CommandOpcode_T CommandOpcode =
Command->V1.CommandMailbox.Common.CommandOpcode;
DAC960_V1_CommandStatus_T CommandStatus = Command->V1.CommandStatus;
if (CommandType == DAC960_ReadCommand ||
CommandType == DAC960_WriteCommand)
{
#ifdef FORCE_RETRY_DEBUG
CommandStatus = DAC960_V1_IrrecoverableDataError;
#endif
if (CommandStatus == DAC960_V1_NormalCompletion) {
if (!DAC960_ProcessCompletedRequest(Command, true))
BUG();
} else if (CommandStatus == DAC960_V1_IrrecoverableDataError ||
CommandStatus == DAC960_V1_BadDataEncountered)
{
/*
* break the command down into pieces and resubmit each
* piece, hoping that some of them will succeed.
*/
DAC960_queue_partial_rw(Command);
return;
}
else
{
if (CommandStatus != DAC960_V1_LogicalDriveNonexistentOrOffline)
DAC960_V1_ReadWriteError(Command);
if (!DAC960_ProcessCompletedRequest(Command, false))
BUG();
}
}
else if (CommandType == DAC960_ReadRetryCommand ||
CommandType == DAC960_WriteRetryCommand)
{
bool normal_completion;
#ifdef FORCE_RETRY_FAILURE_DEBUG
static int retry_count = 1;
#endif
/*
Perform completion processing for the portion that was
retried, and submit the next portion, if any.
*/
normal_completion = true;
if (CommandStatus != DAC960_V1_NormalCompletion) {
normal_completion = false;
if (CommandStatus != DAC960_V1_LogicalDriveNonexistentOrOffline)
DAC960_V1_ReadWriteError(Command);
}
#ifdef FORCE_RETRY_FAILURE_DEBUG
if (!(++retry_count % 10000)) {
printk("V1 error retry failure test\n");
normal_completion = false;
DAC960_V1_ReadWriteError(Command);
}
#endif
if (!DAC960_ProcessCompletedRequest(Command, normal_completion)) {
DAC960_queue_partial_rw(Command);
return;
}
}
else if (CommandType == DAC960_MonitoringCommand)
{
if (Controller->ShutdownMonitoringTimer)
return;
if (CommandOpcode == DAC960_V1_Enquiry)
{
DAC960_V1_Enquiry_T *OldEnquiry = &Controller->V1.Enquiry;
DAC960_V1_Enquiry_T *NewEnquiry = Controller->V1.NewEnquiry;
unsigned int OldCriticalLogicalDriveCount =
OldEnquiry->CriticalLogicalDriveCount;
unsigned int NewCriticalLogicalDriveCount =
NewEnquiry->CriticalLogicalDriveCount;
if (NewEnquiry->NumberOfLogicalDrives > Controller->LogicalDriveCount)
{
int LogicalDriveNumber = Controller->LogicalDriveCount - 1;
while (++LogicalDriveNumber < NewEnquiry->NumberOfLogicalDrives)
DAC960_Critical("Logical Drive %d (/dev/rd/c%dd%d) "
"Now Exists\n", Controller,
LogicalDriveNumber,
Controller->ControllerNumber,
LogicalDriveNumber);
Controller->LogicalDriveCount = NewEnquiry->NumberOfLogicalDrives;
DAC960_ComputeGenericDiskInfo(Controller);
}
if (NewEnquiry->NumberOfLogicalDrives < Controller->LogicalDriveCount)
{
int LogicalDriveNumber = NewEnquiry->NumberOfLogicalDrives - 1;
while (++LogicalDriveNumber < Controller->LogicalDriveCount)
DAC960_Critical("Logical Drive %d (/dev/rd/c%dd%d) "
"No Longer Exists\n", Controller,
LogicalDriveNumber,
Controller->ControllerNumber,
LogicalDriveNumber);
Controller->LogicalDriveCount = NewEnquiry->NumberOfLogicalDrives;
DAC960_ComputeGenericDiskInfo(Controller);
}
if (NewEnquiry->StatusFlags.DeferredWriteError !=
OldEnquiry->StatusFlags.DeferredWriteError)
DAC960_Critical("Deferred Write Error Flag is now %s\n", Controller,
(NewEnquiry->StatusFlags.DeferredWriteError
? "TRUE" : "FALSE"));
if ((NewCriticalLogicalDriveCount > 0 ||
NewCriticalLogicalDriveCount != OldCriticalLogicalDriveCount) ||
(NewEnquiry->OfflineLogicalDriveCount > 0 ||
NewEnquiry->OfflineLogicalDriveCount !=
OldEnquiry->OfflineLogicalDriveCount) ||
(NewEnquiry->DeadDriveCount > 0 ||
NewEnquiry->DeadDriveCount !=
OldEnquiry->DeadDriveCount) ||
(NewEnquiry->EventLogSequenceNumber !=
OldEnquiry->EventLogSequenceNumber) ||
Controller->MonitoringTimerCount == 0 ||
time_after_eq(jiffies, Controller->SecondaryMonitoringTime
+ DAC960_SecondaryMonitoringInterval))
{
Controller->V1.NeedLogicalDriveInformation = true;
Controller->V1.NewEventLogSequenceNumber =
NewEnquiry->EventLogSequenceNumber;
Controller->V1.NeedErrorTableInformation = true;
Controller->V1.NeedDeviceStateInformation = true;
Controller->V1.StartDeviceStateScan = true;
Controller->V1.NeedBackgroundInitializationStatus =
Controller->V1.BackgroundInitializationStatusSupported;
Controller->SecondaryMonitoringTime = jiffies;
}
if (NewEnquiry->RebuildFlag == DAC960_V1_StandbyRebuildInProgress ||
NewEnquiry->RebuildFlag
== DAC960_V1_BackgroundRebuildInProgress ||
OldEnquiry->RebuildFlag == DAC960_V1_StandbyRebuildInProgress ||
OldEnquiry->RebuildFlag == DAC960_V1_BackgroundRebuildInProgress)
{
Controller->V1.NeedRebuildProgress = true;
Controller->V1.RebuildProgressFirst =
(NewEnquiry->CriticalLogicalDriveCount <
OldEnquiry->CriticalLogicalDriveCount);
}
if (OldEnquiry->RebuildFlag == DAC960_V1_BackgroundCheckInProgress)
switch (NewEnquiry->RebuildFlag)
{
case DAC960_V1_NoStandbyRebuildOrCheckInProgress:
DAC960_Progress("Consistency Check Completed Successfully\n",
Controller);
break;
case DAC960_V1_StandbyRebuildInProgress:
case DAC960_V1_BackgroundRebuildInProgress:
break;
case DAC960_V1_BackgroundCheckInProgress:
Controller->V1.NeedConsistencyCheckProgress = true;
break;
case DAC960_V1_StandbyRebuildCompletedWithError:
DAC960_Progress("Consistency Check Completed with Error\n",
Controller);
break;
case DAC960_V1_BackgroundRebuildOrCheckFailed_DriveFailed:
DAC960_Progress("Consistency Check Failed - "
"Physical Device Failed\n", Controller);
break;
case DAC960_V1_BackgroundRebuildOrCheckFailed_LogicalDriveFailed:
DAC960_Progress("Consistency Check Failed - "
"Logical Drive Failed\n", Controller);
break;
case DAC960_V1_BackgroundRebuildOrCheckFailed_OtherCauses:
DAC960_Progress("Consistency Check Failed - Other Causes\n",
Controller);
break;
case DAC960_V1_BackgroundRebuildOrCheckSuccessfullyTerminated:
DAC960_Progress("Consistency Check Successfully Terminated\n",
Controller);
break;
}
else if (NewEnquiry->RebuildFlag
== DAC960_V1_BackgroundCheckInProgress)
Controller->V1.NeedConsistencyCheckProgress = true;
Controller->MonitoringAlertMode =
(NewEnquiry->CriticalLogicalDriveCount > 0 ||
NewEnquiry->OfflineLogicalDriveCount > 0 ||
NewEnquiry->DeadDriveCount > 0);
if (NewEnquiry->RebuildFlag > DAC960_V1_BackgroundCheckInProgress)
{
Controller->V1.PendingRebuildFlag = NewEnquiry->RebuildFlag;
Controller->V1.RebuildFlagPending = true;
}
memcpy(&Controller->V1.Enquiry, &Controller->V1.NewEnquiry,
sizeof(DAC960_V1_Enquiry_T));
}
else if (CommandOpcode == DAC960_V1_PerformEventLogOperation)
{
static char
*DAC960_EventMessages[] =
{ "killed because write recovery failed",
"killed because of SCSI bus reset failure",
"killed because of double check condition",
"killed because it was removed",
"killed because of gross error on SCSI chip",
"killed because of bad tag returned from drive",
"killed because of timeout on SCSI command",
"killed because of reset SCSI command issued from system",
"killed because busy or parity error count exceeded limit",
"killed because of 'kill drive' command from system",
"killed because of selection timeout",
"killed due to SCSI phase sequence error",
"killed due to unknown status" };
DAC960_V1_EventLogEntry_T *EventLogEntry =
Controller->V1.EventLogEntry;
if (EventLogEntry->SequenceNumber ==
Controller->V1.OldEventLogSequenceNumber)
{
unsigned char SenseKey = EventLogEntry->SenseKey;
unsigned char AdditionalSenseCode =
EventLogEntry->AdditionalSenseCode;
unsigned char AdditionalSenseCodeQualifier =
EventLogEntry->AdditionalSenseCodeQualifier;
if (SenseKey == DAC960_SenseKey_VendorSpecific &&
AdditionalSenseCode == 0x80 &&
AdditionalSenseCodeQualifier <
ARRAY_SIZE(DAC960_EventMessages))
DAC960_Critical("Physical Device %d:%d %s\n", Controller,
EventLogEntry->Channel,
EventLogEntry->TargetID,
DAC960_EventMessages[
AdditionalSenseCodeQualifier]);
else if (SenseKey == DAC960_SenseKey_UnitAttention &&
AdditionalSenseCode == 0x29)
{
if (Controller->MonitoringTimerCount > 0)
Controller->V1.DeviceResetCount[EventLogEntry->Channel]
[EventLogEntry->TargetID]++;
}
else if (!(SenseKey == DAC960_SenseKey_NoSense ||
(SenseKey == DAC960_SenseKey_NotReady &&
AdditionalSenseCode == 0x04 &&
(AdditionalSenseCodeQualifier == 0x01 ||
AdditionalSenseCodeQualifier == 0x02))))
{
DAC960_Critical("Physical Device %d:%d Error Log: "
"Sense Key = %X, ASC = %02X, ASCQ = %02X\n",
Controller,
EventLogEntry->Channel,
EventLogEntry->TargetID,
SenseKey,
AdditionalSenseCode,
AdditionalSenseCodeQualifier);
DAC960_Critical("Physical Device %d:%d Error Log: "
"Information = %02X%02X%02X%02X "
"%02X%02X%02X%02X\n",
Controller,
EventLogEntry->Channel,
EventLogEntry->TargetID,
EventLogEntry->Information[0],
EventLogEntry->Information[1],
EventLogEntry->Information[2],
EventLogEntry->Information[3],
EventLogEntry->CommandSpecificInformation[0],
EventLogEntry->CommandSpecificInformation[1],
EventLogEntry->CommandSpecificInformation[2],
EventLogEntry->CommandSpecificInformation[3]);
}
}
Controller->V1.OldEventLogSequenceNumber++;
}
else if (CommandOpcode == DAC960_V1_GetErrorTable)
{
DAC960_V1_ErrorTable_T *OldErrorTable = &Controller->V1.ErrorTable;
DAC960_V1_ErrorTable_T *NewErrorTable = Controller->V1.NewErrorTable;
int Channel, TargetID;
for (Channel = 0; Channel < Controller->Channels; Channel++)
for (TargetID = 0; TargetID < Controller->Targets; TargetID++)
{
DAC960_V1_ErrorTableEntry_T *NewErrorEntry =
&NewErrorTable->ErrorTableEntries[Channel][TargetID];
DAC960_V1_ErrorTableEntry_T *OldErrorEntry =
&OldErrorTable->ErrorTableEntries[Channel][TargetID];
if ((NewErrorEntry->ParityErrorCount !=
OldErrorEntry->ParityErrorCount) ||
(NewErrorEntry->SoftErrorCount !=
OldErrorEntry->SoftErrorCount) ||
(NewErrorEntry->HardErrorCount !=
OldErrorEntry->HardErrorCount) ||
(NewErrorEntry->MiscErrorCount !=
OldErrorEntry->MiscErrorCount))
DAC960_Critical("Physical Device %d:%d Errors: "
"Parity = %d, Soft = %d, "
"Hard = %d, Misc = %d\n",
Controller, Channel, TargetID,
NewErrorEntry->ParityErrorCount,
NewErrorEntry->SoftErrorCount,
NewErrorEntry->HardErrorCount,
NewErrorEntry->MiscErrorCount);
}
memcpy(&Controller->V1.ErrorTable, Controller->V1.NewErrorTable,
sizeof(DAC960_V1_ErrorTable_T));
}
else if (CommandOpcode == DAC960_V1_GetDeviceState)
{
DAC960_V1_DeviceState_T *OldDeviceState =
&Controller->V1.DeviceState[Controller->V1.DeviceStateChannel]
[Controller->V1.DeviceStateTargetID];
DAC960_V1_DeviceState_T *NewDeviceState =
Controller->V1.NewDeviceState;
if (NewDeviceState->DeviceState != OldDeviceState->DeviceState)
DAC960_Critical("Physical Device %d:%d is now %s\n", Controller,
Controller->V1.DeviceStateChannel,
Controller->V1.DeviceStateTargetID,
(NewDeviceState->DeviceState
== DAC960_V1_Device_Dead
? "DEAD"
: NewDeviceState->DeviceState
== DAC960_V1_Device_WriteOnly
? "WRITE-ONLY"
: NewDeviceState->DeviceState
== DAC960_V1_Device_Online
? "ONLINE" : "STANDBY"));
if (OldDeviceState->DeviceState == DAC960_V1_Device_Dead &&
NewDeviceState->DeviceState != DAC960_V1_Device_Dead)
{
Controller->V1.NeedDeviceInquiryInformation = true;
Controller->V1.NeedDeviceSerialNumberInformation = true;
Controller->V1.DeviceResetCount
[Controller->V1.DeviceStateChannel]
[Controller->V1.DeviceStateTargetID] = 0;
}
memcpy(OldDeviceState, NewDeviceState,
sizeof(DAC960_V1_DeviceState_T));
}
else if (CommandOpcode == DAC960_V1_GetLogicalDriveInformation)
{
int LogicalDriveNumber;
for (LogicalDriveNumber = 0;
LogicalDriveNumber < Controller->LogicalDriveCount;
LogicalDriveNumber++)
{
DAC960_V1_LogicalDriveInformation_T *OldLogicalDriveInformation =
&Controller->V1.LogicalDriveInformation[LogicalDriveNumber];
DAC960_V1_LogicalDriveInformation_T *NewLogicalDriveInformation =
&(*Controller->V1.NewLogicalDriveInformation)[LogicalDriveNumber];
if (NewLogicalDriveInformation->LogicalDriveState !=
OldLogicalDriveInformation->LogicalDriveState)
DAC960_Critical("Logical Drive %d (/dev/rd/c%dd%d) "
"is now %s\n", Controller,
LogicalDriveNumber,
Controller->ControllerNumber,
LogicalDriveNumber,
(NewLogicalDriveInformation->LogicalDriveState
== DAC960_V1_LogicalDrive_Online
? "ONLINE"
: NewLogicalDriveInformation->LogicalDriveState
== DAC960_V1_LogicalDrive_Critical
? "CRITICAL" : "OFFLINE"));
if (NewLogicalDriveInformation->WriteBack !=
OldLogicalDriveInformation->WriteBack)
DAC960_Critical("Logical Drive %d (/dev/rd/c%dd%d) "
"is now %s\n", Controller,
LogicalDriveNumber,
Controller->ControllerNumber,
LogicalDriveNumber,
(NewLogicalDriveInformation->WriteBack
? "WRITE BACK" : "WRITE THRU"));
}
memcpy(&Controller->V1.LogicalDriveInformation,
Controller->V1.NewLogicalDriveInformation,
sizeof(DAC960_V1_LogicalDriveInformationArray_T));
}
else if (CommandOpcode == DAC960_V1_GetRebuildProgress)
{
unsigned int LogicalDriveNumber =
Controller->V1.RebuildProgress->LogicalDriveNumber;
unsigned int LogicalDriveSize =
Controller->V1.RebuildProgress->LogicalDriveSize;
unsigned int BlocksCompleted =
LogicalDriveSize - Controller->V1.RebuildProgress->RemainingBlocks;
if (CommandStatus == DAC960_V1_NoRebuildOrCheckInProgress &&
Controller->V1.LastRebuildStatus == DAC960_V1_NormalCompletion)
CommandStatus = DAC960_V1_RebuildSuccessful;
switch (CommandStatus)
{
case DAC960_V1_NormalCompletion:
Controller->EphemeralProgressMessage = true;
DAC960_Progress("Rebuild in Progress: "
"Logical Drive %d (/dev/rd/c%dd%d) "
"%d%% completed\n",
Controller, LogicalDriveNumber,
Controller->ControllerNumber,
LogicalDriveNumber,
(100 * (BlocksCompleted >> 7))
/ (LogicalDriveSize >> 7));
Controller->EphemeralProgressMessage = false;
break;
case DAC960_V1_RebuildFailed_LogicalDriveFailure:
DAC960_Progress("Rebuild Failed due to "
"Logical Drive Failure\n", Controller);
break;
case DAC960_V1_RebuildFailed_BadBlocksOnOther:
DAC960_Progress("Rebuild Failed due to "
"Bad Blocks on Other Drives\n", Controller);
break;
case DAC960_V1_RebuildFailed_NewDriveFailed:
DAC960_Progress("Rebuild Failed due to "
"Failure of Drive Being Rebuilt\n", Controller);
break;
case DAC960_V1_NoRebuildOrCheckInProgress:
break;
case DAC960_V1_RebuildSuccessful:
DAC960_Progress("Rebuild Completed Successfully\n", Controller);
break;
case DAC960_V1_RebuildSuccessfullyTerminated:
DAC960_Progress("Rebuild Successfully Terminated\n", Controller);
break;
}
Controller->V1.LastRebuildStatus = CommandStatus;
if (CommandType != DAC960_MonitoringCommand &&
Controller->V1.RebuildStatusPending)
{
Command->V1.CommandStatus = Controller->V1.PendingRebuildStatus;
Controller->V1.RebuildStatusPending = false;
}
else if (CommandType == DAC960_MonitoringCommand &&
CommandStatus != DAC960_V1_NormalCompletion &&
CommandStatus != DAC960_V1_NoRebuildOrCheckInProgress)
{
Controller->V1.PendingRebuildStatus = CommandStatus;
Controller->V1.RebuildStatusPending = true;
}
}
else if (CommandOpcode == DAC960_V1_RebuildStat)
{
unsigned int LogicalDriveNumber =
Controller->V1.RebuildProgress->LogicalDriveNumber;
unsigned int LogicalDriveSize =
Controller->V1.RebuildProgress->LogicalDriveSize;
unsigned int BlocksCompleted =
LogicalDriveSize - Controller->V1.RebuildProgress->RemainingBlocks;
if (CommandStatus == DAC960_V1_NormalCompletion)
{
Controller->EphemeralProgressMessage = true;
DAC960_Progress("Consistency Check in Progress: "
"Logical Drive %d (/dev/rd/c%dd%d) "
"%d%% completed\n",
Controller, LogicalDriveNumber,
Controller->ControllerNumber,
LogicalDriveNumber,
(100 * (BlocksCompleted >> 7))
/ (LogicalDriveSize >> 7));
Controller->EphemeralProgressMessage = false;
}
}
else if (CommandOpcode == DAC960_V1_BackgroundInitializationControl)
{
unsigned int LogicalDriveNumber =
Controller->V1.BackgroundInitializationStatus->LogicalDriveNumber;
unsigned int LogicalDriveSize =
Controller->V1.BackgroundInitializationStatus->LogicalDriveSize;
unsigned int BlocksCompleted =
Controller->V1.BackgroundInitializationStatus->BlocksCompleted;
switch (CommandStatus)
{
case DAC960_V1_NormalCompletion:
switch (Controller->V1.BackgroundInitializationStatus->Status)
{
case DAC960_V1_BackgroundInitializationInvalid:
break;
case DAC960_V1_BackgroundInitializationStarted:
DAC960_Progress("Background Initialization Started\n",
Controller);
break;
case DAC960_V1_BackgroundInitializationInProgress:
if (BlocksCompleted ==
Controller->V1.LastBackgroundInitializationStatus.
BlocksCompleted &&
LogicalDriveNumber ==
Controller->V1.LastBackgroundInitializationStatus.
LogicalDriveNumber)
break;
Controller->EphemeralProgressMessage = true;
DAC960_Progress("Background Initialization in Progress: "
"Logical Drive %d (/dev/rd/c%dd%d) "
"%d%% completed\n",
Controller, LogicalDriveNumber,
Controller->ControllerNumber,
LogicalDriveNumber,
(100 * (BlocksCompleted >> 7))
/ (LogicalDriveSize >> 7));
Controller->EphemeralProgressMessage = false;
break;
case DAC960_V1_BackgroundInitializationSuspended:
DAC960_Progress("Background Initialization Suspended\n",
Controller);
break;
case DAC960_V1_BackgroundInitializationCancelled:
DAC960_Progress("Background Initialization Cancelled\n",
Controller);
break;
}
memcpy(&Controller->V1.LastBackgroundInitializationStatus,
Controller->V1.BackgroundInitializationStatus,
sizeof(DAC960_V1_BackgroundInitializationStatus_T));
break;
case DAC960_V1_BackgroundInitSuccessful:
if (Controller->V1.BackgroundInitializationStatus->Status ==
DAC960_V1_BackgroundInitializationInProgress)
DAC960_Progress("Background Initialization "
"Completed Successfully\n", Controller);
Controller->V1.BackgroundInitializationStatus->Status =
DAC960_V1_BackgroundInitializationInvalid;
break;
case DAC960_V1_BackgroundInitAborted:
if (Controller->V1.BackgroundInitializationStatus->Status ==
DAC960_V1_BackgroundInitializationInProgress)
DAC960_Progress("Background Initialization Aborted\n",
Controller);
Controller->V1.BackgroundInitializationStatus->Status =
DAC960_V1_BackgroundInitializationInvalid;
break;
case DAC960_V1_NoBackgroundInitInProgress:
break;
}
}
else if (CommandOpcode == DAC960_V1_DCDB)
{
/*
This is a bit ugly.
The InquiryStandardData and
the InquiryUntitSerialNumber information
retrieval operations BOTH use the DAC960_V1_DCDB
commands. the test above can't distinguish between
these two cases.
Instead, we rely on the order of code later in this
function to ensure that DeviceInquiryInformation commands
are submitted before DeviceSerialNumber commands.
*/
if (Controller->V1.NeedDeviceInquiryInformation)
{
DAC960_SCSI_Inquiry_T *InquiryStandardData =
&Controller->V1.InquiryStandardData
[Controller->V1.DeviceStateChannel]
[Controller->V1.DeviceStateTargetID];
if (CommandStatus != DAC960_V1_NormalCompletion)
{
memset(InquiryStandardData, 0,
sizeof(DAC960_SCSI_Inquiry_T));
InquiryStandardData->PeripheralDeviceType = 0x1F;
}
else
memcpy(InquiryStandardData,
Controller->V1.NewInquiryStandardData,
sizeof(DAC960_SCSI_Inquiry_T));
Controller->V1.NeedDeviceInquiryInformation = false;
}
else if (Controller->V1.NeedDeviceSerialNumberInformation)
{
DAC960_SCSI_Inquiry_UnitSerialNumber_T *InquiryUnitSerialNumber =
&Controller->V1.InquiryUnitSerialNumber
[Controller->V1.DeviceStateChannel]
[Controller->V1.DeviceStateTargetID];
if (CommandStatus != DAC960_V1_NormalCompletion)
{
memset(InquiryUnitSerialNumber, 0,
sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T));
InquiryUnitSerialNumber->PeripheralDeviceType = 0x1F;
}
else
memcpy(InquiryUnitSerialNumber,
Controller->V1.NewInquiryUnitSerialNumber,
sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T));
Controller->V1.NeedDeviceSerialNumberInformation = false;
}
}
/*
Begin submitting new monitoring commands.
*/
if (Controller->V1.NewEventLogSequenceNumber
- Controller->V1.OldEventLogSequenceNumber > 0)
{
Command->V1.CommandMailbox.Type3E.CommandOpcode =
DAC960_V1_PerformEventLogOperation;
Command->V1.CommandMailbox.Type3E.OperationType =
DAC960_V1_GetEventLogEntry;
Command->V1.CommandMailbox.Type3E.OperationQualifier = 1;
Command->V1.CommandMailbox.Type3E.SequenceNumber =
Controller->V1.OldEventLogSequenceNumber;
Command->V1.CommandMailbox.Type3E.BusAddress =
Controller->V1.EventLogEntryDMA;
DAC960_QueueCommand(Command);
return;
}
if (Controller->V1.NeedErrorTableInformation)
{
Controller->V1.NeedErrorTableInformation = false;
Command->V1.CommandMailbox.Type3.CommandOpcode =
DAC960_V1_GetErrorTable;
Command->V1.CommandMailbox.Type3.BusAddress =
Controller->V1.NewErrorTableDMA;
DAC960_QueueCommand(Command);
return;
}
if (Controller->V1.NeedRebuildProgress &&
Controller->V1.RebuildProgressFirst)
{
Controller->V1.NeedRebuildProgress = false;
Command->V1.CommandMailbox.Type3.CommandOpcode =
DAC960_V1_GetRebuildProgress;
Command->V1.CommandMailbox.Type3.BusAddress =
Controller->V1.RebuildProgressDMA;
DAC960_QueueCommand(Command);
return;
}
if (Controller->V1.NeedDeviceStateInformation)
{
if (Controller->V1.NeedDeviceInquiryInformation)
{
DAC960_V1_DCDB_T *DCDB = Controller->V1.MonitoringDCDB;
dma_addr_t DCDB_DMA = Controller->V1.MonitoringDCDB_DMA;
dma_addr_t NewInquiryStandardDataDMA =
Controller->V1.NewInquiryStandardDataDMA;
Command->V1.CommandMailbox.Type3.CommandOpcode = DAC960_V1_DCDB;
Command->V1.CommandMailbox.Type3.BusAddress = DCDB_DMA;
DCDB->Channel = Controller->V1.DeviceStateChannel;
DCDB->TargetID = Controller->V1.DeviceStateTargetID;
DCDB->Direction = DAC960_V1_DCDB_DataTransferDeviceToSystem;
DCDB->EarlyStatus = false;
DCDB->Timeout = DAC960_V1_DCDB_Timeout_10_seconds;
DCDB->NoAutomaticRequestSense = false;
DCDB->DisconnectPermitted = true;
DCDB->TransferLength = sizeof(DAC960_SCSI_Inquiry_T);
DCDB->BusAddress = NewInquiryStandardDataDMA;
DCDB->CDBLength = 6;
DCDB->TransferLengthHigh4 = 0;
DCDB->SenseLength = sizeof(DCDB->SenseData);
DCDB->CDB[0] = 0x12; /* INQUIRY */
DCDB->CDB[1] = 0; /* EVPD = 0 */
DCDB->CDB[2] = 0; /* Page Code */
DCDB->CDB[3] = 0; /* Reserved */
DCDB->CDB[4] = sizeof(DAC960_SCSI_Inquiry_T);
DCDB->CDB[5] = 0; /* Control */
DAC960_QueueCommand(Command);
return;
}
if (Controller->V1.NeedDeviceSerialNumberInformation)
{
DAC960_V1_DCDB_T *DCDB = Controller->V1.MonitoringDCDB;
dma_addr_t DCDB_DMA = Controller->V1.MonitoringDCDB_DMA;
dma_addr_t NewInquiryUnitSerialNumberDMA =
Controller->V1.NewInquiryUnitSerialNumberDMA;
Command->V1.CommandMailbox.Type3.CommandOpcode = DAC960_V1_DCDB;
Command->V1.CommandMailbox.Type3.BusAddress = DCDB_DMA;
DCDB->Channel = Controller->V1.DeviceStateChannel;
DCDB->TargetID = Controller->V1.DeviceStateTargetID;
DCDB->Direction = DAC960_V1_DCDB_DataTransferDeviceToSystem;
DCDB->EarlyStatus = false;
DCDB->Timeout = DAC960_V1_DCDB_Timeout_10_seconds;
DCDB->NoAutomaticRequestSense = false;
DCDB->DisconnectPermitted = true;
DCDB->TransferLength =
sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T);
DCDB->BusAddress = NewInquiryUnitSerialNumberDMA;
DCDB->CDBLength = 6;
DCDB->TransferLengthHigh4 = 0;
DCDB->SenseLength = sizeof(DCDB->SenseData);
DCDB->CDB[0] = 0x12; /* INQUIRY */
DCDB->CDB[1] = 1; /* EVPD = 1 */
DCDB->CDB[2] = 0x80; /* Page Code */
DCDB->CDB[3] = 0; /* Reserved */
DCDB->CDB[4] = sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T);
DCDB->CDB[5] = 0; /* Control */
DAC960_QueueCommand(Command);
return;
}
if (Controller->V1.StartDeviceStateScan)
{
Controller->V1.DeviceStateChannel = 0;
Controller->V1.DeviceStateTargetID = 0;
Controller->V1.StartDeviceStateScan = false;
}
else if (++Controller->V1.DeviceStateTargetID == Controller->Targets)
{
Controller->V1.DeviceStateChannel++;
Controller->V1.DeviceStateTargetID = 0;
}
if (Controller->V1.DeviceStateChannel < Controller->Channels)
{
Controller->V1.NewDeviceState->DeviceState =
DAC960_V1_Device_Dead;
Command->V1.CommandMailbox.Type3D.CommandOpcode =
DAC960_V1_GetDeviceState;
Command->V1.CommandMailbox.Type3D.Channel =
Controller->V1.DeviceStateChannel;
Command->V1.CommandMailbox.Type3D.TargetID =
Controller->V1.DeviceStateTargetID;
Command->V1.CommandMailbox.Type3D.BusAddress =
Controller->V1.NewDeviceStateDMA;
DAC960_QueueCommand(Command);
return;
}
Controller->V1.NeedDeviceStateInformation = false;
}
if (Controller->V1.NeedLogicalDriveInformation)
{
Controller->V1.NeedLogicalDriveInformation = false;
Command->V1.CommandMailbox.Type3.CommandOpcode =
DAC960_V1_GetLogicalDriveInformation;
Command->V1.CommandMailbox.Type3.BusAddress =
Controller->V1.NewLogicalDriveInformationDMA;
DAC960_QueueCommand(Command);
return;
}
if (Controller->V1.NeedRebuildProgress)
{
Controller->V1.NeedRebuildProgress = false;
Command->V1.CommandMailbox.Type3.CommandOpcode =
DAC960_V1_GetRebuildProgress;
Command->V1.CommandMailbox.Type3.BusAddress =
Controller->V1.RebuildProgressDMA;
DAC960_QueueCommand(Command);
return;
}
if (Controller->V1.NeedConsistencyCheckProgress)
{
Controller->V1.NeedConsistencyCheckProgress = false;
Command->V1.CommandMailbox.Type3.CommandOpcode =
DAC960_V1_RebuildStat;
Command->V1.CommandMailbox.Type3.BusAddress =
Controller->V1.RebuildProgressDMA;
DAC960_QueueCommand(Command);
return;
}
if (Controller->V1.NeedBackgroundInitializationStatus)
{
Controller->V1.NeedBackgroundInitializationStatus = false;
Command->V1.CommandMailbox.Type3B.CommandOpcode =
DAC960_V1_BackgroundInitializationControl;
Command->V1.CommandMailbox.Type3B.CommandOpcode2 = 0x20;
Command->V1.CommandMailbox.Type3B.BusAddress =
Controller->V1.BackgroundInitializationStatusDMA;
DAC960_QueueCommand(Command);
return;
}
Controller->MonitoringTimerCount++;
Controller->MonitoringTimer.expires =
jiffies + DAC960_MonitoringTimerInterval;
add_timer(&Controller->MonitoringTimer);
}
if (CommandType == DAC960_ImmediateCommand)
{
complete(Command->Completion);
Command->Completion = NULL;
return;
}
if (CommandType == DAC960_QueuedCommand)
{
DAC960_V1_KernelCommand_T *KernelCommand = Command->V1.KernelCommand;
KernelCommand->CommandStatus = Command->V1.CommandStatus;
Command->V1.KernelCommand = NULL;
if (CommandOpcode == DAC960_V1_DCDB)
Controller->V1.DirectCommandActive[KernelCommand->DCDB->Channel]
[KernelCommand->DCDB->TargetID] =
false;
DAC960_DeallocateCommand(Command);
KernelCommand->CompletionFunction(KernelCommand);
return;
}
/*
Queue a Status Monitoring Command to the Controller using the just
completed Command if one was deferred previously due to lack of a
free Command when the Monitoring Timer Function was called.
*/
if (Controller->MonitoringCommandDeferred)
{
Controller->MonitoringCommandDeferred = false;
DAC960_V1_QueueMonitoringCommand(Command);
return;
}
/*
Deallocate the Command.
*/
DAC960_DeallocateCommand(Command);
/*
Wake up any processes waiting on a free Command.
*/
wake_up(&Controller->CommandWaitQueue);
}
/*
DAC960_V2_ReadWriteError prints an appropriate error message for Command
when an error occurs on a Read or Write operation.
*/
static void DAC960_V2_ReadWriteError(DAC960_Command_T *Command)
{
DAC960_Controller_T *Controller = Command->Controller;
unsigned char *SenseErrors[] = { "NO SENSE", "RECOVERED ERROR",
"NOT READY", "MEDIUM ERROR",
"HARDWARE ERROR", "ILLEGAL REQUEST",
"UNIT ATTENTION", "DATA PROTECT",
"BLANK CHECK", "VENDOR-SPECIFIC",
"COPY ABORTED", "ABORTED COMMAND",
"EQUAL", "VOLUME OVERFLOW",
"MISCOMPARE", "RESERVED" };
unsigned char *CommandName = "UNKNOWN";
switch (Command->CommandType)
{
case DAC960_ReadCommand:
case DAC960_ReadRetryCommand:
CommandName = "READ";
break;
case DAC960_WriteCommand:
case DAC960_WriteRetryCommand:
CommandName = "WRITE";
break;
case DAC960_MonitoringCommand:
case DAC960_ImmediateCommand:
case DAC960_QueuedCommand:
break;
}
DAC960_Error("Error Condition %s on %s:\n", Controller,
SenseErrors[Command->V2.RequestSense->SenseKey], CommandName);
DAC960_Error(" /dev/rd/c%dd%d: absolute blocks %u..%u\n",
Controller, Controller->ControllerNumber,
Command->LogicalDriveNumber, Command->BlockNumber,
Command->BlockNumber + Command->BlockCount - 1);
}
/*
DAC960_V2_ReportEvent prints an appropriate message when a Controller Event
occurs.
*/
static void DAC960_V2_ReportEvent(DAC960_Controller_T *Controller,
DAC960_V2_Event_T *Event)
{
DAC960_SCSI_RequestSense_T *RequestSense =
(DAC960_SCSI_RequestSense_T *) &Event->RequestSenseData;
unsigned char MessageBuffer[DAC960_LineBufferSize];
static struct { int EventCode; unsigned char *EventMessage; } EventList[] =
{ /* Physical Device Events (0x0000 - 0x007F) */
{ 0x0001, "P Online" },
{ 0x0002, "P Standby" },
{ 0x0005, "P Automatic Rebuild Started" },
{ 0x0006, "P Manual Rebuild Started" },
{ 0x0007, "P Rebuild Completed" },
{ 0x0008, "P Rebuild Cancelled" },
{ 0x0009, "P Rebuild Failed for Unknown Reasons" },
{ 0x000A, "P Rebuild Failed due to New Physical Device" },
{ 0x000B, "P Rebuild Failed due to Logical Drive Failure" },
{ 0x000C, "S Offline" },
{ 0x000D, "P Found" },
{ 0x000E, "P Removed" },
{ 0x000F, "P Unconfigured" },
{ 0x0010, "P Expand Capacity Started" },
{ 0x0011, "P Expand Capacity Completed" },
{ 0x0012, "P Expand Capacity Failed" },
{ 0x0013, "P Command Timed Out" },
{ 0x0014, "P Command Aborted" },
{ 0x0015, "P Command Retried" },
{ 0x0016, "P Parity Error" },
{ 0x0017, "P Soft Error" },
{ 0x0018, "P Miscellaneous Error" },
{ 0x0019, "P Reset" },
{ 0x001A, "P Active Spare Found" },
{ 0x001B, "P Warm Spare Found" },
{ 0x001C, "S Sense Data Received" },
{ 0x001D, "P Initialization Started" },
{ 0x001E, "P Initialization Completed" },
{ 0x001F, "P Initialization Failed" },
{ 0x0020, "P Initialization Cancelled" },
{ 0x0021, "P Failed because Write Recovery Failed" },
{ 0x0022, "P Failed because SCSI Bus Reset Failed" },
{ 0x0023, "P Failed because of Double Check Condition" },
{ 0x0024, "P Failed because Device Cannot Be Accessed" },
{ 0x0025, "P Failed because of Gross Error on SCSI Processor" },
{ 0x0026, "P Failed because of Bad Tag from Device" },
{ 0x0027, "P Failed because of Command Timeout" },
{ 0x0028, "P Failed because of System Reset" },
{ 0x0029, "P Failed because of Busy Status or Parity Error" },
{ 0x002A, "P Failed because Host Set Device to Failed State" },
{ 0x002B, "P Failed because of Selection Timeout" },
{ 0x002C, "P Failed because of SCSI Bus Phase Error" },
{ 0x002D, "P Failed because Device Returned Unknown Status" },
{ 0x002E, "P Failed because Device Not Ready" },
{ 0x002F, "P Failed because Device Not Found at Startup" },
{ 0x0030, "P Failed because COD Write Operation Failed" },
{ 0x0031, "P Failed because BDT Write Operation Failed" },
{ 0x0039, "P Missing at Startup" },
{ 0x003A, "P Start Rebuild Failed due to Physical Drive Too Small" },
{ 0x003C, "P Temporarily Offline Device Automatically Made Online" },
{ 0x003D, "P Standby Rebuild Started" },
/* Logical Device Events (0x0080 - 0x00FF) */
{ 0x0080, "M Consistency Check Started" },
{ 0x0081, "M Consistency Check Completed" },
{ 0x0082, "M Consistency Check Cancelled" },
{ 0x0083, "M Consistency Check Completed With Errors" },
{ 0x0084, "M Consistency Check Failed due to Logical Drive Failure" },
{ 0x0085, "M Consistency Check Failed due to Physical Device Failure" },
{ 0x0086, "L Offline" },
{ 0x0087, "L Critical" },
{ 0x0088, "L Online" },
{ 0x0089, "M Automatic Rebuild Started" },
{ 0x008A, "M Manual Rebuild Started" },
{ 0x008B, "M Rebuild Completed" },
{ 0x008C, "M Rebuild Cancelled" },
{ 0x008D, "M Rebuild Failed for Unknown Reasons" },
{ 0x008E, "M Rebuild Failed due to New Physical Device" },
{ 0x008F, "M Rebuild Failed due to Logical Drive Failure" },
{ 0x0090, "M Initialization Started" },
{ 0x0091, "M Initialization Completed" },
{ 0x0092, "M Initialization Cancelled" },
{ 0x0093, "M Initialization Failed" },
{ 0x0094, "L Found" },
{ 0x0095, "L Deleted" },
{ 0x0096, "M Expand Capacity Started" },
{ 0x0097, "M Expand Capacity Completed" },
{ 0x0098, "M Expand Capacity Failed" },
{ 0x0099, "L Bad Block Found" },
{ 0x009A, "L Size Changed" },
{ 0x009B, "L Type Changed" },
{ 0x009C, "L Bad Data Block Found" },
{ 0x009E, "L Read of Data Block in BDT" },
{ 0x009F, "L Write Back Data for Disk Block Lost" },
{ 0x00A0, "L Temporarily Offline RAID-5/3 Drive Made Online" },
{ 0x00A1, "L Temporarily Offline RAID-6/1/0/7 Drive Made Online" },
{ 0x00A2, "L Standby Rebuild Started" },
/* Fault Management Events (0x0100 - 0x017F) */
{ 0x0140, "E Fan %d Failed" },
{ 0x0141, "E Fan %d OK" },
{ 0x0142, "E Fan %d Not Present" },
{ 0x0143, "E Power Supply %d Failed" },
{ 0x0144, "E Power Supply %d OK" },
{ 0x0145, "E Power Supply %d Not Present" },
{ 0x0146, "E Temperature Sensor %d Temperature Exceeds Safe Limit" },
{ 0x0147, "E Temperature Sensor %d Temperature Exceeds Working Limit" },
{ 0x0148, "E Temperature Sensor %d Temperature Normal" },
{ 0x0149, "E Temperature Sensor %d Not Present" },
{ 0x014A, "E Enclosure Management Unit %d Access Critical" },
{ 0x014B, "E Enclosure Management Unit %d Access OK" },
{ 0x014C, "E Enclosure Management Unit %d Access Offline" },
/* Controller Events (0x0180 - 0x01FF) */
{ 0x0181, "C Cache Write Back Error" },
{ 0x0188, "C Battery Backup Unit Found" },
{ 0x0189, "C Battery Backup Unit Charge Level Low" },
{ 0x018A, "C Battery Backup Unit Charge Level OK" },
{ 0x0193, "C Installation Aborted" },
{ 0x0195, "C Battery Backup Unit Physically Removed" },
{ 0x0196, "C Memory Error During Warm Boot" },
{ 0x019E, "C Memory Soft ECC Error Corrected" },
{ 0x019F, "C Memory Hard ECC Error Corrected" },
{ 0x01A2, "C Battery Backup Unit Failed" },
{ 0x01AB, "C Mirror Race Recovery Failed" },
{ 0x01AC, "C Mirror Race on Critical Drive" },
/* Controller Internal Processor Events */
{ 0x0380, "C Internal Controller Hung" },
{ 0x0381, "C Internal Controller Firmware Breakpoint" },
{ 0x0390, "C Internal Controller i960 Processor Specific Error" },
{ 0x03A0, "C Internal Controller StrongARM Processor Specific Error" },
{ 0, "" } };
int EventListIndex = 0, EventCode;
unsigned char EventType, *EventMessage;
if (Event->EventCode == 0x1C &&
RequestSense->SenseKey == DAC960_SenseKey_VendorSpecific &&
(RequestSense->AdditionalSenseCode == 0x80 ||
RequestSense->AdditionalSenseCode == 0x81))
Event->EventCode = ((RequestSense->AdditionalSenseCode - 0x80) << 8) |
RequestSense->AdditionalSenseCodeQualifier;
while (true)
{
EventCode = EventList[EventListIndex].EventCode;
if (EventCode == Event->EventCode || EventCode == 0) break;
EventListIndex++;
}
EventType = EventList[EventListIndex].EventMessage[0];
EventMessage = &EventList[EventListIndex].EventMessage[2];
if (EventCode == 0)
{
DAC960_Critical("Unknown Controller Event Code %04X\n",
Controller, Event->EventCode);
return;
}
switch (EventType)
{
case 'P':
DAC960_Critical("Physical Device %d:%d %s\n", Controller,
Event->Channel, Event->TargetID, EventMessage);
break;
case 'L':
DAC960_Critical("Logical Drive %d (/dev/rd/c%dd%d) %s\n", Controller,
Event->LogicalUnit, Controller->ControllerNumber,
Event->LogicalUnit, EventMessage);
break;
case 'M':
DAC960_Progress("Logical Drive %d (/dev/rd/c%dd%d) %s\n", Controller,
Event->LogicalUnit, Controller->ControllerNumber,
Event->LogicalUnit, EventMessage);
break;
case 'S':
if (RequestSense->SenseKey == DAC960_SenseKey_NoSense ||
(RequestSense->SenseKey == DAC960_SenseKey_NotReady &&
RequestSense->AdditionalSenseCode == 0x04 &&
(RequestSense->AdditionalSenseCodeQualifier == 0x01 ||
RequestSense->AdditionalSenseCodeQualifier == 0x02)))
break;
DAC960_Critical("Physical Device %d:%d %s\n", Controller,
Event->Channel, Event->TargetID, EventMessage);
DAC960_Critical("Physical Device %d:%d Request Sense: "
"Sense Key = %X, ASC = %02X, ASCQ = %02X\n",
Controller,
Event->Channel,
Event->TargetID,
RequestSense->SenseKey,
RequestSense->AdditionalSenseCode,
RequestSense->AdditionalSenseCodeQualifier);
DAC960_Critical("Physical Device %d:%d Request Sense: "
"Information = %02X%02X%02X%02X "
"%02X%02X%02X%02X\n",
Controller,
Event->Channel,
Event->TargetID,
RequestSense->Information[0],
RequestSense->Information[1],
RequestSense->Information[2],
RequestSense->Information[3],
RequestSense->CommandSpecificInformation[0],
RequestSense->CommandSpecificInformation[1],
RequestSense->CommandSpecificInformation[2],
RequestSense->CommandSpecificInformation[3]);
break;
case 'E':
if (Controller->SuppressEnclosureMessages) break;
sprintf(MessageBuffer, EventMessage, Event->LogicalUnit);
DAC960_Critical("Enclosure %d %s\n", Controller,
Event->TargetID, MessageBuffer);
break;
case 'C':
DAC960_Critical("Controller %s\n", Controller, EventMessage);
break;
default:
DAC960_Critical("Unknown Controller Event Code %04X\n",
Controller, Event->EventCode);
break;
}
}
/*
DAC960_V2_ReportProgress prints an appropriate progress message for
Logical Device Long Operations.
*/
static void DAC960_V2_ReportProgress(DAC960_Controller_T *Controller,
unsigned char *MessageString,
unsigned int LogicalDeviceNumber,
unsigned long BlocksCompleted,
unsigned long LogicalDeviceSize)
{
Controller->EphemeralProgressMessage = true;
DAC960_Progress("%s in Progress: Logical Drive %d (/dev/rd/c%dd%d) "
"%d%% completed\n", Controller,
MessageString,
LogicalDeviceNumber,
Controller->ControllerNumber,
LogicalDeviceNumber,
(100 * (BlocksCompleted >> 7)) / (LogicalDeviceSize >> 7));
Controller->EphemeralProgressMessage = false;
}
/*
DAC960_V2_ProcessCompletedCommand performs completion processing for Command
for DAC960 V2 Firmware Controllers.
*/
static void DAC960_V2_ProcessCompletedCommand(DAC960_Command_T *Command)
{
DAC960_Controller_T *Controller = Command->Controller;
DAC960_CommandType_T CommandType = Command->CommandType;
DAC960_V2_CommandMailbox_T *CommandMailbox = &Command->V2.CommandMailbox;
DAC960_V2_IOCTL_Opcode_T CommandOpcode = CommandMailbox->Common.IOCTL_Opcode;
DAC960_V2_CommandStatus_T CommandStatus = Command->V2.CommandStatus;
if (CommandType == DAC960_ReadCommand ||
CommandType == DAC960_WriteCommand)
{
#ifdef FORCE_RETRY_DEBUG
CommandStatus = DAC960_V2_AbormalCompletion;
#endif
Command->V2.RequestSense->SenseKey = DAC960_SenseKey_MediumError;
if (CommandStatus == DAC960_V2_NormalCompletion) {
if (!DAC960_ProcessCompletedRequest(Command, true))
BUG();
} else if (Command->V2.RequestSense->SenseKey == DAC960_SenseKey_MediumError)
{
/*
* break the command down into pieces and resubmit each
* piece, hoping that some of them will succeed.
*/
DAC960_queue_partial_rw(Command);
return;
}
else
{
if (Command->V2.RequestSense->SenseKey != DAC960_SenseKey_NotReady)
DAC960_V2_ReadWriteError(Command);
/*
Perform completion processing for all buffers in this I/O Request.
*/
(void)DAC960_ProcessCompletedRequest(Command, false);
}
}
else if (CommandType == DAC960_ReadRetryCommand ||
CommandType == DAC960_WriteRetryCommand)
{
bool normal_completion;
#ifdef FORCE_RETRY_FAILURE_DEBUG
static int retry_count = 1;
#endif
/*
Perform completion processing for the portion that was
retried, and submit the next portion, if any.
*/
normal_completion = true;
if (CommandStatus != DAC960_V2_NormalCompletion) {
normal_completion = false;
if (Command->V2.RequestSense->SenseKey != DAC960_SenseKey_NotReady)
DAC960_V2_ReadWriteError(Command);
}
#ifdef FORCE_RETRY_FAILURE_DEBUG
if (!(++retry_count % 10000)) {
printk("V2 error retry failure test\n");
normal_completion = false;
DAC960_V2_ReadWriteError(Command);
}
#endif
if (!DAC960_ProcessCompletedRequest(Command, normal_completion)) {
DAC960_queue_partial_rw(Command);
return;
}
}
else if (CommandType == DAC960_MonitoringCommand)
{
if (Controller->ShutdownMonitoringTimer)
return;
if (CommandOpcode == DAC960_V2_GetControllerInfo)
{
DAC960_V2_ControllerInfo_T *NewControllerInfo =
Controller->V2.NewControllerInformation;
DAC960_V2_ControllerInfo_T *ControllerInfo =
&Controller->V2.ControllerInformation;
Controller->LogicalDriveCount =
NewControllerInfo->LogicalDevicesPresent;
Controller->V2.NeedLogicalDeviceInformation = true;
Controller->V2.NeedPhysicalDeviceInformation = true;
Controller->V2.StartLogicalDeviceInformationScan = true;
Controller->V2.StartPhysicalDeviceInformationScan = true;
Controller->MonitoringAlertMode =
(NewControllerInfo->LogicalDevicesCritical > 0 ||
NewControllerInfo->LogicalDevicesOffline > 0 ||
NewControllerInfo->PhysicalDisksCritical > 0 ||
NewControllerInfo->PhysicalDisksOffline > 0);
memcpy(ControllerInfo, NewControllerInfo,
sizeof(DAC960_V2_ControllerInfo_T));
}
else if (CommandOpcode == DAC960_V2_GetEvent)
{
if (CommandStatus == DAC960_V2_NormalCompletion) {
DAC960_V2_ReportEvent(Controller, Controller->V2.Event);
}
Controller->V2.NextEventSequenceNumber++;
}
else if (CommandOpcode == DAC960_V2_GetPhysicalDeviceInfoValid &&
CommandStatus == DAC960_V2_NormalCompletion)
{
DAC960_V2_PhysicalDeviceInfo_T *NewPhysicalDeviceInfo =
Controller->V2.NewPhysicalDeviceInformation;
unsigned int PhysicalDeviceIndex = Controller->V2.PhysicalDeviceIndex;
DAC960_V2_PhysicalDeviceInfo_T *PhysicalDeviceInfo =
Controller->V2.PhysicalDeviceInformation[PhysicalDeviceIndex];
DAC960_SCSI_Inquiry_UnitSerialNumber_T *InquiryUnitSerialNumber =
Controller->V2.InquiryUnitSerialNumber[PhysicalDeviceIndex];
unsigned int DeviceIndex;
while (PhysicalDeviceInfo != NULL &&
(NewPhysicalDeviceInfo->Channel >
PhysicalDeviceInfo->Channel ||
(NewPhysicalDeviceInfo->Channel ==
PhysicalDeviceInfo->Channel &&
(NewPhysicalDeviceInfo->TargetID >
PhysicalDeviceInfo->TargetID ||
(NewPhysicalDeviceInfo->TargetID ==
PhysicalDeviceInfo->TargetID &&
NewPhysicalDeviceInfo->LogicalUnit >
PhysicalDeviceInfo->LogicalUnit)))))
{