From d0e9fe1758f222f13ec893f856552d81a10d266d Mon Sep 17 00:00:00 2001 From: Linus Torvalds Date: Sat, 10 Apr 2010 10:36:19 -0700 Subject: Simplify and comment on anon_vma re-use for anon_vma_prepare() This changes the anon_vma reuse case to require that we only reuse simple anon_vma's - ie the case when the vma only has a single anon_vma associated with it. This means that a reuse of an anon_vma from an adjacent vma will always guarantee that both vma's are associated not only with the same anon_vma, they will also have the same anon_vma chain (of just a single entry in this case). And since anon_vma re-use was the only case where the same anon_vma might be associated with different chains of anon_vma's, we now have the case that every vma that shares the same anon_vma will always also have the same chain. That makes it much easier to think about merging vma's that share the same anon_vma's: you can always just drop the other anon_vma chain in anon_vma_merge() since you know that they are always identical. This also splits up the function to validate the anon_vma re-use, and adds a lot of commentary about the possible races. Reviewed-by: Rik van Riel Acked-by: Johannes Weiner Tested-by: Borislav Petkov [ "That didn't fix it" ] Signed-off-by: Linus Torvalds --- mm/mmap.c | 86 +++++++++++++++++++++++++++++++++++++++++++++------------------ 1 file changed, 62 insertions(+), 24 deletions(-) (limited to 'mm/mmap.c') diff --git a/mm/mmap.c b/mm/mmap.c index 75557c639ad4..acb023e2d35a 100644 --- a/mm/mmap.c +++ b/mm/mmap.c @@ -824,6 +824,61 @@ struct vm_area_struct *vma_merge(struct mm_struct *mm, return NULL; } +/* + * Rough compatbility check to quickly see if it's even worth looking + * at sharing an anon_vma. + * + * They need to have the same vm_file, and the flags can only differ + * in things that mprotect may change. + * + * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that + * we can merge the two vma's. For example, we refuse to merge a vma if + * there is a vm_ops->close() function, because that indicates that the + * driver is doing some kind of reference counting. But that doesn't + * really matter for the anon_vma sharing case. + */ +static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) +{ + return a->vm_end == b->vm_start && + mpol_equal(vma_policy(a), vma_policy(b)) && + a->vm_file == b->vm_file && + !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) && + b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); +} + +/* + * Do some basic sanity checking to see if we can re-use the anon_vma + * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be + * the same as 'old', the other will be the new one that is trying + * to share the anon_vma. + * + * NOTE! This runs with mm_sem held for reading, so it is possible that + * the anon_vma of 'old' is concurrently in the process of being set up + * by another page fault trying to merge _that_. But that's ok: if it + * is being set up, that automatically means that it will be a singleton + * acceptable for merging, so we can do all of this optimistically. But + * we do that ACCESS_ONCE() to make sure that we never re-load the pointer. + * + * IOW: that the "list_is_singular()" test on the anon_vma_chain only + * matters for the 'stable anon_vma' case (ie the thing we want to avoid + * is to return an anon_vma that is "complex" due to having gone through + * a fork). + * + * We also make sure that the two vma's are compatible (adjacent, + * and with the same memory policies). That's all stable, even with just + * a read lock on the mm_sem. + */ +static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) +{ + if (anon_vma_compatible(a, b)) { + struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma); + + if (anon_vma && list_is_singular(&old->anon_vma_chain)) + return anon_vma; + } + return NULL; +} + /* * find_mergeable_anon_vma is used by anon_vma_prepare, to check * neighbouring vmas for a suitable anon_vma, before it goes off @@ -834,28 +889,16 @@ struct vm_area_struct *vma_merge(struct mm_struct *mm, */ struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) { + struct anon_vma *anon_vma; struct vm_area_struct *near; - unsigned long vm_flags; near = vma->vm_next; if (!near) goto try_prev; - /* - * Since only mprotect tries to remerge vmas, match flags - * which might be mprotected into each other later on. - * Neither mlock nor madvise tries to remerge at present, - * so leave their flags as obstructing a merge. - */ - vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC); - vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC); - - if (near->anon_vma && vma->vm_end == near->vm_start && - mpol_equal(vma_policy(vma), vma_policy(near)) && - can_vma_merge_before(near, vm_flags, - NULL, vma->vm_file, vma->vm_pgoff + - ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT))) - return near->anon_vma; + anon_vma = reusable_anon_vma(near, vma, near); + if (anon_vma) + return anon_vma; try_prev: /* * It is potentially slow to have to call find_vma_prev here. @@ -868,14 +911,9 @@ try_prev: if (!near) goto none; - vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC); - vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC); - - if (near->anon_vma && near->vm_end == vma->vm_start && - mpol_equal(vma_policy(near), vma_policy(vma)) && - can_vma_merge_after(near, vm_flags, - NULL, vma->vm_file, vma->vm_pgoff)) - return near->anon_vma; + anon_vma = reusable_anon_vma(near, near, vma); + if (anon_vma) + return anon_vma; none: /* * There's no absolute need to look only at touching neighbours: -- cgit v1.2.2