From 1eb19a12bd2214cdcad5273d472b062a4ba97fa1 Mon Sep 17 00:00:00 2001 From: Mandeep Singh Baines Date: Fri, 5 Aug 2011 18:46:27 -0700 Subject: lib/sha1: use the git implementation of SHA-1 For ChromiumOS, we use SHA-1 to verify the integrity of the root filesystem. The speed of the kernel sha-1 implementation has a major impact on our boot performance. To improve boot performance, we investigated using the heavily optimized sha-1 implementation used in git. With the git sha-1 implementation, we see a 11.7% improvement in boot time. 10 reboots, remove slowest/fastest. Before: Mean: 6.58 seconds Stdev: 0.14 After (with git sha-1, this patch): Mean: 5.89 seconds Stdev: 0.07 The other cool thing about the git SHA-1 implementation is that it only needs 64 bytes of stack for the workspace while the original kernel implementation needed 320 bytes. Signed-off-by: Mandeep Singh Baines Cc: Ramsay Jones Cc: Nicolas Pitre Cc: Herbert Xu Cc: David S. Miller Cc: linux-crypto@vger.kernel.org Signed-off-by: Linus Torvalds --- lib/sha1.c | 212 +++++++++++++++++++++++++++++++++++++++++++++---------------- 1 file changed, 158 insertions(+), 54 deletions(-) (limited to 'lib/sha1.c') diff --git a/lib/sha1.c b/lib/sha1.c index 4c45fd50e913..f33271dd00cb 100644 --- a/lib/sha1.c +++ b/lib/sha1.c @@ -1,31 +1,72 @@ /* - * SHA transform algorithm, originally taken from code written by - * Peter Gutmann, and placed in the public domain. + * SHA1 routine optimized to do word accesses rather than byte accesses, + * and to avoid unnecessary copies into the context array. + * + * This was based on the git SHA1 implementation. */ #include #include -#include +#include +#include -/* The SHA f()-functions. */ +/* + * If you have 32 registers or more, the compiler can (and should) + * try to change the array[] accesses into registers. However, on + * machines with less than ~25 registers, that won't really work, + * and at least gcc will make an unholy mess of it. + * + * So to avoid that mess which just slows things down, we force + * the stores to memory to actually happen (we might be better off + * with a 'W(t)=(val);asm("":"+m" (W(t))' there instead, as + * suggested by Artur Skawina - that will also make gcc unable to + * try to do the silly "optimize away loads" part because it won't + * see what the value will be). + * + * Ben Herrenschmidt reports that on PPC, the C version comes close + * to the optimized asm with this (ie on PPC you don't want that + * 'volatile', since there are lots of registers). + * + * On ARM we get the best code generation by forcing a full memory barrier + * between each SHA_ROUND, otherwise gcc happily get wild with spilling and + * the stack frame size simply explode and performance goes down the drain. + */ -#define f1(x,y,z) (z ^ (x & (y ^ z))) /* x ? y : z */ -#define f2(x,y,z) (x ^ y ^ z) /* XOR */ -#define f3(x,y,z) ((x & y) + (z & (x ^ y))) /* majority */ +#ifdef CONFIG_X86 + #define setW(x, val) (*(volatile __u32 *)&W(x) = (val)) +#elif defined(CONFIG_ARM) + #define setW(x, val) do { W(x) = (val); __asm__("":::"memory"); } while (0) +#else + #define setW(x, val) (W(x) = (val)) +#endif -/* The SHA Mysterious Constants */ +/* This "rolls" over the 512-bit array */ +#define W(x) (array[(x)&15]) -#define K1 0x5A827999L /* Rounds 0-19: sqrt(2) * 2^30 */ -#define K2 0x6ED9EBA1L /* Rounds 20-39: sqrt(3) * 2^30 */ -#define K3 0x8F1BBCDCL /* Rounds 40-59: sqrt(5) * 2^30 */ -#define K4 0xCA62C1D6L /* Rounds 60-79: sqrt(10) * 2^30 */ +/* + * Where do we get the source from? The first 16 iterations get it from + * the input data, the next mix it from the 512-bit array. + */ +#define SHA_SRC(t) get_unaligned_be32((__u32 *)data + t) +#define SHA_MIX(t) rol32(W(t+13) ^ W(t+8) ^ W(t+2) ^ W(t), 1) + +#define SHA_ROUND(t, input, fn, constant, A, B, C, D, E) do { \ + __u32 TEMP = input(t); setW(t, TEMP); \ + E += TEMP + rol32(A,5) + (fn) + (constant); \ + B = ror32(B, 2); } while (0) + +#define T_0_15(t, A, B, C, D, E) SHA_ROUND(t, SHA_SRC, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E ) +#define T_16_19(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E ) +#define T_20_39(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0x6ed9eba1, A, B, C, D, E ) +#define T_40_59(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, ((B&C)+(D&(B^C))) , 0x8f1bbcdc, A, B, C, D, E ) +#define T_60_79(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0xca62c1d6, A, B, C, D, E ) /** * sha_transform - single block SHA1 transform * * @digest: 160 bit digest to update * @data: 512 bits of data to hash - * @W: 80 words of workspace (see note) + * @array: 16 words of workspace (see note) * * This function generates a SHA1 digest for a single 512-bit block. * Be warned, it does not handle padding and message digest, do not @@ -36,47 +77,111 @@ * to clear the workspace. This is left to the caller to avoid * unnecessary clears between chained hashing operations. */ -void sha_transform(__u32 *digest, const char *in, __u32 *W) +void sha_transform(__u32 *digest, const char *data, __u32 *array) { - __u32 a, b, c, d, e, t, i; - - for (i = 0; i < 16; i++) - W[i] = be32_to_cpu(((const __be32 *)in)[i]); - - for (i = 0; i < 64; i++) - W[i+16] = rol32(W[i+13] ^ W[i+8] ^ W[i+2] ^ W[i], 1); - - a = digest[0]; - b = digest[1]; - c = digest[2]; - d = digest[3]; - e = digest[4]; - - for (i = 0; i < 20; i++) { - t = f1(b, c, d) + K1 + rol32(a, 5) + e + W[i]; - e = d; d = c; c = rol32(b, 30); b = a; a = t; - } - - for (; i < 40; i ++) { - t = f2(b, c, d) + K2 + rol32(a, 5) + e + W[i]; - e = d; d = c; c = rol32(b, 30); b = a; a = t; - } - - for (; i < 60; i ++) { - t = f3(b, c, d) + K3 + rol32(a, 5) + e + W[i]; - e = d; d = c; c = rol32(b, 30); b = a; a = t; - } - - for (; i < 80; i ++) { - t = f2(b, c, d) + K4 + rol32(a, 5) + e + W[i]; - e = d; d = c; c = rol32(b, 30); b = a; a = t; - } - - digest[0] += a; - digest[1] += b; - digest[2] += c; - digest[3] += d; - digest[4] += e; + __u32 A, B, C, D, E; + + A = digest[0]; + B = digest[1]; + C = digest[2]; + D = digest[3]; + E = digest[4]; + + /* Round 1 - iterations 0-16 take their input from 'data' */ + T_0_15( 0, A, B, C, D, E); + T_0_15( 1, E, A, B, C, D); + T_0_15( 2, D, E, A, B, C); + T_0_15( 3, C, D, E, A, B); + T_0_15( 4, B, C, D, E, A); + T_0_15( 5, A, B, C, D, E); + T_0_15( 6, E, A, B, C, D); + T_0_15( 7, D, E, A, B, C); + T_0_15( 8, C, D, E, A, B); + T_0_15( 9, B, C, D, E, A); + T_0_15(10, A, B, C, D, E); + T_0_15(11, E, A, B, C, D); + T_0_15(12, D, E, A, B, C); + T_0_15(13, C, D, E, A, B); + T_0_15(14, B, C, D, E, A); + T_0_15(15, A, B, C, D, E); + + /* Round 1 - tail. Input from 512-bit mixing array */ + T_16_19(16, E, A, B, C, D); + T_16_19(17, D, E, A, B, C); + T_16_19(18, C, D, E, A, B); + T_16_19(19, B, C, D, E, A); + + /* Round 2 */ + T_20_39(20, A, B, C, D, E); + T_20_39(21, E, A, B, C, D); + T_20_39(22, D, E, A, B, C); + T_20_39(23, C, D, E, A, B); + T_20_39(24, B, C, D, E, A); + T_20_39(25, A, B, C, D, E); + T_20_39(26, E, A, B, C, D); + T_20_39(27, D, E, A, B, C); + T_20_39(28, C, D, E, A, B); + T_20_39(29, B, C, D, E, A); + T_20_39(30, A, B, C, D, E); + T_20_39(31, E, A, B, C, D); + T_20_39(32, D, E, A, B, C); + T_20_39(33, C, D, E, A, B); + T_20_39(34, B, C, D, E, A); + T_20_39(35, A, B, C, D, E); + T_20_39(36, E, A, B, C, D); + T_20_39(37, D, E, A, B, C); + T_20_39(38, C, D, E, A, B); + T_20_39(39, B, C, D, E, A); + + /* Round 3 */ + T_40_59(40, A, B, C, D, E); + T_40_59(41, E, A, B, C, D); + T_40_59(42, D, E, A, B, C); + T_40_59(43, C, D, E, A, B); + T_40_59(44, B, C, D, E, A); + T_40_59(45, A, B, C, D, E); + T_40_59(46, E, A, B, C, D); + T_40_59(47, D, E, A, B, C); + T_40_59(48, C, D, E, A, B); + T_40_59(49, B, C, D, E, A); + T_40_59(50, A, B, C, D, E); + T_40_59(51, E, A, B, C, D); + T_40_59(52, D, E, A, B, C); + T_40_59(53, C, D, E, A, B); + T_40_59(54, B, C, D, E, A); + T_40_59(55, A, B, C, D, E); + T_40_59(56, E, A, B, C, D); + T_40_59(57, D, E, A, B, C); + T_40_59(58, C, D, E, A, B); + T_40_59(59, B, C, D, E, A); + + /* Round 4 */ + T_60_79(60, A, B, C, D, E); + T_60_79(61, E, A, B, C, D); + T_60_79(62, D, E, A, B, C); + T_60_79(63, C, D, E, A, B); + T_60_79(64, B, C, D, E, A); + T_60_79(65, A, B, C, D, E); + T_60_79(66, E, A, B, C, D); + T_60_79(67, D, E, A, B, C); + T_60_79(68, C, D, E, A, B); + T_60_79(69, B, C, D, E, A); + T_60_79(70, A, B, C, D, E); + T_60_79(71, E, A, B, C, D); + T_60_79(72, D, E, A, B, C); + T_60_79(73, C, D, E, A, B); + T_60_79(74, B, C, D, E, A); + T_60_79(75, A, B, C, D, E); + T_60_79(76, E, A, B, C, D); + T_60_79(77, D, E, A, B, C); + T_60_79(78, C, D, E, A, B); + T_60_79(79, B, C, D, E, A); + + digest[0] += A; + digest[1] += B; + digest[2] += C; + digest[3] += D; + digest[4] += E; } EXPORT_SYMBOL(sha_transform); @@ -92,4 +197,3 @@ void sha_init(__u32 *buf) buf[3] = 0x10325476; buf[4] = 0xc3d2e1f0; } - -- cgit v1.2.2