From d524dac9279b6a41ffdf7ff7958c577f2e387db6 Mon Sep 17 00:00:00 2001 From: Grant Likely Date: Wed, 26 Jan 2011 10:10:40 -0700 Subject: dt: Move device tree documentation out of powerpc directory The device tree is used by more than just PowerPC. Make the documentation directory available to all. v2: reorganized files while moving to create arch and driver specific directories. Signed-off-by: Grant Likely Acked-by: Josh Boyer --- Documentation/devicetree/bindings/ata/fsl-sata.txt | 29 + Documentation/devicetree/bindings/eeprom.txt | 28 + .../devicetree/bindings/gpio/8xxx_gpio.txt | 60 + Documentation/devicetree/bindings/gpio/gpio.txt | 50 + Documentation/devicetree/bindings/gpio/led.txt | 58 + Documentation/devicetree/bindings/i2c/fsl-i2c.txt | 64 + Documentation/devicetree/bindings/marvell.txt | 521 +++++++ .../devicetree/bindings/mmc/fsl-esdhc.txt | 29 + .../devicetree/bindings/mmc/mmc-spi-slot.txt | 23 + .../devicetree/bindings/mtd/fsl-upm-nand.txt | 63 + .../devicetree/bindings/mtd/mtd-physmap.txt | 90 ++ .../devicetree/bindings/net/can/mpc5xxx-mscan.txt | 53 + .../devicetree/bindings/net/can/sja1000.txt | 53 + .../devicetree/bindings/net/fsl-tsec-phy.txt | 76 + .../devicetree/bindings/net/mdio-gpio.txt | 19 + Documentation/devicetree/bindings/net/phy.txt | 25 + .../devicetree/bindings/pci/83xx-512x-pci.txt | 40 + .../devicetree/bindings/powerpc/4xx/cpm.txt | 52 + .../devicetree/bindings/powerpc/4xx/emac.txt | 148 ++ .../devicetree/bindings/powerpc/4xx/ndfc.txt | 39 + .../bindings/powerpc/4xx/ppc440spe-adma.txt | 93 ++ .../devicetree/bindings/powerpc/4xx/reboot.txt | 18 + .../devicetree/bindings/powerpc/fsl/board.txt | 63 + .../devicetree/bindings/powerpc/fsl/cpm_qe/cpm.txt | 67 + .../bindings/powerpc/fsl/cpm_qe/cpm/brg.txt | 21 + .../bindings/powerpc/fsl/cpm_qe/cpm/i2c.txt | 41 + .../bindings/powerpc/fsl/cpm_qe/cpm/pic.txt | 18 + .../bindings/powerpc/fsl/cpm_qe/cpm/usb.txt | 15 + .../bindings/powerpc/fsl/cpm_qe/gpio.txt | 38 + .../bindings/powerpc/fsl/cpm_qe/network.txt | 45 + .../devicetree/bindings/powerpc/fsl/cpm_qe/qe.txt | 115 ++ .../bindings/powerpc/fsl/cpm_qe/qe/firmware.txt | 24 + .../bindings/powerpc/fsl/cpm_qe/qe/par_io.txt | 51 + .../bindings/powerpc/fsl/cpm_qe/qe/pincfg.txt | 60 + .../bindings/powerpc/fsl/cpm_qe/qe/ucc.txt | 70 + .../bindings/powerpc/fsl/cpm_qe/qe/usb.txt | 37 + .../bindings/powerpc/fsl/cpm_qe/serial.txt | 32 + .../devicetree/bindings/powerpc/fsl/diu.txt | 34 + .../devicetree/bindings/powerpc/fsl/dma.txt | 144 ++ .../devicetree/bindings/powerpc/fsl/ecm.txt | 64 + .../devicetree/bindings/powerpc/fsl/gtm.txt | 31 + .../devicetree/bindings/powerpc/fsl/guts.txt | 25 + .../devicetree/bindings/powerpc/fsl/lbc.txt | 35 + .../devicetree/bindings/powerpc/fsl/mcm.txt | 64 + .../bindings/powerpc/fsl/mcu-mpc8349emitx.txt | 17 + .../bindings/powerpc/fsl/mpc5121-psc.txt | 70 + .../devicetree/bindings/powerpc/fsl/mpc5200.txt | 198 +++ .../devicetree/bindings/powerpc/fsl/mpic.txt | 42 + .../devicetree/bindings/powerpc/fsl/msi-pic.txt | 36 + .../devicetree/bindings/powerpc/fsl/pmc.txt | 63 + .../devicetree/bindings/powerpc/fsl/sec.txt | 68 + .../devicetree/bindings/powerpc/fsl/ssi.txt | 73 + .../bindings/powerpc/nintendo/gamecube.txt | 109 ++ .../devicetree/bindings/powerpc/nintendo/wii.txt | 184 +++ Documentation/devicetree/bindings/spi/fsl-spi.txt | 53 + Documentation/devicetree/bindings/spi/spi-bus.txt | 57 + Documentation/devicetree/bindings/usb/fsl-usb.txt | 81 ++ Documentation/devicetree/bindings/usb/usb-ehci.txt | 25 + Documentation/devicetree/bindings/xilinx.txt | 306 +++++ Documentation/devicetree/booting-without-of.txt | 1447 ++++++++++++++++++++ Documentation/powerpc/booting-without-of.txt | 1447 -------------------- Documentation/powerpc/dts-bindings/4xx/cpm.txt | 52 - Documentation/powerpc/dts-bindings/4xx/emac.txt | 148 -- Documentation/powerpc/dts-bindings/4xx/ndfc.txt | 39 - .../powerpc/dts-bindings/4xx/ppc440spe-adma.txt | 93 -- Documentation/powerpc/dts-bindings/4xx/reboot.txt | 18 - Documentation/powerpc/dts-bindings/can/sja1000.txt | 53 - Documentation/powerpc/dts-bindings/ecm.txt | 64 - Documentation/powerpc/dts-bindings/eeprom.txt | 28 - .../powerpc/dts-bindings/fsl/83xx-512x-pci.txt | 40 - .../powerpc/dts-bindings/fsl/8xxx_gpio.txt | 60 - Documentation/powerpc/dts-bindings/fsl/board.txt | 63 - Documentation/powerpc/dts-bindings/fsl/can.txt | 53 - .../powerpc/dts-bindings/fsl/cpm_qe/cpm.txt | 67 - .../powerpc/dts-bindings/fsl/cpm_qe/cpm/brg.txt | 21 - .../powerpc/dts-bindings/fsl/cpm_qe/cpm/i2c.txt | 41 - .../powerpc/dts-bindings/fsl/cpm_qe/cpm/pic.txt | 18 - .../powerpc/dts-bindings/fsl/cpm_qe/cpm/usb.txt | 15 - .../powerpc/dts-bindings/fsl/cpm_qe/gpio.txt | 38 - .../powerpc/dts-bindings/fsl/cpm_qe/network.txt | 45 - .../powerpc/dts-bindings/fsl/cpm_qe/qe.txt | 115 -- .../dts-bindings/fsl/cpm_qe/qe/firmware.txt | 24 - .../powerpc/dts-bindings/fsl/cpm_qe/qe/par_io.txt | 51 - .../powerpc/dts-bindings/fsl/cpm_qe/qe/pincfg.txt | 60 - .../powerpc/dts-bindings/fsl/cpm_qe/qe/ucc.txt | 70 - .../powerpc/dts-bindings/fsl/cpm_qe/qe/usb.txt | 37 - .../powerpc/dts-bindings/fsl/cpm_qe/serial.txt | 32 - Documentation/powerpc/dts-bindings/fsl/diu.txt | 34 - Documentation/powerpc/dts-bindings/fsl/dma.txt | 144 -- Documentation/powerpc/dts-bindings/fsl/esdhc.txt | 29 - Documentation/powerpc/dts-bindings/fsl/gtm.txt | 31 - Documentation/powerpc/dts-bindings/fsl/guts.txt | 25 - Documentation/powerpc/dts-bindings/fsl/i2c.txt | 64 - Documentation/powerpc/dts-bindings/fsl/lbc.txt | 35 - Documentation/powerpc/dts-bindings/fsl/mcm.txt | 64 - .../powerpc/dts-bindings/fsl/mcu-mpc8349emitx.txt | 17 - .../powerpc/dts-bindings/fsl/mpc5121-psc.txt | 70 - Documentation/powerpc/dts-bindings/fsl/mpc5200.txt | 198 --- Documentation/powerpc/dts-bindings/fsl/mpic.txt | 42 - Documentation/powerpc/dts-bindings/fsl/msi-pic.txt | 36 - Documentation/powerpc/dts-bindings/fsl/pmc.txt | 63 - Documentation/powerpc/dts-bindings/fsl/sata.txt | 29 - Documentation/powerpc/dts-bindings/fsl/sec.txt | 68 - Documentation/powerpc/dts-bindings/fsl/spi.txt | 53 - Documentation/powerpc/dts-bindings/fsl/ssi.txt | 73 - Documentation/powerpc/dts-bindings/fsl/tsec.txt | 76 - .../powerpc/dts-bindings/fsl/upm-nand.txt | 63 - Documentation/powerpc/dts-bindings/fsl/usb.txt | 81 -- Documentation/powerpc/dts-bindings/gpio/gpio.txt | 50 - Documentation/powerpc/dts-bindings/gpio/led.txt | 58 - Documentation/powerpc/dts-bindings/gpio/mdio.txt | 19 - Documentation/powerpc/dts-bindings/marvell.txt | 521 ------- .../powerpc/dts-bindings/mmc-spi-slot.txt | 23 - Documentation/powerpc/dts-bindings/mtd-physmap.txt | 90 -- .../powerpc/dts-bindings/nintendo/gamecube.txt | 109 -- .../powerpc/dts-bindings/nintendo/wii.txt | 184 --- Documentation/powerpc/dts-bindings/phy.txt | 25 - Documentation/powerpc/dts-bindings/spi-bus.txt | 57 - Documentation/powerpc/dts-bindings/usb-ehci.txt | 25 - Documentation/powerpc/dts-bindings/xilinx.txt | 306 ----- 120 files changed, 5554 insertions(+), 5554 deletions(-) create mode 100644 Documentation/devicetree/bindings/ata/fsl-sata.txt create mode 100644 Documentation/devicetree/bindings/eeprom.txt create mode 100644 Documentation/devicetree/bindings/gpio/8xxx_gpio.txt create mode 100644 Documentation/devicetree/bindings/gpio/gpio.txt create mode 100644 Documentation/devicetree/bindings/gpio/led.txt create mode 100644 Documentation/devicetree/bindings/i2c/fsl-i2c.txt create mode 100644 Documentation/devicetree/bindings/marvell.txt create mode 100644 Documentation/devicetree/bindings/mmc/fsl-esdhc.txt create mode 100644 Documentation/devicetree/bindings/mmc/mmc-spi-slot.txt create mode 100644 Documentation/devicetree/bindings/mtd/fsl-upm-nand.txt create mode 100644 Documentation/devicetree/bindings/mtd/mtd-physmap.txt create mode 100644 Documentation/devicetree/bindings/net/can/mpc5xxx-mscan.txt create mode 100644 Documentation/devicetree/bindings/net/can/sja1000.txt create mode 100644 Documentation/devicetree/bindings/net/fsl-tsec-phy.txt create mode 100644 Documentation/devicetree/bindings/net/mdio-gpio.txt create mode 100644 Documentation/devicetree/bindings/net/phy.txt create mode 100644 Documentation/devicetree/bindings/pci/83xx-512x-pci.txt create mode 100644 Documentation/devicetree/bindings/powerpc/4xx/cpm.txt create mode 100644 Documentation/devicetree/bindings/powerpc/4xx/emac.txt create mode 100644 Documentation/devicetree/bindings/powerpc/4xx/ndfc.txt create mode 100644 Documentation/devicetree/bindings/powerpc/4xx/ppc440spe-adma.txt create mode 100644 Documentation/devicetree/bindings/powerpc/4xx/reboot.txt create mode 100644 Documentation/devicetree/bindings/powerpc/fsl/board.txt create mode 100644 Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm.txt create mode 100644 Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/brg.txt create mode 100644 Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/i2c.txt create mode 100644 Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/pic.txt create mode 100644 Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/usb.txt create mode 100644 Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/gpio.txt create mode 100644 Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/network.txt create mode 100644 Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe.txt create mode 100644 Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/firmware.txt create mode 100644 Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/par_io.txt create mode 100644 Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/pincfg.txt create mode 100644 Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/ucc.txt create mode 100644 Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/usb.txt create mode 100644 Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/serial.txt create mode 100644 Documentation/devicetree/bindings/powerpc/fsl/diu.txt create mode 100644 Documentation/devicetree/bindings/powerpc/fsl/dma.txt create mode 100644 Documentation/devicetree/bindings/powerpc/fsl/ecm.txt create mode 100644 Documentation/devicetree/bindings/powerpc/fsl/gtm.txt create mode 100644 Documentation/devicetree/bindings/powerpc/fsl/guts.txt create mode 100644 Documentation/devicetree/bindings/powerpc/fsl/lbc.txt create mode 100644 Documentation/devicetree/bindings/powerpc/fsl/mcm.txt create mode 100644 Documentation/devicetree/bindings/powerpc/fsl/mcu-mpc8349emitx.txt create mode 100644 Documentation/devicetree/bindings/powerpc/fsl/mpc5121-psc.txt create mode 100644 Documentation/devicetree/bindings/powerpc/fsl/mpc5200.txt create mode 100644 Documentation/devicetree/bindings/powerpc/fsl/mpic.txt create mode 100644 Documentation/devicetree/bindings/powerpc/fsl/msi-pic.txt create mode 100644 Documentation/devicetree/bindings/powerpc/fsl/pmc.txt create mode 100644 Documentation/devicetree/bindings/powerpc/fsl/sec.txt create mode 100644 Documentation/devicetree/bindings/powerpc/fsl/ssi.txt create mode 100644 Documentation/devicetree/bindings/powerpc/nintendo/gamecube.txt create mode 100644 Documentation/devicetree/bindings/powerpc/nintendo/wii.txt create mode 100644 Documentation/devicetree/bindings/spi/fsl-spi.txt create mode 100644 Documentation/devicetree/bindings/spi/spi-bus.txt create mode 100644 Documentation/devicetree/bindings/usb/fsl-usb.txt create mode 100644 Documentation/devicetree/bindings/usb/usb-ehci.txt create mode 100644 Documentation/devicetree/bindings/xilinx.txt create mode 100644 Documentation/devicetree/booting-without-of.txt delete mode 100644 Documentation/powerpc/booting-without-of.txt delete mode 100644 Documentation/powerpc/dts-bindings/4xx/cpm.txt delete mode 100644 Documentation/powerpc/dts-bindings/4xx/emac.txt delete mode 100644 Documentation/powerpc/dts-bindings/4xx/ndfc.txt delete mode 100644 Documentation/powerpc/dts-bindings/4xx/ppc440spe-adma.txt delete mode 100644 Documentation/powerpc/dts-bindings/4xx/reboot.txt delete mode 100644 Documentation/powerpc/dts-bindings/can/sja1000.txt delete mode 100644 Documentation/powerpc/dts-bindings/ecm.txt delete mode 100644 Documentation/powerpc/dts-bindings/eeprom.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/83xx-512x-pci.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/8xxx_gpio.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/board.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/can.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/brg.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/i2c.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/pic.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/usb.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/cpm_qe/gpio.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/cpm_qe/network.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/firmware.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/par_io.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/pincfg.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/ucc.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/usb.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/cpm_qe/serial.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/diu.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/dma.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/esdhc.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/gtm.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/guts.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/i2c.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/lbc.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/mcm.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/mcu-mpc8349emitx.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/mpc5121-psc.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/mpc5200.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/mpic.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/msi-pic.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/pmc.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/sata.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/sec.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/spi.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/ssi.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/tsec.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/upm-nand.txt delete mode 100644 Documentation/powerpc/dts-bindings/fsl/usb.txt delete mode 100644 Documentation/powerpc/dts-bindings/gpio/gpio.txt delete mode 100644 Documentation/powerpc/dts-bindings/gpio/led.txt delete mode 100644 Documentation/powerpc/dts-bindings/gpio/mdio.txt delete mode 100644 Documentation/powerpc/dts-bindings/marvell.txt delete mode 100644 Documentation/powerpc/dts-bindings/mmc-spi-slot.txt delete mode 100644 Documentation/powerpc/dts-bindings/mtd-physmap.txt delete mode 100644 Documentation/powerpc/dts-bindings/nintendo/gamecube.txt delete mode 100644 Documentation/powerpc/dts-bindings/nintendo/wii.txt delete mode 100644 Documentation/powerpc/dts-bindings/phy.txt delete mode 100644 Documentation/powerpc/dts-bindings/spi-bus.txt delete mode 100644 Documentation/powerpc/dts-bindings/usb-ehci.txt delete mode 100644 Documentation/powerpc/dts-bindings/xilinx.txt (limited to 'Documentation') diff --git a/Documentation/devicetree/bindings/ata/fsl-sata.txt b/Documentation/devicetree/bindings/ata/fsl-sata.txt new file mode 100644 index 000000000000..b46bcf46c3d8 --- /dev/null +++ b/Documentation/devicetree/bindings/ata/fsl-sata.txt @@ -0,0 +1,29 @@ +* Freescale 8xxx/3.0 Gb/s SATA nodes + +SATA nodes are defined to describe on-chip Serial ATA controllers. +Each SATA port should have its own node. + +Required properties: +- compatible : compatible list, contains 2 entries, first is + "fsl,CHIP-sata", where CHIP is the processor + (mpc8315, mpc8379, etc.) and the second is + "fsl,pq-sata" +- interrupts : +- cell-index : controller index. + 1 for controller @ 0x18000 + 2 for controller @ 0x19000 + 3 for controller @ 0x1a000 + 4 for controller @ 0x1b000 + +Optional properties: +- interrupt-parent : optional, if needed for interrupt mapping +- reg : + +Example: + sata@18000 { + compatible = "fsl,mpc8379-sata", "fsl,pq-sata"; + reg = <0x18000 0x1000>; + cell-index = <1>; + interrupts = <2c 8>; + interrupt-parent = < &ipic >; + }; diff --git a/Documentation/devicetree/bindings/eeprom.txt b/Documentation/devicetree/bindings/eeprom.txt new file mode 100644 index 000000000000..4342c10de1bf --- /dev/null +++ b/Documentation/devicetree/bindings/eeprom.txt @@ -0,0 +1,28 @@ +EEPROMs (I2C) + +Required properties: + + - compatible : should be "," + If there is no specific driver for , a generic + driver based on is selected. Possible types are: + 24c00, 24c01, 24c02, 24c04, 24c08, 24c16, 24c32, 24c64, + 24c128, 24c256, 24c512, 24c1024, spd + + - reg : the I2C address of the EEPROM + +Optional properties: + + - pagesize : the length of the pagesize for writing. Please consult the + manual of your device, that value varies a lot. A wrong value + may result in data loss! If not specified, a safety value of + '1' is used which will be very slow. + + - read-only: this parameterless property disables writes to the eeprom + +Example: + +eeprom@52 { + compatible = "atmel,24c32"; + reg = <0x52>; + pagesize = <32>; +}; diff --git a/Documentation/devicetree/bindings/gpio/8xxx_gpio.txt b/Documentation/devicetree/bindings/gpio/8xxx_gpio.txt new file mode 100644 index 000000000000..b0019eb5330e --- /dev/null +++ b/Documentation/devicetree/bindings/gpio/8xxx_gpio.txt @@ -0,0 +1,60 @@ +GPIO controllers on MPC8xxx SoCs + +This is for the non-QE/CPM/GUTs GPIO controllers as found on +8349, 8572, 8610 and compatible. + +Every GPIO controller node must have #gpio-cells property defined, +this information will be used to translate gpio-specifiers. + +Required properties: +- compatible : "fsl,-gpio" followed by "fsl,mpc8349-gpio" for + 83xx, "fsl,mpc8572-gpio" for 85xx and "fsl,mpc8610-gpio" for 86xx. +- #gpio-cells : Should be two. The first cell is the pin number and the + second cell is used to specify optional parameters (currently unused). + - interrupts : Interrupt mapping for GPIO IRQ. + - interrupt-parent : Phandle for the interrupt controller that + services interrupts for this device. +- gpio-controller : Marks the port as GPIO controller. + +Example of gpio-controller nodes for a MPC8347 SoC: + + gpio1: gpio-controller@c00 { + #gpio-cells = <2>; + compatible = "fsl,mpc8347-gpio", "fsl,mpc8349-gpio"; + reg = <0xc00 0x100>; + interrupts = <74 0x8>; + interrupt-parent = <&ipic>; + gpio-controller; + }; + + gpio2: gpio-controller@d00 { + #gpio-cells = <2>; + compatible = "fsl,mpc8347-gpio", "fsl,mpc8349-gpio"; + reg = <0xd00 0x100>; + interrupts = <75 0x8>; + interrupt-parent = <&ipic>; + gpio-controller; + }; + +See booting-without-of.txt for details of how to specify GPIO +information for devices. + +To use GPIO pins as interrupt sources for peripherals, specify the +GPIO controller as the interrupt parent and define GPIO number + +trigger mode using the interrupts property, which is defined like +this: + +interrupts = , where: + - number: GPIO pin (0..31) + - trigger: trigger mode: + 2 = trigger on falling edge + 3 = trigger on both edges + +Example of device using this is: + + funkyfpga@0 { + compatible = "funky-fpga"; + ... + interrupts = <4 3>; + interrupt-parent = <&gpio1>; + }; diff --git a/Documentation/devicetree/bindings/gpio/gpio.txt b/Documentation/devicetree/bindings/gpio/gpio.txt new file mode 100644 index 000000000000..edaa84d288a1 --- /dev/null +++ b/Documentation/devicetree/bindings/gpio/gpio.txt @@ -0,0 +1,50 @@ +Specifying GPIO information for devices +============================================ + +1) gpios property +----------------- + +Nodes that makes use of GPIOs should define them using `gpios' property, +format of which is: <&gpio-controller1-phandle gpio1-specifier + &gpio-controller2-phandle gpio2-specifier + 0 /* holes are permitted, means no GPIO 3 */ + &gpio-controller4-phandle gpio4-specifier + ...>; + +Note that gpio-specifier length is controller dependent. + +gpio-specifier may encode: bank, pin position inside the bank, +whether pin is open-drain and whether pin is logically inverted. + +Example of the node using GPIOs: + + node { + gpios = <&qe_pio_e 18 0>; + }; + +In this example gpio-specifier is "18 0" and encodes GPIO pin number, +and empty GPIO flags as accepted by the "qe_pio_e" gpio-controller. + +2) gpio-controller nodes +------------------------ + +Every GPIO controller node must have #gpio-cells property defined, +this information will be used to translate gpio-specifiers. + +Example of two SOC GPIO banks defined as gpio-controller nodes: + + qe_pio_a: gpio-controller@1400 { + #gpio-cells = <2>; + compatible = "fsl,qe-pario-bank-a", "fsl,qe-pario-bank"; + reg = <0x1400 0x18>; + gpio-controller; + }; + + qe_pio_e: gpio-controller@1460 { + #gpio-cells = <2>; + compatible = "fsl,qe-pario-bank-e", "fsl,qe-pario-bank"; + reg = <0x1460 0x18>; + gpio-controller; + }; + + diff --git a/Documentation/devicetree/bindings/gpio/led.txt b/Documentation/devicetree/bindings/gpio/led.txt new file mode 100644 index 000000000000..064db928c3c1 --- /dev/null +++ b/Documentation/devicetree/bindings/gpio/led.txt @@ -0,0 +1,58 @@ +LEDs connected to GPIO lines + +Required properties: +- compatible : should be "gpio-leds". + +Each LED is represented as a sub-node of the gpio-leds device. Each +node's name represents the name of the corresponding LED. + +LED sub-node properties: +- gpios : Should specify the LED's GPIO, see "Specifying GPIO information + for devices" in Documentation/powerpc/booting-without-of.txt. Active + low LEDs should be indicated using flags in the GPIO specifier. +- label : (optional) The label for this LED. If omitted, the label is + taken from the node name (excluding the unit address). +- linux,default-trigger : (optional) This parameter, if present, is a + string defining the trigger assigned to the LED. Current triggers are: + "backlight" - LED will act as a back-light, controlled by the framebuffer + system + "default-on" - LED will turn on, but see "default-state" below + "heartbeat" - LED "double" flashes at a load average based rate + "ide-disk" - LED indicates disk activity + "timer" - LED flashes at a fixed, configurable rate +- default-state: (optional) The initial state of the LED. Valid + values are "on", "off", and "keep". If the LED is already on or off + and the default-state property is set the to same value, then no + glitch should be produced where the LED momentarily turns off (or + on). The "keep" setting will keep the LED at whatever its current + state is, without producing a glitch. The default is off if this + property is not present. + +Examples: + +leds { + compatible = "gpio-leds"; + hdd { + label = "IDE Activity"; + gpios = <&mcu_pio 0 1>; /* Active low */ + linux,default-trigger = "ide-disk"; + }; + + fault { + gpios = <&mcu_pio 1 0>; + /* Keep LED on if BIOS detected hardware fault */ + default-state = "keep"; + }; +}; + +run-control { + compatible = "gpio-leds"; + red { + gpios = <&mpc8572 6 0>; + default-state = "off"; + }; + green { + gpios = <&mpc8572 7 0>; + default-state = "on"; + }; +} diff --git a/Documentation/devicetree/bindings/i2c/fsl-i2c.txt b/Documentation/devicetree/bindings/i2c/fsl-i2c.txt new file mode 100644 index 000000000000..1eacd6b20ed5 --- /dev/null +++ b/Documentation/devicetree/bindings/i2c/fsl-i2c.txt @@ -0,0 +1,64 @@ +* I2C + +Required properties : + + - reg : Offset and length of the register set for the device + - compatible : should be "fsl,CHIP-i2c" where CHIP is the name of a + compatible processor, e.g. mpc8313, mpc8543, mpc8544, mpc5121, + mpc5200 or mpc5200b. For the mpc5121, an additional node + "fsl,mpc5121-i2c-ctrl" is required as shown in the example below. + +Recommended properties : + + - interrupts : where a is the interrupt number and b is a + field that represents an encoding of the sense and level + information for the interrupt. This should be encoded based on + the information in section 2) depending on the type of interrupt + controller you have. + - interrupt-parent : the phandle for the interrupt controller that + services interrupts for this device. + - fsl,preserve-clocking : boolean; if defined, the clock settings + from the bootloader are preserved (not touched). + - clock-frequency : desired I2C bus clock frequency in Hz. + - fsl,timeout : I2C bus timeout in microseconds. + +Examples : + + /* MPC5121 based board */ + i2c@1740 { + #address-cells = <1>; + #size-cells = <0>; + compatible = "fsl,mpc5121-i2c", "fsl-i2c"; + reg = <0x1740 0x20>; + interrupts = <11 0x8>; + interrupt-parent = <&ipic>; + clock-frequency = <100000>; + }; + + i2ccontrol@1760 { + compatible = "fsl,mpc5121-i2c-ctrl"; + reg = <0x1760 0x8>; + }; + + /* MPC5200B based board */ + i2c@3d00 { + #address-cells = <1>; + #size-cells = <0>; + compatible = "fsl,mpc5200b-i2c","fsl,mpc5200-i2c","fsl-i2c"; + reg = <0x3d00 0x40>; + interrupts = <2 15 0>; + interrupt-parent = <&mpc5200_pic>; + fsl,preserve-clocking; + }; + + /* MPC8544 base board */ + i2c@3100 { + #address-cells = <1>; + #size-cells = <0>; + compatible = "fsl,mpc8544-i2c", "fsl-i2c"; + reg = <0x3100 0x100>; + interrupts = <43 2>; + interrupt-parent = <&mpic>; + clock-frequency = <400000>; + fsl,timeout = <10000>; + }; diff --git a/Documentation/devicetree/bindings/marvell.txt b/Documentation/devicetree/bindings/marvell.txt new file mode 100644 index 000000000000..f1533d91953a --- /dev/null +++ b/Documentation/devicetree/bindings/marvell.txt @@ -0,0 +1,521 @@ +Marvell Discovery mv64[345]6x System Controller chips +=========================================================== + +The Marvell mv64[345]60 series of system controller chips contain +many of the peripherals needed to implement a complete computer +system. In this section, we define device tree nodes to describe +the system controller chip itself and each of the peripherals +which it contains. Compatible string values for each node are +prefixed with the string "marvell,", for Marvell Technology Group Ltd. + +1) The /system-controller node + + This node is used to represent the system-controller and must be + present when the system uses a system controller chip. The top-level + system-controller node contains information that is global to all + devices within the system controller chip. The node name begins + with "system-controller" followed by the unit address, which is + the base address of the memory-mapped register set for the system + controller chip. + + Required properties: + + - ranges : Describes the translation of system controller addresses + for memory mapped registers. + - clock-frequency: Contains the main clock frequency for the system + controller chip. + - reg : This property defines the address and size of the + memory-mapped registers contained within the system controller + chip. The address specified in the "reg" property should match + the unit address of the system-controller node. + - #address-cells : Address representation for system controller + devices. This field represents the number of cells needed to + represent the address of the memory-mapped registers of devices + within the system controller chip. + - #size-cells : Size representation for the memory-mapped + registers within the system controller chip. + - #interrupt-cells : Defines the width of cells used to represent + interrupts. + + Optional properties: + + - model : The specific model of the system controller chip. Such + as, "mv64360", "mv64460", or "mv64560". + - compatible : A string identifying the compatibility identifiers + of the system controller chip. + + The system-controller node contains child nodes for each system + controller device that the platform uses. Nodes should not be created + for devices which exist on the system controller chip but are not used + + Example Marvell Discovery mv64360 system-controller node: + + system-controller@f1000000 { /* Marvell Discovery mv64360 */ + #address-cells = <1>; + #size-cells = <1>; + model = "mv64360"; /* Default */ + compatible = "marvell,mv64360"; + clock-frequency = <133333333>; + reg = <0xf1000000 0x10000>; + virtual-reg = <0xf1000000>; + ranges = <0x88000000 0x88000000 0x1000000 /* PCI 0 I/O Space */ + 0x80000000 0x80000000 0x8000000 /* PCI 0 MEM Space */ + 0xa0000000 0xa0000000 0x4000000 /* User FLASH */ + 0x00000000 0xf1000000 0x0010000 /* Bridge's regs */ + 0xf2000000 0xf2000000 0x0040000>;/* Integrated SRAM */ + + [ child node definitions... ] + } + +2) Child nodes of /system-controller + + a) Marvell Discovery MDIO bus + + The MDIO is a bus to which the PHY devices are connected. For each + device that exists on this bus, a child node should be created. See + the definition of the PHY node below for an example of how to define + a PHY. + + Required properties: + - #address-cells : Should be <1> + - #size-cells : Should be <0> + - device_type : Should be "mdio" + - compatible : Should be "marvell,mv64360-mdio" + + Example: + + mdio { + #address-cells = <1>; + #size-cells = <0>; + device_type = "mdio"; + compatible = "marvell,mv64360-mdio"; + + ethernet-phy@0 { + ...... + }; + }; + + + b) Marvell Discovery ethernet controller + + The Discover ethernet controller is described with two levels + of nodes. The first level describes an ethernet silicon block + and the second level describes up to 3 ethernet nodes within + that block. The reason for the multiple levels is that the + registers for the node are interleaved within a single set + of registers. The "ethernet-block" level describes the + shared register set, and the "ethernet" nodes describe ethernet + port-specific properties. + + Ethernet block node + + Required properties: + - #address-cells : <1> + - #size-cells : <0> + - compatible : "marvell,mv64360-eth-block" + - reg : Offset and length of the register set for this block + + Example Discovery Ethernet block node: + ethernet-block@2000 { + #address-cells = <1>; + #size-cells = <0>; + compatible = "marvell,mv64360-eth-block"; + reg = <0x2000 0x2000>; + ethernet@0 { + ....... + }; + }; + + Ethernet port node + + Required properties: + - device_type : Should be "network". + - compatible : Should be "marvell,mv64360-eth". + - reg : Should be <0>, <1>, or <2>, according to which registers + within the silicon block the device uses. + - interrupts : where a is the interrupt number for the port. + - interrupt-parent : the phandle for the interrupt controller + that services interrupts for this device. + - phy : the phandle for the PHY connected to this ethernet + controller. + - local-mac-address : 6 bytes, MAC address + + Example Discovery Ethernet port node: + ethernet@0 { + device_type = "network"; + compatible = "marvell,mv64360-eth"; + reg = <0>; + interrupts = <32>; + interrupt-parent = <&PIC>; + phy = <&PHY0>; + local-mac-address = [ 00 00 00 00 00 00 ]; + }; + + + + c) Marvell Discovery PHY nodes + + Required properties: + - device_type : Should be "ethernet-phy" + - interrupts : where a is the interrupt number for this phy. + - interrupt-parent : the phandle for the interrupt controller that + services interrupts for this device. + - reg : The ID number for the phy, usually a small integer + + Example Discovery PHY node: + ethernet-phy@1 { + device_type = "ethernet-phy"; + compatible = "broadcom,bcm5421"; + interrupts = <76>; /* GPP 12 */ + interrupt-parent = <&PIC>; + reg = <1>; + }; + + + d) Marvell Discovery SDMA nodes + + Represent DMA hardware associated with the MPSC (multiprotocol + serial controllers). + + Required properties: + - compatible : "marvell,mv64360-sdma" + - reg : Offset and length of the register set for this device + - interrupts : where a is the interrupt number for the DMA + device. + - interrupt-parent : the phandle for the interrupt controller + that services interrupts for this device. + + Example Discovery SDMA node: + sdma@4000 { + compatible = "marvell,mv64360-sdma"; + reg = <0x4000 0xc18>; + virtual-reg = <0xf1004000>; + interrupts = <36>; + interrupt-parent = <&PIC>; + }; + + + e) Marvell Discovery BRG nodes + + Represent baud rate generator hardware associated with the MPSC + (multiprotocol serial controllers). + + Required properties: + - compatible : "marvell,mv64360-brg" + - reg : Offset and length of the register set for this device + - clock-src : A value from 0 to 15 which selects the clock + source for the baud rate generator. This value corresponds + to the CLKS value in the BRGx configuration register. See + the mv64x60 User's Manual. + - clock-frequence : The frequency (in Hz) of the baud rate + generator's input clock. + - current-speed : The current speed setting (presumably by + firmware) of the baud rate generator. + + Example Discovery BRG node: + brg@b200 { + compatible = "marvell,mv64360-brg"; + reg = <0xb200 0x8>; + clock-src = <8>; + clock-frequency = <133333333>; + current-speed = <9600>; + }; + + + f) Marvell Discovery CUNIT nodes + + Represent the Serial Communications Unit device hardware. + + Required properties: + - reg : Offset and length of the register set for this device + + Example Discovery CUNIT node: + cunit@f200 { + reg = <0xf200 0x200>; + }; + + + g) Marvell Discovery MPSCROUTING nodes + + Represent the Discovery's MPSC routing hardware + + Required properties: + - reg : Offset and length of the register set for this device + + Example Discovery CUNIT node: + mpscrouting@b500 { + reg = <0xb400 0xc>; + }; + + + h) Marvell Discovery MPSCINTR nodes + + Represent the Discovery's MPSC DMA interrupt hardware registers + (SDMA cause and mask registers). + + Required properties: + - reg : Offset and length of the register set for this device + + Example Discovery MPSCINTR node: + mpsintr@b800 { + reg = <0xb800 0x100>; + }; + + + i) Marvell Discovery MPSC nodes + + Represent the Discovery's MPSC (Multiprotocol Serial Controller) + serial port. + + Required properties: + - device_type : "serial" + - compatible : "marvell,mv64360-mpsc" + - reg : Offset and length of the register set for this device + - sdma : the phandle for the SDMA node used by this port + - brg : the phandle for the BRG node used by this port + - cunit : the phandle for the CUNIT node used by this port + - mpscrouting : the phandle for the MPSCROUTING node used by this port + - mpscintr : the phandle for the MPSCINTR node used by this port + - cell-index : the hardware index of this cell in the MPSC core + - max_idle : value needed for MPSC CHR3 (Maximum Frame Length) + register + - interrupts : where a is the interrupt number for the MPSC. + - interrupt-parent : the phandle for the interrupt controller + that services interrupts for this device. + + Example Discovery MPSCINTR node: + mpsc@8000 { + device_type = "serial"; + compatible = "marvell,mv64360-mpsc"; + reg = <0x8000 0x38>; + virtual-reg = <0xf1008000>; + sdma = <&SDMA0>; + brg = <&BRG0>; + cunit = <&CUNIT>; + mpscrouting = <&MPSCROUTING>; + mpscintr = <&MPSCINTR>; + cell-index = <0>; + max_idle = <40>; + interrupts = <40>; + interrupt-parent = <&PIC>; + }; + + + j) Marvell Discovery Watch Dog Timer nodes + + Represent the Discovery's watchdog timer hardware + + Required properties: + - compatible : "marvell,mv64360-wdt" + - reg : Offset and length of the register set for this device + + Example Discovery Watch Dog Timer node: + wdt@b410 { + compatible = "marvell,mv64360-wdt"; + reg = <0xb410 0x8>; + }; + + + k) Marvell Discovery I2C nodes + + Represent the Discovery's I2C hardware + + Required properties: + - device_type : "i2c" + - compatible : "marvell,mv64360-i2c" + - reg : Offset and length of the register set for this device + - interrupts : where a is the interrupt number for the I2C. + - interrupt-parent : the phandle for the interrupt controller + that services interrupts for this device. + + Example Discovery I2C node: + compatible = "marvell,mv64360-i2c"; + reg = <0xc000 0x20>; + virtual-reg = <0xf100c000>; + interrupts = <37>; + interrupt-parent = <&PIC>; + }; + + + l) Marvell Discovery PIC (Programmable Interrupt Controller) nodes + + Represent the Discovery's PIC hardware + + Required properties: + - #interrupt-cells : <1> + - #address-cells : <0> + - compatible : "marvell,mv64360-pic" + - reg : Offset and length of the register set for this device + - interrupt-controller + + Example Discovery PIC node: + pic { + #interrupt-cells = <1>; + #address-cells = <0>; + compatible = "marvell,mv64360-pic"; + reg = <0x0 0x88>; + interrupt-controller; + }; + + + m) Marvell Discovery MPP (Multipurpose Pins) multiplexing nodes + + Represent the Discovery's MPP hardware + + Required properties: + - compatible : "marvell,mv64360-mpp" + - reg : Offset and length of the register set for this device + + Example Discovery MPP node: + mpp@f000 { + compatible = "marvell,mv64360-mpp"; + reg = <0xf000 0x10>; + }; + + + n) Marvell Discovery GPP (General Purpose Pins) nodes + + Represent the Discovery's GPP hardware + + Required properties: + - compatible : "marvell,mv64360-gpp" + - reg : Offset and length of the register set for this device + + Example Discovery GPP node: + gpp@f000 { + compatible = "marvell,mv64360-gpp"; + reg = <0xf100 0x20>; + }; + + + o) Marvell Discovery PCI host bridge node + + Represents the Discovery's PCI host bridge device. The properties + for this node conform to Rev 2.1 of the PCI Bus Binding to IEEE + 1275-1994. A typical value for the compatible property is + "marvell,mv64360-pci". + + Example Discovery PCI host bridge node + pci@80000000 { + #address-cells = <3>; + #size-cells = <2>; + #interrupt-cells = <1>; + device_type = "pci"; + compatible = "marvell,mv64360-pci"; + reg = <0xcf8 0x8>; + ranges = <0x01000000 0x0 0x0 + 0x88000000 0x0 0x01000000 + 0x02000000 0x0 0x80000000 + 0x80000000 0x0 0x08000000>; + bus-range = <0 255>; + clock-frequency = <66000000>; + interrupt-parent = <&PIC>; + interrupt-map-mask = <0xf800 0x0 0x0 0x7>; + interrupt-map = < + /* IDSEL 0x0a */ + 0x5000 0 0 1 &PIC 80 + 0x5000 0 0 2 &PIC 81 + 0x5000 0 0 3 &PIC 91 + 0x5000 0 0 4 &PIC 93 + + /* IDSEL 0x0b */ + 0x5800 0 0 1 &PIC 91 + 0x5800 0 0 2 &PIC 93 + 0x5800 0 0 3 &PIC 80 + 0x5800 0 0 4 &PIC 81 + + /* IDSEL 0x0c */ + 0x6000 0 0 1 &PIC 91 + 0x6000 0 0 2 &PIC 93 + 0x6000 0 0 3 &PIC 80 + 0x6000 0 0 4 &PIC 81 + + /* IDSEL 0x0d */ + 0x6800 0 0 1 &PIC 93 + 0x6800 0 0 2 &PIC 80 + 0x6800 0 0 3 &PIC 81 + 0x6800 0 0 4 &PIC 91 + >; + }; + + + p) Marvell Discovery CPU Error nodes + + Represent the Discovery's CPU error handler device. + + Required properties: + - compatible : "marvell,mv64360-cpu-error" + - reg : Offset and length of the register set for this device + - interrupts : the interrupt number for this device + - interrupt-parent : the phandle for the interrupt controller + that services interrupts for this device. + + Example Discovery CPU Error node: + cpu-error@0070 { + compatible = "marvell,mv64360-cpu-error"; + reg = <0x70 0x10 0x128 0x28>; + interrupts = <3>; + interrupt-parent = <&PIC>; + }; + + + q) Marvell Discovery SRAM Controller nodes + + Represent the Discovery's SRAM controller device. + + Required properties: + - compatible : "marvell,mv64360-sram-ctrl" + - reg : Offset and length of the register set for this device + - interrupts : the interrupt number for this device + - interrupt-parent : the phandle for the interrupt controller + that services interrupts for this device. + + Example Discovery SRAM Controller node: + sram-ctrl@0380 { + compatible = "marvell,mv64360-sram-ctrl"; + reg = <0x380 0x80>; + interrupts = <13>; + interrupt-parent = <&PIC>; + }; + + + r) Marvell Discovery PCI Error Handler nodes + + Represent the Discovery's PCI error handler device. + + Required properties: + - compatible : "marvell,mv64360-pci-error" + - reg : Offset and length of the register set for this device + - interrupts : the interrupt number for this device + - interrupt-parent : the phandle for the interrupt controller + that services interrupts for this device. + + Example Discovery PCI Error Handler node: + pci-error@1d40 { + compatible = "marvell,mv64360-pci-error"; + reg = <0x1d40 0x40 0xc28 0x4>; + interrupts = <12>; + interrupt-parent = <&PIC>; + }; + + + s) Marvell Discovery Memory Controller nodes + + Represent the Discovery's memory controller device. + + Required properties: + - compatible : "marvell,mv64360-mem-ctrl" + - reg : Offset and length of the register set for this device + - interrupts : the interrupt number for this device + - interrupt-parent : the phandle for the interrupt controller + that services interrupts for this device. + + Example Discovery Memory Controller node: + mem-ctrl@1400 { + compatible = "marvell,mv64360-mem-ctrl"; + reg = <0x1400 0x60>; + interrupts = <17>; + interrupt-parent = <&PIC>; + }; + + diff --git a/Documentation/devicetree/bindings/mmc/fsl-esdhc.txt b/Documentation/devicetree/bindings/mmc/fsl-esdhc.txt new file mode 100644 index 000000000000..64bcb8be973c --- /dev/null +++ b/Documentation/devicetree/bindings/mmc/fsl-esdhc.txt @@ -0,0 +1,29 @@ +* Freescale Enhanced Secure Digital Host Controller (eSDHC) + +The Enhanced Secure Digital Host Controller provides an interface +for MMC, SD, and SDIO types of memory cards. + +Required properties: + - compatible : should be + "fsl,-esdhc", "fsl,esdhc" + - reg : should contain eSDHC registers location and length. + - interrupts : should contain eSDHC interrupt. + - interrupt-parent : interrupt source phandle. + - clock-frequency : specifies eSDHC base clock frequency. + - sdhci,wp-inverted : (optional) specifies that eSDHC controller + reports inverted write-protect state; + - sdhci,1-bit-only : (optional) specifies that a controller can + only handle 1-bit data transfers. + - sdhci,auto-cmd12: (optional) specifies that a controller can + only handle auto CMD12. + +Example: + +sdhci@2e000 { + compatible = "fsl,mpc8378-esdhc", "fsl,esdhc"; + reg = <0x2e000 0x1000>; + interrupts = <42 0x8>; + interrupt-parent = <&ipic>; + /* Filled in by U-Boot */ + clock-frequency = <0>; +}; diff --git a/Documentation/devicetree/bindings/mmc/mmc-spi-slot.txt b/Documentation/devicetree/bindings/mmc/mmc-spi-slot.txt new file mode 100644 index 000000000000..c39ac2891951 --- /dev/null +++ b/Documentation/devicetree/bindings/mmc/mmc-spi-slot.txt @@ -0,0 +1,23 @@ +MMC/SD/SDIO slot directly connected to a SPI bus + +Required properties: +- compatible : should be "mmc-spi-slot". +- reg : should specify SPI address (chip-select number). +- spi-max-frequency : maximum frequency for this device (Hz). +- voltage-ranges : two cells are required, first cell specifies minimum + slot voltage (mV), second cell specifies maximum slot voltage (mV). + Several ranges could be specified. +- gpios : (optional) may specify GPIOs in this order: Card-Detect GPIO, + Write-Protect GPIO. + +Example: + + mmc-slot@0 { + compatible = "fsl,mpc8323rdb-mmc-slot", + "mmc-spi-slot"; + reg = <0>; + gpios = <&qe_pio_d 14 1 + &qe_pio_d 15 0>; + voltage-ranges = <3300 3300>; + spi-max-frequency = <50000000>; + }; diff --git a/Documentation/devicetree/bindings/mtd/fsl-upm-nand.txt b/Documentation/devicetree/bindings/mtd/fsl-upm-nand.txt new file mode 100644 index 000000000000..a48b2cadc7f0 --- /dev/null +++ b/Documentation/devicetree/bindings/mtd/fsl-upm-nand.txt @@ -0,0 +1,63 @@ +Freescale Localbus UPM programmed to work with NAND flash + +Required properties: +- compatible : "fsl,upm-nand". +- reg : should specify localbus chip select and size used for the chip. +- fsl,upm-addr-offset : UPM pattern offset for the address latch. +- fsl,upm-cmd-offset : UPM pattern offset for the command latch. + +Optional properties: +- fsl,upm-wait-flags : add chip-dependent short delays after running the + UPM pattern (0x1), after writing a data byte (0x2) or after + writing out a buffer (0x4). +- fsl,upm-addr-line-cs-offsets : address offsets for multi-chip support. + The corresponding address lines are used to select the chip. +- gpios : may specify optional GPIOs connected to the Ready-Not-Busy pins + (R/B#). For multi-chip devices, "n" GPIO definitions are required + according to the number of chips. +- chip-delay : chip dependent delay for transfering data from array to + read registers (tR). Required if property "gpios" is not used + (R/B# pins not connected). + +Examples: + +upm@1,0 { + compatible = "fsl,upm-nand"; + reg = <1 0 1>; + fsl,upm-addr-offset = <16>; + fsl,upm-cmd-offset = <8>; + gpios = <&qe_pio_e 18 0>; + + flash { + #address-cells = <1>; + #size-cells = <1>; + compatible = "..."; + + partition@0 { + ... + }; + }; +}; + +upm@3,0 { + #address-cells = <0>; + #size-cells = <0>; + compatible = "tqc,tqm8548-upm-nand", "fsl,upm-nand"; + reg = <3 0x0 0x800>; + fsl,upm-addr-offset = <0x10>; + fsl,upm-cmd-offset = <0x08>; + /* Multi-chip NAND device */ + fsl,upm-addr-line-cs-offsets = <0x0 0x200>; + fsl,upm-wait-flags = <0x5>; + chip-delay = <25>; // in micro-seconds + + nand@0 { + #address-cells = <1>; + #size-cells = <1>; + + partition@0 { + label = "fs"; + reg = <0x00000000 0x10000000>; + }; + }; +}; diff --git a/Documentation/devicetree/bindings/mtd/mtd-physmap.txt b/Documentation/devicetree/bindings/mtd/mtd-physmap.txt new file mode 100644 index 000000000000..80152cb567d9 --- /dev/null +++ b/Documentation/devicetree/bindings/mtd/mtd-physmap.txt @@ -0,0 +1,90 @@ +CFI or JEDEC memory-mapped NOR flash, MTD-RAM (NVRAM...) + +Flash chips (Memory Technology Devices) are often used for solid state +file systems on embedded devices. + + - compatible : should contain the specific model of mtd chip(s) + used, if known, followed by either "cfi-flash", "jedec-flash" + or "mtd-ram". + - reg : Address range(s) of the mtd chip(s) + It's possible to (optionally) define multiple "reg" tuples so that + non-identical chips can be described in one node. + - bank-width : Width (in bytes) of the bank. Equal to the + device width times the number of interleaved chips. + - device-width : (optional) Width of a single mtd chip. If + omitted, assumed to be equal to 'bank-width'. + - #address-cells, #size-cells : Must be present if the device has + sub-nodes representing partitions (see below). In this case + both #address-cells and #size-cells must be equal to 1. + +For JEDEC compatible devices, the following additional properties +are defined: + + - vendor-id : Contains the flash chip's vendor id (1 byte). + - device-id : Contains the flash chip's device id (1 byte). + +In addition to the information on the mtd bank itself, the +device tree may optionally contain additional information +describing partitions of the address space. This can be +used on platforms which have strong conventions about which +portions of a flash are used for what purposes, but which don't +use an on-flash partition table such as RedBoot. + +Each partition is represented as a sub-node of the mtd device. +Each node's name represents the name of the corresponding +partition of the mtd device. + +Flash partitions + - reg : The partition's offset and size within the mtd bank. + - label : (optional) The label / name for this partition. + If omitted, the label is taken from the node name (excluding + the unit address). + - read-only : (optional) This parameter, if present, is a hint to + Linux that this partition should only be mounted + read-only. This is usually used for flash partitions + containing early-boot firmware images or data which should not + be clobbered. + +Example: + + flash@ff000000 { + compatible = "amd,am29lv128ml", "cfi-flash"; + reg = ; + bank-width = <4>; + device-width = <1>; + #address-cells = <1>; + #size-cells = <1>; + fs@0 { + label = "fs"; + reg = <0 f80000>; + }; + firmware@f80000 { + label ="firmware"; + reg = ; + read-only; + }; + }; + +Here an example with multiple "reg" tuples: + + flash@f0000000,0 { + #address-cells = <1>; + #size-cells = <1>; + compatible = "intel,PC48F4400P0VB", "cfi-flash"; + reg = <0 0x00000000 0x02000000 + 0 0x02000000 0x02000000>; + bank-width = <2>; + partition@0 { + label = "test-part1"; + reg = <0 0x04000000>; + }; + }; + +An example using SRAM: + + sram@2,0 { + compatible = "samsung,k6f1616u6a", "mtd-ram"; + reg = <2 0 0x00200000>; + bank-width = <2>; + }; + diff --git a/Documentation/devicetree/bindings/net/can/mpc5xxx-mscan.txt b/Documentation/devicetree/bindings/net/can/mpc5xxx-mscan.txt new file mode 100644 index 000000000000..2fa4fcd38fd6 --- /dev/null +++ b/Documentation/devicetree/bindings/net/can/mpc5xxx-mscan.txt @@ -0,0 +1,53 @@ +CAN Device Tree Bindings +------------------------ + +(c) 2006-2009 Secret Lab Technologies Ltd +Grant Likely + +fsl,mpc5200-mscan nodes +----------------------- +In addition to the required compatible-, reg- and interrupt-properties, you can +also specify which clock source shall be used for the controller: + +- fsl,mscan-clock-source : a string describing the clock source. Valid values + are: "ip" for ip bus clock + "ref" for reference clock (XTAL) + "ref" is default in case this property is not + present. + +fsl,mpc5121-mscan nodes +----------------------- +In addition to the required compatible-, reg- and interrupt-properties, you can +also specify which clock source and divider shall be used for the controller: + +- fsl,mscan-clock-source : a string describing the clock source. Valid values + are: "ip" for ip bus clock + "ref" for reference clock + "sys" for system clock + If this property is not present, an optimal CAN + clock source and frequency based on the system + clock will be selected. If this is not possible, + the reference clock will be used. + +- fsl,mscan-clock-divider: for the reference and system clock, an additional + clock divider can be specified. By default, a + value of 1 is used. + +Note that the MPC5121 Rev. 1 processor is not supported. + +Examples: + can@1300 { + compatible = "fsl,mpc5121-mscan"; + interrupts = <12 0x8>; + interrupt-parent = <&ipic>; + reg = <0x1300 0x80>; + }; + + can@1380 { + compatible = "fsl,mpc5121-mscan"; + interrupts = <13 0x8>; + interrupt-parent = <&ipic>; + reg = <0x1380 0x80>; + fsl,mscan-clock-source = "ref"; + fsl,mscan-clock-divider = <3>; + }; diff --git a/Documentation/devicetree/bindings/net/can/sja1000.txt b/Documentation/devicetree/bindings/net/can/sja1000.txt new file mode 100644 index 000000000000..d6d209ded937 --- /dev/null +++ b/Documentation/devicetree/bindings/net/can/sja1000.txt @@ -0,0 +1,53 @@ +Memory mapped SJA1000 CAN controller from NXP (formerly Philips) + +Required properties: + +- compatible : should be "nxp,sja1000". + +- reg : should specify the chip select, address offset and size required + to map the registers of the SJA1000. The size is usually 0x80. + +- interrupts: property with a value describing the interrupt source + (number and sensitivity) required for the SJA1000. + +Optional properties: + +- nxp,external-clock-frequency : Frequency of the external oscillator + clock in Hz. Note that the internal clock frequency used by the + SJA1000 is half of that value. If not specified, a default value + of 16000000 (16 MHz) is used. + +- nxp,tx-output-mode : operation mode of the TX output control logic: + <0x0> : bi-phase output mode + <0x1> : normal output mode (default) + <0x2> : test output mode + <0x3> : clock output mode + +- nxp,tx-output-config : TX output pin configuration: + <0x01> : TX0 invert + <0x02> : TX0 pull-down (default) + <0x04> : TX0 pull-up + <0x06> : TX0 push-pull + <0x08> : TX1 invert + <0x10> : TX1 pull-down + <0x20> : TX1 pull-up + <0x30> : TX1 push-pull + +- nxp,clock-out-frequency : clock frequency in Hz on the CLKOUT pin. + If not specified or if the specified value is 0, the CLKOUT pin + will be disabled. + +- nxp,no-comparator-bypass : Allows to disable the CAN input comperator. + +For futher information, please have a look to the SJA1000 data sheet. + +Examples: + +can@3,100 { + compatible = "nxp,sja1000"; + reg = <3 0x100 0x80>; + interrupts = <2 0>; + interrupt-parent = <&mpic>; + nxp,external-clock-frequency = <16000000>; +}; + diff --git a/Documentation/devicetree/bindings/net/fsl-tsec-phy.txt b/Documentation/devicetree/bindings/net/fsl-tsec-phy.txt new file mode 100644 index 000000000000..edb7ae19e868 --- /dev/null +++ b/Documentation/devicetree/bindings/net/fsl-tsec-phy.txt @@ -0,0 +1,76 @@ +* MDIO IO device + +The MDIO is a bus to which the PHY devices are connected. For each +device that exists on this bus, a child node should be created. See +the definition of the PHY node in booting-without-of.txt for an example +of how to define a PHY. + +Required properties: + - reg : Offset and length of the register set for the device + - compatible : Should define the compatible device type for the + mdio. Currently, this is most likely to be "fsl,gianfar-mdio" + +Example: + + mdio@24520 { + reg = <24520 20>; + compatible = "fsl,gianfar-mdio"; + + ethernet-phy@0 { + ...... + }; + }; + +* TBI Internal MDIO bus + +As of this writing, every tsec is associated with an internal TBI PHY. +This PHY is accessed through the local MDIO bus. These buses are defined +similarly to the mdio buses, except they are compatible with "fsl,gianfar-tbi". +The TBI PHYs underneath them are similar to normal PHYs, but the reg property +is considered instructive, rather than descriptive. The reg property should +be chosen so it doesn't interfere with other PHYs on the bus. + +* Gianfar-compatible ethernet nodes + +Properties: + + - device_type : Should be "network" + - model : Model of the device. Can be "TSEC", "eTSEC", or "FEC" + - compatible : Should be "gianfar" + - reg : Offset and length of the register set for the device + - local-mac-address : List of bytes representing the ethernet address of + this controller + - interrupts : For FEC devices, the first interrupt is the device's + interrupt. For TSEC and eTSEC devices, the first interrupt is + transmit, the second is receive, and the third is error. + - phy-handle : The phandle for the PHY connected to this ethernet + controller. + - fixed-link : where a is emulated phy id - choose any, + but unique to the all specified fixed-links, b is duplex - 0 half, + 1 full, c is link speed - d#10/d#100/d#1000, d is pause - 0 no + pause, 1 pause, e is asym_pause - 0 no asym_pause, 1 asym_pause. + - phy-connection-type : a string naming the controller/PHY interface type, + i.e., "mii" (default), "rmii", "gmii", "rgmii", "rgmii-id", "sgmii", + "tbi", or "rtbi". This property is only really needed if the connection + is of type "rgmii-id", as all other connection types are detected by + hardware. + - fsl,magic-packet : If present, indicates that the hardware supports + waking up via magic packet. + - bd-stash : If present, indicates that the hardware supports stashing + buffer descriptors in the L2. + - rx-stash-len : Denotes the number of bytes of a received buffer to stash + in the L2. + - rx-stash-idx : Denotes the index of the first byte from the received + buffer to stash in the L2. + +Example: + ethernet@24000 { + device_type = "network"; + model = "TSEC"; + compatible = "gianfar"; + reg = <0x24000 0x1000>; + local-mac-address = [ 00 E0 0C 00 73 00 ]; + interrupts = <29 2 30 2 34 2>; + interrupt-parent = <&mpic>; + phy-handle = <&phy0> + }; diff --git a/Documentation/devicetree/bindings/net/mdio-gpio.txt b/Documentation/devicetree/bindings/net/mdio-gpio.txt new file mode 100644 index 000000000000..bc9549529014 --- /dev/null +++ b/Documentation/devicetree/bindings/net/mdio-gpio.txt @@ -0,0 +1,19 @@ +MDIO on GPIOs + +Currently defined compatibles: +- virtual,gpio-mdio + +MDC and MDIO lines connected to GPIO controllers are listed in the +gpios property as described in section VIII.1 in the following order: + +MDC, MDIO. + +Example: + +mdio { + compatible = "virtual,mdio-gpio"; + #address-cells = <1>; + #size-cells = <0>; + gpios = <&qe_pio_a 11 + &qe_pio_c 6>; +}; diff --git a/Documentation/devicetree/bindings/net/phy.txt b/Documentation/devicetree/bindings/net/phy.txt new file mode 100644 index 000000000000..bb8c742eb8c5 --- /dev/null +++ b/Documentation/devicetree/bindings/net/phy.txt @@ -0,0 +1,25 @@ +PHY nodes + +Required properties: + + - device_type : Should be "ethernet-phy" + - interrupts : where a is the interrupt number and b is a + field that represents an encoding of the sense and level + information for the interrupt. This should be encoded based on + the information in section 2) depending on the type of interrupt + controller you have. + - interrupt-parent : the phandle for the interrupt controller that + services interrupts for this device. + - reg : The ID number for the phy, usually a small integer + - linux,phandle : phandle for this node; likely referenced by an + ethernet controller node. + +Example: + +ethernet-phy@0 { + linux,phandle = <2452000> + interrupt-parent = <40000>; + interrupts = <35 1>; + reg = <0>; + device_type = "ethernet-phy"; +}; diff --git a/Documentation/devicetree/bindings/pci/83xx-512x-pci.txt b/Documentation/devicetree/bindings/pci/83xx-512x-pci.txt new file mode 100644 index 000000000000..35a465362408 --- /dev/null +++ b/Documentation/devicetree/bindings/pci/83xx-512x-pci.txt @@ -0,0 +1,40 @@ +* Freescale 83xx and 512x PCI bridges + +Freescale 83xx and 512x SOCs include the same pci bridge core. + +83xx/512x specific notes: +- reg: should contain two address length tuples + The first is for the internal pci bridge registers + The second is for the pci config space access registers + +Example (MPC8313ERDB) + pci0: pci@e0008500 { + cell-index = <1>; + interrupt-map-mask = <0xf800 0x0 0x0 0x7>; + interrupt-map = < + /* IDSEL 0x0E -mini PCI */ + 0x7000 0x0 0x0 0x1 &ipic 18 0x8 + 0x7000 0x0 0x0 0x2 &ipic 18 0x8 + 0x7000 0x0 0x0 0x3 &ipic 18 0x8 + 0x7000 0x0 0x0 0x4 &ipic 18 0x8 + + /* IDSEL 0x0F - PCI slot */ + 0x7800 0x0 0x0 0x1 &ipic 17 0x8 + 0x7800 0x0 0x0 0x2 &ipic 18 0x8 + 0x7800 0x0 0x0 0x3 &ipic 17 0x8 + 0x7800 0x0 0x0 0x4 &ipic 18 0x8>; + interrupt-parent = <&ipic>; + interrupts = <66 0x8>; + bus-range = <0x0 0x0>; + ranges = <0x02000000 0x0 0x90000000 0x90000000 0x0 0x10000000 + 0x42000000 0x0 0x80000000 0x80000000 0x0 0x10000000 + 0x01000000 0x0 0x00000000 0xe2000000 0x0 0x00100000>; + clock-frequency = <66666666>; + #interrupt-cells = <1>; + #size-cells = <2>; + #address-cells = <3>; + reg = <0xe0008500 0x100 /* internal registers */ + 0xe0008300 0x8>; /* config space access registers */ + compatible = "fsl,mpc8349-pci"; + device_type = "pci"; + }; diff --git a/Documentation/devicetree/bindings/powerpc/4xx/cpm.txt b/Documentation/devicetree/bindings/powerpc/4xx/cpm.txt new file mode 100644 index 000000000000..ee459806d35e --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/4xx/cpm.txt @@ -0,0 +1,52 @@ +PPC4xx Clock Power Management (CPM) node + +Required properties: + - compatible : compatible list, currently only "ibm,cpm" + - dcr-access-method : "native" + - dcr-reg : < DCR register range > + +Optional properties: + - er-offset : All 4xx SoCs with a CPM controller have + one of two different order for the CPM + registers. Some have the CPM registers + in the following order (ER,FR,SR). The + others have them in the following order + (SR,ER,FR). For the second case set + er-offset = <1>. + - unused-units : specifier consist of one cell. For each + bit in the cell, the corresponding bit + in CPM will be set to turn off unused + devices. + - idle-doze : specifier consist of one cell. For each + bit in the cell, the corresponding bit + in CPM will be set to turn off unused + devices. This is usually just CPM[CPU]. + - standby : specifier consist of one cell. For each + bit in the cell, the corresponding bit + in CPM will be set on standby and + restored on resume. + - suspend : specifier consist of one cell. For each + bit in the cell, the corresponding bit + in CPM will be set on suspend (mem) and + restored on resume. Note, for standby + and suspend the corresponding bits can + be different or the same. Usually for + standby only class 2 and 3 units are set. + However, the interface does not care. + If they are the same, the additional + power saving will be seeing if support + is available to put the DDR in self + refresh mode and any additional power + saving techniques for the specific SoC. + +Example: + CPM0: cpm { + compatible = "ibm,cpm"; + dcr-access-method = "native"; + dcr-reg = <0x160 0x003>; + er-offset = <0>; + unused-units = <0x00000100>; + idle-doze = <0x02000000>; + standby = <0xfeff0000>; + suspend = <0xfeff791d>; +}; diff --git a/Documentation/devicetree/bindings/powerpc/4xx/emac.txt b/Documentation/devicetree/bindings/powerpc/4xx/emac.txt new file mode 100644 index 000000000000..2161334a7ca5 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/4xx/emac.txt @@ -0,0 +1,148 @@ + 4xx/Axon EMAC ethernet nodes + + The EMAC ethernet controller in IBM and AMCC 4xx chips, and also + the Axon bridge. To operate this needs to interact with a ths + special McMAL DMA controller, and sometimes an RGMII or ZMII + interface. In addition to the nodes and properties described + below, the node for the OPB bus on which the EMAC sits must have a + correct clock-frequency property. + + i) The EMAC node itself + + Required properties: + - device_type : "network" + + - compatible : compatible list, contains 2 entries, first is + "ibm,emac-CHIP" where CHIP is the host ASIC (440gx, + 405gp, Axon) and second is either "ibm,emac" or + "ibm,emac4". For Axon, thus, we have: "ibm,emac-axon", + "ibm,emac4" + - interrupts : + - interrupt-parent : optional, if needed for interrupt mapping + - reg : + - local-mac-address : 6 bytes, MAC address + - mal-device : phandle of the associated McMAL node + - mal-tx-channel : 1 cell, index of the tx channel on McMAL associated + with this EMAC + - mal-rx-channel : 1 cell, index of the rx channel on McMAL associated + with this EMAC + - cell-index : 1 cell, hardware index of the EMAC cell on a given + ASIC (typically 0x0 and 0x1 for EMAC0 and EMAC1 on + each Axon chip) + - max-frame-size : 1 cell, maximum frame size supported in bytes + - rx-fifo-size : 1 cell, Rx fifo size in bytes for 10 and 100 Mb/sec + operations. + For Axon, 2048 + - tx-fifo-size : 1 cell, Tx fifo size in bytes for 10 and 100 Mb/sec + operations. + For Axon, 2048. + - fifo-entry-size : 1 cell, size of a fifo entry (used to calculate + thresholds). + For Axon, 0x00000010 + - mal-burst-size : 1 cell, MAL burst size (used to calculate thresholds) + in bytes. + For Axon, 0x00000100 (I think ...) + - phy-mode : string, mode of operations of the PHY interface. + Supported values are: "mii", "rmii", "smii", "rgmii", + "tbi", "gmii", rtbi", "sgmii". + For Axon on CAB, it is "rgmii" + - mdio-device : 1 cell, required iff using shared MDIO registers + (440EP). phandle of the EMAC to use to drive the + MDIO lines for the PHY used by this EMAC. + - zmii-device : 1 cell, required iff connected to a ZMII. phandle of + the ZMII device node + - zmii-channel : 1 cell, required iff connected to a ZMII. Which ZMII + channel or 0xffffffff if ZMII is only used for MDIO. + - rgmii-device : 1 cell, required iff connected to an RGMII. phandle + of the RGMII device node. + For Axon: phandle of plb5/plb4/opb/rgmii + - rgmii-channel : 1 cell, required iff connected to an RGMII. Which + RGMII channel is used by this EMAC. + Fox Axon: present, whatever value is appropriate for each + EMAC, that is the content of the current (bogus) "phy-port" + property. + + Optional properties: + - phy-address : 1 cell, optional, MDIO address of the PHY. If absent, + a search is performed. + - phy-map : 1 cell, optional, bitmap of addresses to probe the PHY + for, used if phy-address is absent. bit 0x00000001 is + MDIO address 0. + For Axon it can be absent, though my current driver + doesn't handle phy-address yet so for now, keep + 0x00ffffff in it. + - rx-fifo-size-gige : 1 cell, Rx fifo size in bytes for 1000 Mb/sec + operations (if absent the value is the same as + rx-fifo-size). For Axon, either absent or 2048. + - tx-fifo-size-gige : 1 cell, Tx fifo size in bytes for 1000 Mb/sec + operations (if absent the value is the same as + tx-fifo-size). For Axon, either absent or 2048. + - tah-device : 1 cell, optional. If connected to a TAH engine for + offload, phandle of the TAH device node. + - tah-channel : 1 cell, optional. If appropriate, channel used on the + TAH engine. + + Example: + + EMAC0: ethernet@40000800 { + device_type = "network"; + compatible = "ibm,emac-440gp", "ibm,emac"; + interrupt-parent = <&UIC1>; + interrupts = <1c 4 1d 4>; + reg = <40000800 70>; + local-mac-address = [00 04 AC E3 1B 1E]; + mal-device = <&MAL0>; + mal-tx-channel = <0 1>; + mal-rx-channel = <0>; + cell-index = <0>; + max-frame-size = <5dc>; + rx-fifo-size = <1000>; + tx-fifo-size = <800>; + phy-mode = "rmii"; + phy-map = <00000001>; + zmii-device = <&ZMII0>; + zmii-channel = <0>; + }; + + ii) McMAL node + + Required properties: + - device_type : "dma-controller" + - compatible : compatible list, containing 2 entries, first is + "ibm,mcmal-CHIP" where CHIP is the host ASIC (like + emac) and the second is either "ibm,mcmal" or + "ibm,mcmal2". + For Axon, "ibm,mcmal-axon","ibm,mcmal2" + - interrupts : . + For Axon: This is _different_ from the current + firmware. We use the "delayed" interrupts for txeob + and rxeob. Thus we end up with mapping those 5 MPIC + interrupts, all level positive sensitive: 10, 11, 32, + 33, 34 (in decimal) + - dcr-reg : < DCR registers range > + - dcr-parent : if needed for dcr-reg + - num-tx-chans : 1 cell, number of Tx channels + - num-rx-chans : 1 cell, number of Rx channels + + iii) ZMII node + + Required properties: + - compatible : compatible list, containing 2 entries, first is + "ibm,zmii-CHIP" where CHIP is the host ASIC (like + EMAC) and the second is "ibm,zmii". + For Axon, there is no ZMII node. + - reg : + + iv) RGMII node + + Required properties: + - compatible : compatible list, containing 2 entries, first is + "ibm,rgmii-CHIP" where CHIP is the host ASIC (like + EMAC) and the second is "ibm,rgmii". + For Axon, "ibm,rgmii-axon","ibm,rgmii" + - reg : + - revision : as provided by the RGMII new version register if + available. + For Axon: 0x0000012a + diff --git a/Documentation/devicetree/bindings/powerpc/4xx/ndfc.txt b/Documentation/devicetree/bindings/powerpc/4xx/ndfc.txt new file mode 100644 index 000000000000..869f0b5f16e8 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/4xx/ndfc.txt @@ -0,0 +1,39 @@ +AMCC NDFC (NanD Flash Controller) + +Required properties: +- compatible : "ibm,ndfc". +- reg : should specify chip select and size used for the chip (0x2000). + +Optional properties: +- ccr : NDFC config and control register value (default 0). +- bank-settings : NDFC bank configuration register value (default 0). + +Notes: +- partition(s) - follows the OF MTD standard for partitions + +Example: + +ndfc@1,0 { + compatible = "ibm,ndfc"; + reg = <0x00000001 0x00000000 0x00002000>; + ccr = <0x00001000>; + bank-settings = <0x80002222>; + #address-cells = <1>; + #size-cells = <1>; + + nand { + #address-cells = <1>; + #size-cells = <1>; + + partition@0 { + label = "kernel"; + reg = <0x00000000 0x00200000>; + }; + partition@200000 { + label = "root"; + reg = <0x00200000 0x03E00000>; + }; + }; +}; + + diff --git a/Documentation/devicetree/bindings/powerpc/4xx/ppc440spe-adma.txt b/Documentation/devicetree/bindings/powerpc/4xx/ppc440spe-adma.txt new file mode 100644 index 000000000000..515ebcf1b97d --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/4xx/ppc440spe-adma.txt @@ -0,0 +1,93 @@ +PPC440SPe DMA/XOR (DMA Controller and XOR Accelerator) + +Device nodes needed for operation of the ppc440spe-adma driver +are specified hereby. These are I2O/DMA, DMA and XOR nodes +for DMA engines and Memory Queue Module node. The latter is used +by ADMA driver for configuration of RAID-6 H/W capabilities of +the PPC440SPe. In addition to the nodes and properties described +below, the ranges property of PLB node must specify ranges for +DMA devices. + + i) The I2O node + + Required properties: + + - compatible : "ibm,i2o-440spe"; + - reg : + - dcr-reg : + + Example: + + I2O: i2o@400100000 { + compatible = "ibm,i2o-440spe"; + reg = <0x00000004 0x00100000 0x100>; + dcr-reg = <0x060 0x020>; + }; + + + ii) The DMA node + + Required properties: + + - compatible : "ibm,dma-440spe"; + - cell-index : 1 cell, hardware index of the DMA engine + (typically 0x0 and 0x1 for DMA0 and DMA1) + - reg : + - dcr-reg : + - interrupts : . + - interrupt-parent : needed for interrupt mapping + + Example: + + DMA0: dma0@400100100 { + compatible = "ibm,dma-440spe"; + cell-index = <0>; + reg = <0x00000004 0x00100100 0x100>; + dcr-reg = <0x060 0x020>; + interrupt-parent = <&DMA0>; + interrupts = <0 1>; + #interrupt-cells = <1>; + #address-cells = <0>; + #size-cells = <0>; + interrupt-map = < + 0 &UIC0 0x14 4 + 1 &UIC1 0x16 4>; + }; + + + iii) XOR Accelerator node + + Required properties: + + - compatible : "amcc,xor-accelerator"; + - reg : + - interrupts : + - interrupt-parent : for interrupt mapping + + Example: + + xor-accel@400200000 { + compatible = "amcc,xor-accelerator"; + reg = <0x00000004 0x00200000 0x400>; + interrupt-parent = <&UIC1>; + interrupts = <0x1f 4>; + }; + + + iv) Memory Queue Module node + + Required properties: + + - compatible : "ibm,mq-440spe"; + - dcr-reg : + + Example: + + MQ0: mq { + compatible = "ibm,mq-440spe"; + dcr-reg = <0x040 0x020>; + }; + diff --git a/Documentation/devicetree/bindings/powerpc/4xx/reboot.txt b/Documentation/devicetree/bindings/powerpc/4xx/reboot.txt new file mode 100644 index 000000000000..d7217260589c --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/4xx/reboot.txt @@ -0,0 +1,18 @@ +Reboot property to control system reboot on PPC4xx systems: + +By setting "reset_type" to one of the following values, the default +software reset mechanism may be overidden. Here the possible values of +"reset_type": + + 1 - PPC4xx core reset + 2 - PPC4xx chip reset + 3 - PPC4xx system reset (default) + +Example: + + cpu@0 { + device_type = "cpu"; + model = "PowerPC,440SPe"; + ... + reset-type = <2>; /* Use chip-reset */ + }; diff --git a/Documentation/devicetree/bindings/powerpc/fsl/board.txt b/Documentation/devicetree/bindings/powerpc/fsl/board.txt new file mode 100644 index 000000000000..39e941515a36 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/board.txt @@ -0,0 +1,63 @@ +* Board Control and Status (BCSR) + +Required properties: + + - compatible : Should be "fsl,-bcsr" + - reg : Offset and length of the register set for the device + +Example: + + bcsr@f8000000 { + compatible = "fsl,mpc8360mds-bcsr"; + reg = ; + }; + +* Freescale on board FPGA + +This is the memory-mapped registers for on board FPGA. + +Required properities: +- compatible : should be "fsl,fpga-pixis". +- reg : should contain the address and the length of the FPPGA register + set. +- interrupt-parent: should specify phandle for the interrupt controller. +- interrupts : should specify event (wakeup) IRQ. + +Example (MPC8610HPCD): + + board-control@e8000000 { + compatible = "fsl,fpga-pixis"; + reg = <0xe8000000 32>; + interrupt-parent = <&mpic>; + interrupts = <8 8>; + }; + +* Freescale BCSR GPIO banks + +Some BCSR registers act as simple GPIO controllers, each such +register can be represented by the gpio-controller node. + +Required properities: +- compatible : Should be "fsl,-bcsr-gpio". +- reg : Should contain the address and the length of the GPIO bank + register. +- #gpio-cells : Should be two. The first cell is the pin number and the + second cell is used to specify optional parameters (currently unused). +- gpio-controller : Marks the port as GPIO controller. + +Example: + + bcsr@1,0 { + #address-cells = <1>; + #size-cells = <1>; + compatible = "fsl,mpc8360mds-bcsr"; + reg = <1 0 0x8000>; + ranges = <0 1 0 0x8000>; + + bcsr13: gpio-controller@d { + #gpio-cells = <2>; + compatible = "fsl,mpc8360mds-bcsr-gpio"; + reg = <0xd 1>; + gpio-controller; + }; + }; diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm.txt new file mode 100644 index 000000000000..160c752484b4 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm.txt @@ -0,0 +1,67 @@ +* Freescale Communications Processor Module + +NOTE: This is an interim binding, and will likely change slightly, +as more devices are supported. The QE bindings especially are +incomplete. + +* Root CPM node + +Properties: +- compatible : "fsl,cpm1", "fsl,cpm2", or "fsl,qe". +- reg : A 48-byte region beginning with CPCR. + +Example: + cpm@119c0 { + #address-cells = <1>; + #size-cells = <1>; + #interrupt-cells = <2>; + compatible = "fsl,mpc8272-cpm", "fsl,cpm2"; + reg = <119c0 30>; + } + +* Properties common to multiple CPM/QE devices + +- fsl,cpm-command : This value is ORed with the opcode and command flag + to specify the device on which a CPM command operates. + +- fsl,cpm-brg : Indicates which baud rate generator the device + is associated with. If absent, an unused BRG + should be dynamically allocated. If zero, the + device uses an external clock rather than a BRG. + +- reg : Unless otherwise specified, the first resource represents the + scc/fcc/ucc registers, and the second represents the device's + parameter RAM region (if it has one). + +* Multi-User RAM (MURAM) + +The multi-user/dual-ported RAM is expressed as a bus under the CPM node. + +Ranges must be set up subject to the following restrictions: + +- Children's reg nodes must be offsets from the start of all muram, even + if the user-data area does not begin at zero. +- If multiple range entries are used, the difference between the parent + address and the child address must be the same in all, so that a single + mapping can cover them all while maintaining the ability to determine + CPM-side offsets with pointer subtraction. It is recommended that + multiple range entries not be used. +- A child address of zero must be translatable, even if no reg resources + contain it. + +A child "data" node must exist, compatible with "fsl,cpm-muram-data", to +indicate the portion of muram that is usable by the OS for arbitrary +purposes. The data node may have an arbitrary number of reg resources, +all of which contribute to the allocatable muram pool. + +Example, based on mpc8272: + muram@0 { + #address-cells = <1>; + #size-cells = <1>; + ranges = <0 0 10000>; + + data@0 { + compatible = "fsl,cpm-muram-data"; + reg = <0 2000 9800 800>; + }; + }; diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/brg.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/brg.txt new file mode 100644 index 000000000000..4c7d45eaf025 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/brg.txt @@ -0,0 +1,21 @@ +* Baud Rate Generators + +Currently defined compatibles: +fsl,cpm-brg +fsl,cpm1-brg +fsl,cpm2-brg + +Properties: +- reg : There may be an arbitrary number of reg resources; BRG + numbers are assigned to these in order. +- clock-frequency : Specifies the base frequency driving + the BRG. + +Example: + brg@119f0 { + compatible = "fsl,mpc8272-brg", + "fsl,cpm2-brg", + "fsl,cpm-brg"; + reg = <119f0 10 115f0 10>; + clock-frequency = ; + }; diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/i2c.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/i2c.txt new file mode 100644 index 000000000000..87bc6048667e --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/i2c.txt @@ -0,0 +1,41 @@ +* I2C + +The I2C controller is expressed as a bus under the CPM node. + +Properties: +- compatible : "fsl,cpm1-i2c", "fsl,cpm2-i2c" +- reg : On CPM2 devices, the second resource doesn't specify the I2C + Parameter RAM itself, but the I2C_BASE field of the CPM2 Parameter RAM + (typically 0x8afc 0x2). +- #address-cells : Should be one. The cell is the i2c device address with + the r/w bit set to zero. +- #size-cells : Should be zero. +- clock-frequency : Can be used to set the i2c clock frequency. If + unspecified, a default frequency of 60kHz is being used. +The following two properties are deprecated. They are only used by legacy +i2c drivers to find the bus to probe: +- linux,i2c-index : Can be used to hard code an i2c bus number. By default, + the bus number is dynamically assigned by the i2c core. +- linux,i2c-class : Can be used to override the i2c class. The class is used + by legacy i2c device drivers to find a bus in a specific context like + system management, video or sound. By default, I2C_CLASS_HWMON (1) is + being used. The definition of the classes can be found in + include/i2c/i2c.h + +Example, based on mpc823: + + i2c@860 { + compatible = "fsl,mpc823-i2c", + "fsl,cpm1-i2c"; + reg = <0x860 0x20 0x3c80 0x30>; + interrupts = <16>; + interrupt-parent = <&CPM_PIC>; + fsl,cpm-command = <0x10>; + #address-cells = <1>; + #size-cells = <0>; + + rtc@68 { + compatible = "dallas,ds1307"; + reg = <0x68>; + }; + }; diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/pic.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/pic.txt new file mode 100644 index 000000000000..8e3ee1681618 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/pic.txt @@ -0,0 +1,18 @@ +* Interrupt Controllers + +Currently defined compatibles: +- fsl,cpm1-pic + - only one interrupt cell +- fsl,pq1-pic +- fsl,cpm2-pic + - second interrupt cell is level/sense: + - 2 is falling edge + - 8 is active low + +Example: + interrupt-controller@10c00 { + #interrupt-cells = <2>; + interrupt-controller; + reg = <10c00 80>; + compatible = "mpc8272-pic", "fsl,cpm2-pic"; + }; diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/usb.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/usb.txt new file mode 100644 index 000000000000..74bfda4bb824 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/usb.txt @@ -0,0 +1,15 @@ +* USB (Universal Serial Bus Controller) + +Properties: +- compatible : "fsl,cpm1-usb", "fsl,cpm2-usb", "fsl,qe-usb" + +Example: + usb@11bc0 { + #address-cells = <1>; + #size-cells = <0>; + compatible = "fsl,cpm2-usb"; + reg = <11b60 18 8b00 100>; + interrupts = ; + interrupt-parent = <&PIC>; + fsl,cpm-command = <2e600000>; + }; diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/gpio.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/gpio.txt new file mode 100644 index 000000000000..349f79fd7076 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/gpio.txt @@ -0,0 +1,38 @@ +Every GPIO controller node must have #gpio-cells property defined, +this information will be used to translate gpio-specifiers. + +On CPM1 devices, all ports are using slightly different register layouts. +Ports A, C and D are 16bit ports and Ports B and E are 32bit ports. + +On CPM2 devices, all ports are 32bit ports and use a common register layout. + +Required properties: +- compatible : "fsl,cpm1-pario-bank-a", "fsl,cpm1-pario-bank-b", + "fsl,cpm1-pario-bank-c", "fsl,cpm1-pario-bank-d", + "fsl,cpm1-pario-bank-e", "fsl,cpm2-pario-bank" +- #gpio-cells : Should be two. The first cell is the pin number and the + second cell is used to specify optional parameters (currently unused). +- gpio-controller : Marks the port as GPIO controller. + +Example of three SOC GPIO banks defined as gpio-controller nodes: + + CPM1_PIO_A: gpio-controller@950 { + #gpio-cells = <2>; + compatible = "fsl,cpm1-pario-bank-a"; + reg = <0x950 0x10>; + gpio-controller; + }; + + CPM1_PIO_B: gpio-controller@ab8 { + #gpio-cells = <2>; + compatible = "fsl,cpm1-pario-bank-b"; + reg = <0xab8 0x10>; + gpio-controller; + }; + + CPM1_PIO_E: gpio-controller@ac8 { + #gpio-cells = <2>; + compatible = "fsl,cpm1-pario-bank-e"; + reg = <0xac8 0x18>; + gpio-controller; + }; diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/network.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/network.txt new file mode 100644 index 000000000000..0e4269446580 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/network.txt @@ -0,0 +1,45 @@ +* Network + +Currently defined compatibles: +- fsl,cpm1-scc-enet +- fsl,cpm2-scc-enet +- fsl,cpm1-fec-enet +- fsl,cpm2-fcc-enet (third resource is GFEMR) +- fsl,qe-enet + +Example: + + ethernet@11300 { + device_type = "network"; + compatible = "fsl,mpc8272-fcc-enet", + "fsl,cpm2-fcc-enet"; + reg = <11300 20 8400 100 11390 1>; + local-mac-address = [ 00 00 00 00 00 00 ]; + interrupts = <20 8>; + interrupt-parent = <&PIC>; + phy-handle = <&PHY0>; + fsl,cpm-command = <12000300>; + }; + +* MDIO + +Currently defined compatibles: +fsl,pq1-fec-mdio (reg is same as first resource of FEC device) +fsl,cpm2-mdio-bitbang (reg is port C registers) + +Properties for fsl,cpm2-mdio-bitbang: +fsl,mdio-pin : pin of port C controlling mdio data +fsl,mdc-pin : pin of port C controlling mdio clock + +Example: + mdio@10d40 { + device_type = "mdio"; + compatible = "fsl,mpc8272ads-mdio-bitbang", + "fsl,mpc8272-mdio-bitbang", + "fsl,cpm2-mdio-bitbang"; + reg = <10d40 14>; + #address-cells = <1>; + #size-cells = <0>; + fsl,mdio-pin = <12>; + fsl,mdc-pin = <13>; + }; diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe.txt new file mode 100644 index 000000000000..4f8930263dd9 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe.txt @@ -0,0 +1,115 @@ +* Freescale QUICC Engine module (QE) +This represents qe module that is installed on PowerQUICC II Pro. + +NOTE: This is an interim binding; it should be updated to fit +in with the CPM binding later in this document. + +Basically, it is a bus of devices, that could act more or less +as a complete entity (UCC, USB etc ). All of them should be siblings on +the "root" qe node, using the common properties from there. +The description below applies to the qe of MPC8360 and +more nodes and properties would be extended in the future. + +i) Root QE device + +Required properties: +- compatible : should be "fsl,qe"; +- model : precise model of the QE, Can be "QE", "CPM", or "CPM2" +- reg : offset and length of the device registers. +- bus-frequency : the clock frequency for QUICC Engine. +- fsl,qe-num-riscs: define how many RISC engines the QE has. +- fsl,qe-num-snums: define how many serial number(SNUM) the QE can use for the + threads. + +Optional properties: +- fsl,firmware-phandle: + Usage: required only if there is no fsl,qe-firmware child node + Value type: + Definition: Points to a firmware node (see "QE Firmware Node" below) + that contains the firmware that should be uploaded for this QE. + The compatible property for the firmware node should say, + "fsl,qe-firmware". + +Recommended properties +- brg-frequency : the internal clock source frequency for baud-rate + generators in Hz. + +Example: + qe@e0100000 { + #address-cells = <1>; + #size-cells = <1>; + #interrupt-cells = <2>; + compatible = "fsl,qe"; + ranges = <0 e0100000 00100000>; + reg = ; + brg-frequency = <0>; + bus-frequency = <179A7B00>; + } + +* Multi-User RAM (MURAM) + +Required properties: +- compatible : should be "fsl,qe-muram", "fsl,cpm-muram". +- mode : the could be "host" or "slave". +- ranges : Should be defined as specified in 1) to describe the + translation of MURAM addresses. +- data-only : sub-node which defines the address area under MURAM + bus that can be allocated as data/parameter + +Example: + + muram@10000 { + compatible = "fsl,qe-muram", "fsl,cpm-muram"; + ranges = <0 00010000 0000c000>; + + data-only@0{ + compatible = "fsl,qe-muram-data", + "fsl,cpm-muram-data"; + reg = <0 c000>; + }; + }; + +* QE Firmware Node + +This node defines a firmware binary that is embedded in the device tree, for +the purpose of passing the firmware from bootloader to the kernel, or from +the hypervisor to the guest. + +The firmware node itself contains the firmware binary contents, a compatible +property, and any firmware-specific properties. The node should be placed +inside a QE node that needs it. Doing so eliminates the need for a +fsl,firmware-phandle property. Other QE nodes that need the same firmware +should define an fsl,firmware-phandle property that points to the firmware node +in the first QE node. + +The fsl,firmware property can be specified in the DTS (possibly using incbin) +or can be inserted by the boot loader at boot time. + +Required properties: + - compatible + Usage: required + Value type: + Definition: A standard property. Specify a string that indicates what + kind of firmware it is. For QE, this should be "fsl,qe-firmware". + + - fsl,firmware + Usage: required + Value type: , encoded as an array of bytes + Definition: A standard property. This property contains the firmware + binary "blob". + +Example: + qe1@e0080000 { + compatible = "fsl,qe"; + qe_firmware:qe-firmware { + compatible = "fsl,qe-firmware"; + fsl,firmware = [0x70 0xcd 0x00 0x00 0x01 0x46 0x45 ...]; + }; + ... + }; + + qe2@e0090000 { + compatible = "fsl,qe"; + fsl,firmware-phandle = <&qe_firmware>; + ... + }; diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/firmware.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/firmware.txt new file mode 100644 index 000000000000..249db3a15d15 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/firmware.txt @@ -0,0 +1,24 @@ +* Uploaded QE firmware + + If a new firmware has been uploaded to the QE (usually by the + boot loader), then a 'firmware' child node should be added to the QE + node. This node provides information on the uploaded firmware that + device drivers may need. + + Required properties: + - id: The string name of the firmware. This is taken from the 'id' + member of the qe_firmware structure of the uploaded firmware. + Device drivers can search this string to determine if the + firmware they want is already present. + - extended-modes: The Extended Modes bitfield, taken from the + firmware binary. It is a 64-bit number represented + as an array of two 32-bit numbers. + - virtual-traps: The virtual traps, taken from the firmware binary. + It is an array of 8 32-bit numbers. + +Example: + firmware { + id = "Soft-UART"; + extended-modes = <0 0>; + virtual-traps = <0 0 0 0 0 0 0 0>; + }; diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/par_io.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/par_io.txt new file mode 100644 index 000000000000..60984260207b --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/par_io.txt @@ -0,0 +1,51 @@ +* Parallel I/O Ports + +This node configures Parallel I/O ports for CPUs with QE support. +The node should reside in the "soc" node of the tree. For each +device that using parallel I/O ports, a child node should be created. +See the definition of the Pin configuration nodes below for more +information. + +Required properties: +- device_type : should be "par_io". +- reg : offset to the register set and its length. +- num-ports : number of Parallel I/O ports + +Example: +par_io@1400 { + reg = <1400 100>; + #address-cells = <1>; + #size-cells = <0>; + device_type = "par_io"; + num-ports = <7>; + ucc_pin@01 { + ...... + }; + +Note that "par_io" nodes are obsolete, and should not be used for +the new device trees. Instead, each Par I/O bank should be represented +via its own gpio-controller node: + +Required properties: +- #gpio-cells : should be "2". +- compatible : should be "fsl,-qe-pario-bank", + "fsl,mpc8323-qe-pario-bank". +- reg : offset to the register set and its length. +- gpio-controller : node to identify gpio controllers. + +Example: + qe_pio_a: gpio-controller@1400 { + #gpio-cells = <2>; + compatible = "fsl,mpc8360-qe-pario-bank", + "fsl,mpc8323-qe-pario-bank"; + reg = <0x1400 0x18>; + gpio-controller; + }; + + qe_pio_e: gpio-controller@1460 { + #gpio-cells = <2>; + compatible = "fsl,mpc8360-qe-pario-bank", + "fsl,mpc8323-qe-pario-bank"; + reg = <0x1460 0x18>; + gpio-controller; + }; diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/pincfg.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/pincfg.txt new file mode 100644 index 000000000000..c5b43061db3a --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/pincfg.txt @@ -0,0 +1,60 @@ +* Pin configuration nodes + +Required properties: +- linux,phandle : phandle of this node; likely referenced by a QE + device. +- pio-map : array of pin configurations. Each pin is defined by 6 + integers. The six numbers are respectively: port, pin, dir, + open_drain, assignment, has_irq. + - port : port number of the pin; 0-6 represent port A-G in UM. + - pin : pin number in the port. + - dir : direction of the pin, should encode as follows: + + 0 = The pin is disabled + 1 = The pin is an output + 2 = The pin is an input + 3 = The pin is I/O + + - open_drain : indicates the pin is normal or wired-OR: + + 0 = The pin is actively driven as an output + 1 = The pin is an open-drain driver. As an output, the pin is + driven active-low, otherwise it is three-stated. + + - assignment : function number of the pin according to the Pin Assignment + tables in User Manual. Each pin can have up to 4 possible functions in + QE and two options for CPM. + - has_irq : indicates if the pin is used as source of external + interrupts. + +Example: + ucc_pin@01 { + linux,phandle = <140001>; + pio-map = < + /* port pin dir open_drain assignment has_irq */ + 0 3 1 0 1 0 /* TxD0 */ + 0 4 1 0 1 0 /* TxD1 */ + 0 5 1 0 1 0 /* TxD2 */ + 0 6 1 0 1 0 /* TxD3 */ + 1 6 1 0 3 0 /* TxD4 */ + 1 7 1 0 1 0 /* TxD5 */ + 1 9 1 0 2 0 /* TxD6 */ + 1 a 1 0 2 0 /* TxD7 */ + 0 9 2 0 1 0 /* RxD0 */ + 0 a 2 0 1 0 /* RxD1 */ + 0 b 2 0 1 0 /* RxD2 */ + 0 c 2 0 1 0 /* RxD3 */ + 0 d 2 0 1 0 /* RxD4 */ + 1 1 2 0 2 0 /* RxD5 */ + 1 0 2 0 2 0 /* RxD6 */ + 1 4 2 0 2 0 /* RxD7 */ + 0 7 1 0 1 0 /* TX_EN */ + 0 8 1 0 1 0 /* TX_ER */ + 0 f 2 0 1 0 /* RX_DV */ + 0 10 2 0 1 0 /* RX_ER */ + 0 0 2 0 1 0 /* RX_CLK */ + 2 9 1 0 3 0 /* GTX_CLK - CLK10 */ + 2 8 2 0 1 0>; /* GTX125 - CLK9 */ + }; + + diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/ucc.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/ucc.txt new file mode 100644 index 000000000000..e47734bee3f0 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/ucc.txt @@ -0,0 +1,70 @@ +* UCC (Unified Communications Controllers) + +Required properties: +- device_type : should be "network", "hldc", "uart", "transparent" + "bisync", "atm", or "serial". +- compatible : could be "ucc_geth" or "fsl_atm" and so on. +- cell-index : the ucc number(1-8), corresponding to UCCx in UM. +- reg : Offset and length of the register set for the device +- interrupts : where a is the interrupt number and b is a + field that represents an encoding of the sense and level + information for the interrupt. This should be encoded based on + the information in section 2) depending on the type of interrupt + controller you have. +- interrupt-parent : the phandle for the interrupt controller that + services interrupts for this device. +- pio-handle : The phandle for the Parallel I/O port configuration. +- port-number : for UART drivers, the port number to use, between 0 and 3. + This usually corresponds to the /dev/ttyQE device, e.g. <0> = /dev/ttyQE0. + The port number is added to the minor number of the device. Unlike the + CPM UART driver, the port-number is required for the QE UART driver. +- soft-uart : for UART drivers, if specified this means the QE UART device + driver should use "Soft-UART" mode, which is needed on some SOCs that have + broken UART hardware. Soft-UART is provided via a microcode upload. +- rx-clock-name: the UCC receive clock source + "none": clock source is disabled + "brg1" through "brg16": clock source is BRG1-BRG16, respectively + "clk1" through "clk24": clock source is CLK1-CLK24, respectively +- tx-clock-name: the UCC transmit clock source + "none": clock source is disabled + "brg1" through "brg16": clock source is BRG1-BRG16, respectively + "clk1" through "clk24": clock source is CLK1-CLK24, respectively +The following two properties are deprecated. rx-clock has been replaced +with rx-clock-name, and tx-clock has been replaced with tx-clock-name. +Drivers that currently use the deprecated properties should continue to +do so, in order to support older device trees, but they should be updated +to check for the new properties first. +- rx-clock : represents the UCC receive clock source. + 0x00 : clock source is disabled; + 0x1~0x10 : clock source is BRG1~BRG16 respectively; + 0x11~0x28: clock source is QE_CLK1~QE_CLK24 respectively. +- tx-clock: represents the UCC transmit clock source; + 0x00 : clock source is disabled; + 0x1~0x10 : clock source is BRG1~BRG16 respectively; + 0x11~0x28: clock source is QE_CLK1~QE_CLK24 respectively. + +Required properties for network device_type: +- mac-address : list of bytes representing the ethernet address. +- phy-handle : The phandle for the PHY connected to this controller. + +Recommended properties: +- phy-connection-type : a string naming the controller/PHY interface type, + i.e., "mii" (default), "rmii", "gmii", "rgmii", "rgmii-id" (Internal + Delay), "rgmii-txid" (delay on TX only), "rgmii-rxid" (delay on RX only), + "tbi", or "rtbi". + +Example: + ucc@2000 { + device_type = "network"; + compatible = "ucc_geth"; + cell-index = <1>; + reg = <2000 200>; + interrupts = ; + interrupt-parent = <700>; + mac-address = [ 00 04 9f 00 23 23 ]; + rx-clock = "none"; + tx-clock = "clk9"; + phy-handle = <212000>; + phy-connection-type = "gmii"; + pio-handle = <140001>; + }; diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/usb.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/usb.txt new file mode 100644 index 000000000000..9ccd5f30405b --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/usb.txt @@ -0,0 +1,37 @@ +Freescale QUICC Engine USB Controller + +Required properties: +- compatible : should be "fsl,-qe-usb", "fsl,mpc8323-qe-usb". +- reg : the first two cells should contain usb registers location and + length, the next two two cells should contain PRAM location and + length. +- interrupts : should contain USB interrupt. +- interrupt-parent : interrupt source phandle. +- fsl,fullspeed-clock : specifies the full speed USB clock source: + "none": clock source is disabled + "brg1" through "brg16": clock source is BRG1-BRG16, respectively + "clk1" through "clk24": clock source is CLK1-CLK24, respectively +- fsl,lowspeed-clock : specifies the low speed USB clock source: + "none": clock source is disabled + "brg1" through "brg16": clock source is BRG1-BRG16, respectively + "clk1" through "clk24": clock source is CLK1-CLK24, respectively +- hub-power-budget : USB power budget for the root hub, in mA. +- gpios : should specify GPIOs in this order: USBOE, USBTP, USBTN, USBRP, + USBRN, SPEED (optional), and POWER (optional). + +Example: + +usb@6c0 { + compatible = "fsl,mpc8360-qe-usb", "fsl,mpc8323-qe-usb"; + reg = <0x6c0 0x40 0x8b00 0x100>; + interrupts = <11>; + interrupt-parent = <&qeic>; + fsl,fullspeed-clock = "clk21"; + gpios = <&qe_pio_b 2 0 /* USBOE */ + &qe_pio_b 3 0 /* USBTP */ + &qe_pio_b 8 0 /* USBTN */ + &qe_pio_b 9 0 /* USBRP */ + &qe_pio_b 11 0 /* USBRN */ + &qe_pio_e 20 0 /* SPEED */ + &qe_pio_e 21 0 /* POWER */>; +}; diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/serial.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/serial.txt new file mode 100644 index 000000000000..2ea76d9d137c --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/serial.txt @@ -0,0 +1,32 @@ +* Serial + +Currently defined compatibles: +- fsl,cpm1-smc-uart +- fsl,cpm2-smc-uart +- fsl,cpm1-scc-uart +- fsl,cpm2-scc-uart +- fsl,qe-uart + +Modem control lines connected to GPIO controllers are listed in the gpios +property as described in booting-without-of.txt, section IX.1 in the following +order: + +CTS, RTS, DCD, DSR, DTR, and RI. + +The gpios property is optional and can be left out when control lines are +not used. + +Example: + + serial@11a00 { + device_type = "serial"; + compatible = "fsl,mpc8272-scc-uart", + "fsl,cpm2-scc-uart"; + reg = <11a00 20 8000 100>; + interrupts = <28 8>; + interrupt-parent = <&PIC>; + fsl,cpm-brg = <1>; + fsl,cpm-command = <00800000>; + gpios = <&gpio_c 15 0 + &gpio_d 29 0>; + }; diff --git a/Documentation/devicetree/bindings/powerpc/fsl/diu.txt b/Documentation/devicetree/bindings/powerpc/fsl/diu.txt new file mode 100644 index 000000000000..b66cb6d31d69 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/diu.txt @@ -0,0 +1,34 @@ +* Freescale Display Interface Unit + +The Freescale DIU is a LCD controller, with proper hardware, it can also +drive DVI monitors. + +Required properties: +- compatible : should be "fsl,diu" or "fsl,mpc5121-diu". +- reg : should contain at least address and length of the DIU register + set. +- interrupts : one DIU interrupt should be described here. +- interrupt-parent : the phandle for the interrupt controller that + services interrupts for this device. + +Optional properties: +- edid : verbatim EDID data block describing attached display. + Data from the detailed timing descriptor will be used to + program the display controller. + +Example (MPC8610HPCD): + display@2c000 { + compatible = "fsl,diu"; + reg = <0x2c000 100>; + interrupts = <72 2>; + interrupt-parent = <&mpic>; + }; + +Example for MPC5121: + display@2100 { + compatible = "fsl,mpc5121-diu"; + reg = <0x2100 0x100>; + interrupts = <64 0x8>; + interrupt-parent = <&ipic>; + edid = [edid-data]; + }; diff --git a/Documentation/devicetree/bindings/powerpc/fsl/dma.txt b/Documentation/devicetree/bindings/powerpc/fsl/dma.txt new file mode 100644 index 000000000000..2a4b4bce6110 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/dma.txt @@ -0,0 +1,144 @@ +* Freescale 83xx DMA Controller + +Freescale PowerPC 83xx have on chip general purpose DMA controllers. + +Required properties: + +- compatible : compatible list, contains 2 entries, first is + "fsl,CHIP-dma", where CHIP is the processor + (mpc8349, mpc8360, etc.) and the second is + "fsl,elo-dma" +- reg : +- ranges : Should be defined as specified in 1) to describe the + DMA controller channels. +- cell-index : controller index. 0 for controller @ 0x8100 +- interrupts : +- interrupt-parent : optional, if needed for interrupt mapping + + +- DMA channel nodes: + - compatible : compatible list, contains 2 entries, first is + "fsl,CHIP-dma-channel", where CHIP is the processor + (mpc8349, mpc8350, etc.) and the second is + "fsl,elo-dma-channel". However, see note below. + - reg : + - cell-index : dma channel index starts at 0. + +Optional properties: + - interrupts : + (on 83xx this is expected to be identical to + the interrupts property of the parent node) + - interrupt-parent : optional, if needed for interrupt mapping + +Example: + dma@82a8 { + #address-cells = <1>; + #size-cells = <1>; + compatible = "fsl,mpc8349-dma", "fsl,elo-dma"; + reg = <0x82a8 4>; + ranges = <0 0x8100 0x1a4>; + interrupt-parent = <&ipic>; + interrupts = <71 8>; + cell-index = <0>; + dma-channel@0 { + compatible = "fsl,mpc8349-dma-channel", "fsl,elo-dma-channel"; + cell-index = <0>; + reg = <0 0x80>; + interrupt-parent = <&ipic>; + interrupts = <71 8>; + }; + dma-channel@80 { + compatible = "fsl,mpc8349-dma-channel", "fsl,elo-dma-channel"; + cell-index = <1>; + reg = <0x80 0x80>; + interrupt-parent = <&ipic>; + interrupts = <71 8>; + }; + dma-channel@100 { + compatible = "fsl,mpc8349-dma-channel", "fsl,elo-dma-channel"; + cell-index = <2>; + reg = <0x100 0x80>; + interrupt-parent = <&ipic>; + interrupts = <71 8>; + }; + dma-channel@180 { + compatible = "fsl,mpc8349-dma-channel", "fsl,elo-dma-channel"; + cell-index = <3>; + reg = <0x180 0x80>; + interrupt-parent = <&ipic>; + interrupts = <71 8>; + }; + }; + +* Freescale 85xx/86xx DMA Controller + +Freescale PowerPC 85xx/86xx have on chip general purpose DMA controllers. + +Required properties: + +- compatible : compatible list, contains 2 entries, first is + "fsl,CHIP-dma", where CHIP is the processor + (mpc8540, mpc8540, etc.) and the second is + "fsl,eloplus-dma" +- reg : +- cell-index : controller index. 0 for controller @ 0x21000, + 1 for controller @ 0xc000 +- ranges : Should be defined as specified in 1) to describe the + DMA controller channels. + +- DMA channel nodes: + - compatible : compatible list, contains 2 entries, first is + "fsl,CHIP-dma-channel", where CHIP is the processor + (mpc8540, mpc8560, etc.) and the second is + "fsl,eloplus-dma-channel". However, see note below. + - cell-index : dma channel index starts at 0. + - reg : + - interrupts : + - interrupt-parent : optional, if needed for interrupt mapping + +Example: + dma@21300 { + #address-cells = <1>; + #size-cells = <1>; + compatible = "fsl,mpc8540-dma", "fsl,eloplus-dma"; + reg = <0x21300 4>; + ranges = <0 0x21100 0x200>; + cell-index = <0>; + dma-channel@0 { + compatible = "fsl,mpc8540-dma-channel", "fsl,eloplus-dma-channel"; + reg = <0 0x80>; + cell-index = <0>; + interrupt-parent = <&mpic>; + interrupts = <20 2>; + }; + dma-channel@80 { + compatible = "fsl,mpc8540-dma-channel", "fsl,eloplus-dma-channel"; + reg = <0x80 0x80>; + cell-index = <1>; + interrupt-parent = <&mpic>; + interrupts = <21 2>; + }; + dma-channel@100 { + compatible = "fsl,mpc8540-dma-channel", "fsl,eloplus-dma-channel"; + reg = <0x100 0x80>; + cell-index = <2>; + interrupt-parent = <&mpic>; + interrupts = <22 2>; + }; + dma-channel@180 { + compatible = "fsl,mpc8540-dma-channel", "fsl,eloplus-dma-channel"; + reg = <0x180 0x80>; + cell-index = <3>; + interrupt-parent = <&mpic>; + interrupts = <23 2>; + }; + }; + +Note on DMA channel compatible properties: The compatible property must say +"fsl,elo-dma-channel" or "fsl,eloplus-dma-channel" to be used by the Elo DMA +driver (fsldma). Any DMA channel used by fsldma cannot be used by another +DMA driver, such as the SSI sound drivers for the MPC8610. Therefore, any DMA +channel that should be used for another driver should not use +"fsl,elo-dma-channel" or "fsl,eloplus-dma-channel". For the SSI drivers, for +example, the compatible property should be "fsl,ssi-dma-channel". See ssi.txt +for more information. diff --git a/Documentation/devicetree/bindings/powerpc/fsl/ecm.txt b/Documentation/devicetree/bindings/powerpc/fsl/ecm.txt new file mode 100644 index 000000000000..f514f29c67d6 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/ecm.txt @@ -0,0 +1,64 @@ +===================================================================== +E500 LAW & Coherency Module Device Tree Binding +Copyright (C) 2009 Freescale Semiconductor Inc. +===================================================================== + +Local Access Window (LAW) Node + +The LAW node represents the region of CCSR space where local access +windows are configured. For ECM based devices this is the first 4k +of CCSR space that includes CCSRBAR, ALTCBAR, ALTCAR, BPTR, and some +number of local access windows as specified by fsl,num-laws. + +PROPERTIES + + - compatible + Usage: required + Value type: + Definition: Must include "fsl,ecm-law" + + - reg + Usage: required + Value type: + Definition: A standard property. The value specifies the + physical address offset and length of the CCSR space + registers. + + - fsl,num-laws + Usage: required + Value type: + Definition: The value specifies the number of local access + windows for this device. + +===================================================================== + +E500 Coherency Module Node + +The E500 LAW node represents the region of CCSR space where ECM config +and error reporting registers exist, this is the second 4k (0x1000) +of CCSR space. + +PROPERTIES + + - compatible + Usage: required + Value type: + Definition: Must include "fsl,CHIP-ecm", "fsl,ecm" where + CHIP is the processor (mpc8572, mpc8544, etc.) + + - reg + Usage: required + Value type: + Definition: A standard property. The value specifies the + physical address offset and length of the CCSR space + registers. + + - interrupts + Usage: required + Value type: + + - interrupt-parent + Usage: required + Value type: + +===================================================================== diff --git a/Documentation/devicetree/bindings/powerpc/fsl/gtm.txt b/Documentation/devicetree/bindings/powerpc/fsl/gtm.txt new file mode 100644 index 000000000000..9a33efded4bc --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/gtm.txt @@ -0,0 +1,31 @@ +* Freescale General-purpose Timers Module + +Required properties: + - compatible : should be + "fsl,-gtm", "fsl,gtm" for SOC GTMs + "fsl,-qe-gtm", "fsl,qe-gtm", "fsl,gtm" for QE GTMs + "fsl,-cpm2-gtm", "fsl,cpm2-gtm", "fsl,gtm" for CPM2 GTMs + - reg : should contain gtm registers location and length (0x40). + - interrupts : should contain four interrupts. + - interrupt-parent : interrupt source phandle. + - clock-frequency : specifies the frequency driving the timer. + +Example: + +timer@500 { + compatible = "fsl,mpc8360-gtm", "fsl,gtm"; + reg = <0x500 0x40>; + interrupts = <90 8 78 8 84 8 72 8>; + interrupt-parent = <&ipic>; + /* filled by u-boot */ + clock-frequency = <0>; +}; + +timer@440 { + compatible = "fsl,mpc8360-qe-gtm", "fsl,qe-gtm", "fsl,gtm"; + reg = <0x440 0x40>; + interrupts = <12 13 14 15>; + interrupt-parent = <&qeic>; + /* filled by u-boot */ + clock-frequency = <0>; +}; diff --git a/Documentation/devicetree/bindings/powerpc/fsl/guts.txt b/Documentation/devicetree/bindings/powerpc/fsl/guts.txt new file mode 100644 index 000000000000..9e7a2417dac5 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/guts.txt @@ -0,0 +1,25 @@ +* Global Utilities Block + +The global utilities block controls power management, I/O device +enabling, power-on-reset configuration monitoring, general-purpose +I/O signal configuration, alternate function selection for multiplexed +signals, and clock control. + +Required properties: + + - compatible : Should define the compatible device type for + global-utilities. + - reg : Offset and length of the register set for the device. + +Recommended properties: + + - fsl,has-rstcr : Indicates that the global utilities register set + contains a functioning "reset control register" (i.e. the board + is wired to reset upon setting the HRESET_REQ bit in this register). + +Example: + global-utilities@e0000 { /* global utilities block */ + compatible = "fsl,mpc8548-guts"; + reg = ; + fsl,has-rstcr; + }; diff --git a/Documentation/devicetree/bindings/powerpc/fsl/lbc.txt b/Documentation/devicetree/bindings/powerpc/fsl/lbc.txt new file mode 100644 index 000000000000..3300fec501c5 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/lbc.txt @@ -0,0 +1,35 @@ +* Chipselect/Local Bus + +Properties: +- name : Should be localbus +- #address-cells : Should be either two or three. The first cell is the + chipselect number, and the remaining cells are the + offset into the chipselect. +- #size-cells : Either one or two, depending on how large each chipselect + can be. +- ranges : Each range corresponds to a single chipselect, and cover + the entire access window as configured. + +Example: + localbus@f0010100 { + compatible = "fsl,mpc8272-localbus", + "fsl,pq2-localbus"; + #address-cells = <2>; + #size-cells = <1>; + reg = ; + + ranges = <0 0 fe000000 02000000 + 1 0 f4500000 00008000>; + + flash@0,0 { + compatible = "jedec-flash"; + reg = <0 0 2000000>; + bank-width = <4>; + device-width = <1>; + }; + + board-control@1,0 { + reg = <1 0 20>; + compatible = "fsl,mpc8272ads-bcsr"; + }; + }; diff --git a/Documentation/devicetree/bindings/powerpc/fsl/mcm.txt b/Documentation/devicetree/bindings/powerpc/fsl/mcm.txt new file mode 100644 index 000000000000..4ceda9b3b413 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/mcm.txt @@ -0,0 +1,64 @@ +===================================================================== +MPX LAW & Coherency Module Device Tree Binding +Copyright (C) 2009 Freescale Semiconductor Inc. +===================================================================== + +Local Access Window (LAW) Node + +The LAW node represents the region of CCSR space where local access +windows are configured. For MCM based devices this is the first 4k +of CCSR space that includes CCSRBAR, ALTCBAR, ALTCAR, BPTR, and some +number of local access windows as specified by fsl,num-laws. + +PROPERTIES + + - compatible + Usage: required + Value type: + Definition: Must include "fsl,mcm-law" + + - reg + Usage: required + Value type: + Definition: A standard property. The value specifies the + physical address offset and length of the CCSR space + registers. + + - fsl,num-laws + Usage: required + Value type: + Definition: The value specifies the number of local access + windows for this device. + +===================================================================== + +MPX Coherency Module Node + +The MPX LAW node represents the region of CCSR space where MCM config +and error reporting registers exist, this is the second 4k (0x1000) +of CCSR space. + +PROPERTIES + + - compatible + Usage: required + Value type: + Definition: Must include "fsl,CHIP-mcm", "fsl,mcm" where + CHIP is the processor (mpc8641, mpc8610, etc.) + + - reg + Usage: required + Value type: + Definition: A standard property. The value specifies the + physical address offset and length of the CCSR space + registers. + + - interrupts + Usage: required + Value type: + + - interrupt-parent + Usage: required + Value type: + +===================================================================== diff --git a/Documentation/devicetree/bindings/powerpc/fsl/mcu-mpc8349emitx.txt b/Documentation/devicetree/bindings/powerpc/fsl/mcu-mpc8349emitx.txt new file mode 100644 index 000000000000..0f766333b6eb --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/mcu-mpc8349emitx.txt @@ -0,0 +1,17 @@ +Freescale MPC8349E-mITX-compatible Power Management Micro Controller Unit (MCU) + +Required properties: +- compatible : "fsl,-", "fsl,mcu-mpc8349emitx". +- reg : should specify I2C address (0x0a). +- #gpio-cells : should be 2. +- gpio-controller : should be present. + +Example: + +mcu@0a { + #gpio-cells = <2>; + compatible = "fsl,mc9s08qg8-mpc8349emitx", + "fsl,mcu-mpc8349emitx"; + reg = <0x0a>; + gpio-controller; +}; diff --git a/Documentation/devicetree/bindings/powerpc/fsl/mpc5121-psc.txt b/Documentation/devicetree/bindings/powerpc/fsl/mpc5121-psc.txt new file mode 100644 index 000000000000..8832e8798912 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/mpc5121-psc.txt @@ -0,0 +1,70 @@ +MPC5121 PSC Device Tree Bindings + +PSC in UART mode +---------------- + +For PSC in UART mode the needed PSC serial devices +are specified by fsl,mpc5121-psc-uart nodes in the +fsl,mpc5121-immr SoC node. Additionally the PSC FIFO +Controller node fsl,mpc5121-psc-fifo is requered there: + +fsl,mpc5121-psc-uart nodes +-------------------------- + +Required properties : + - compatible : Should contain "fsl,mpc5121-psc-uart" and "fsl,mpc5121-psc" + - cell-index : Index of the PSC in hardware + - reg : Offset and length of the register set for the PSC device + - interrupts : where a is the interrupt number of the + PSC FIFO Controller and b is a field that represents an + encoding of the sense and level information for the interrupt. + - interrupt-parent : the phandle for the interrupt controller that + services interrupts for this device. + +Recommended properties : + - fsl,rx-fifo-size : the size of the RX fifo slice (a multiple of 4) + - fsl,tx-fifo-size : the size of the TX fifo slice (a multiple of 4) + + +fsl,mpc5121-psc-fifo node +------------------------- + +Required properties : + - compatible : Should be "fsl,mpc5121-psc-fifo" + - reg : Offset and length of the register set for the PSC + FIFO Controller + - interrupts : where a is the interrupt number of the + PSC FIFO Controller and b is a field that represents an + encoding of the sense and level information for the interrupt. + - interrupt-parent : the phandle for the interrupt controller that + services interrupts for this device. + + +Example for a board using PSC0 and PSC1 devices in serial mode: + +serial@11000 { + compatible = "fsl,mpc5121-psc-uart", "fsl,mpc5121-psc"; + cell-index = <0>; + reg = <0x11000 0x100>; + interrupts = <40 0x8>; + interrupt-parent = < &ipic >; + fsl,rx-fifo-size = <16>; + fsl,tx-fifo-size = <16>; +}; + +serial@11100 { + compatible = "fsl,mpc5121-psc-uart", "fsl,mpc5121-psc"; + cell-index = <1>; + reg = <0x11100 0x100>; + interrupts = <40 0x8>; + interrupt-parent = < &ipic >; + fsl,rx-fifo-size = <16>; + fsl,tx-fifo-size = <16>; +}; + +pscfifo@11f00 { + compatible = "fsl,mpc5121-psc-fifo"; + reg = <0x11f00 0x100>; + interrupts = <40 0x8>; + interrupt-parent = < &ipic >; +}; diff --git a/Documentation/devicetree/bindings/powerpc/fsl/mpc5200.txt b/Documentation/devicetree/bindings/powerpc/fsl/mpc5200.txt new file mode 100644 index 000000000000..4ccb2cd5df94 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/mpc5200.txt @@ -0,0 +1,198 @@ +MPC5200 Device Tree Bindings +---------------------------- + +(c) 2006-2009 Secret Lab Technologies Ltd +Grant Likely + +Naming conventions +------------------ +For mpc5200 on-chip devices, the format for each compatible value is +-[-]. The OS should be able to match a device driver +to the device based solely on the compatible value. If two drivers +match on the compatible list; the 'most compatible' driver should be +selected. + +The split between the MPC5200 and the MPC5200B leaves a bit of a +conundrum. How should the compatible property be set up to provide +maximum compatibility information; but still accurately describe the +chip? For the MPC5200; the answer is easy. Most of the SoC devices +originally appeared on the MPC5200. Since they didn't exist anywhere +else; the 5200 compatible properties will contain only one item; +"fsl,mpc5200-". + +The 5200B is almost the same as the 5200, but not quite. It fixes +silicon bugs and it adds a small number of enhancements. Most of the +devices either provide exactly the same interface as on the 5200. A few +devices have extra functions but still have a backwards compatible mode. +To express this information as completely as possible, 5200B device trees +should have two items in the compatible list: + compatible = "fsl,mpc5200b-","fsl,mpc5200-"; + +It is *strongly* recommended that 5200B device trees follow this convention +(instead of only listing the base mpc5200 item). + +ie. ethernet on mpc5200: compatible = "fsl,mpc5200-fec"; + ethernet on mpc5200b: compatible = "fsl,mpc5200b-fec", "fsl,mpc5200-fec"; + +Modal devices, like PSCs, also append the configured function to the +end of the compatible field. ie. A PSC in i2s mode would specify +"fsl,mpc5200-psc-i2s", not "fsl,mpc5200-i2s". This convention is chosen to +avoid naming conflicts with non-psc devices providing the same +function. For example, "fsl,mpc5200-spi" and "fsl,mpc5200-psc-spi" describe +the mpc5200 simple spi device and a PSC spi mode respectively. + +At the time of writing, exact chip may be either 'fsl,mpc5200' or +'fsl,mpc5200b'. + +The soc node +------------ +This node describes the on chip SOC peripherals. Every mpc5200 based +board will have this node, and as such there is a common naming +convention for SOC devices. + +Required properties: +name description +---- ----------- +ranges Memory range of the internal memory mapped registers. + Should be <0 [baseaddr] 0xc000> +reg Should be <[baseaddr] 0x100> +compatible mpc5200: "fsl,mpc5200-immr" + mpc5200b: "fsl,mpc5200b-immr" +system-frequency 'fsystem' frequency in Hz; XLB, IPB, USB and PCI + clocks are derived from the fsystem clock. +bus-frequency IPB bus frequency in Hz. Clock rate + used by most of the soc devices. + +soc child nodes +--------------- +Any on chip SOC devices available to Linux must appear as soc5200 child nodes. + +Note: The tables below show the value for the mpc5200. A mpc5200b device +tree should use the "fsl,mpc5200b-","fsl,mpc5200-" form. + +Required soc5200 child nodes: +name compatible Description +---- ---------- ----------- +cdm@ fsl,mpc5200-cdm Clock Distribution +interrupt-controller@ fsl,mpc5200-pic need an interrupt + controller to boot +bestcomm@ fsl,mpc5200-bestcomm Bestcomm DMA controller + +Recommended soc5200 child nodes; populate as needed for your board +name compatible Description +---- ---------- ----------- +timer@ fsl,mpc5200-gpt General purpose timers +gpio@ fsl,mpc5200-gpio MPC5200 simple gpio controller +gpio@ fsl,mpc5200-gpio-wkup MPC5200 wakeup gpio controller +rtc@ fsl,mpc5200-rtc Real time clock +mscan@ fsl,mpc5200-mscan CAN bus controller +pci@ fsl,mpc5200-pci PCI bridge +serial@ fsl,mpc5200-psc-uart PSC in serial mode +i2s@ fsl,mpc5200-psc-i2s PSC in i2s mode +ac97@ fsl,mpc5200-psc-ac97 PSC in ac97 mode +spi@ fsl,mpc5200-psc-spi PSC in spi mode +irda@ fsl,mpc5200-psc-irda PSC in IrDA mode +spi@ fsl,mpc5200-spi MPC5200 spi device +ethernet@ fsl,mpc5200-fec MPC5200 ethernet device +ata@ fsl,mpc5200-ata IDE ATA interface +i2c@ fsl,mpc5200-i2c I2C controller +usb@ fsl,mpc5200-ohci,ohci-be USB controller +xlb@ fsl,mpc5200-xlb XLB arbitrator + +fsl,mpc5200-gpt nodes +--------------------- +On the mpc5200 and 5200b, GPT0 has a watchdog timer function. If the board +design supports the internal wdt, then the device node for GPT0 should +include the empty property 'fsl,has-wdt'. Note that this does not activate +the watchdog. The timer will function as a GPT if the timer api is used, and +it will function as watchdog if the watchdog device is used. The watchdog +mode has priority over the gpt mode, i.e. if the watchdog is activated, any +gpt api call to this timer will fail with -EBUSY. + +If you add the property + fsl,wdt-on-boot = ; +GPT0 will be marked as in-use watchdog, i.e. blocking every gpt access to it. +If n>0, the watchdog is started with a timeout of n seconds. If n=0, the +configuration of the watchdog is not touched. This is useful in two cases: +- just mark GPT0 as watchdog, blocking gpt accesses, and configure it later; +- do not touch a configuration assigned by the boot loader which supervises + the boot process itself. + +The watchdog will respect the CONFIG_WATCHDOG_NOWAYOUT option. + +An mpc5200-gpt can be used as a single line GPIO controller. To do so, +add the following properties to the gpt node: + gpio-controller; + #gpio-cells = <2>; +When referencing the GPIO line from another node, the first cell must always +be zero and the second cell represents the gpio flags and described in the +gpio device tree binding. + +An mpc5200-gpt can be used as a single line edge sensitive interrupt +controller. To do so, add the following properties to the gpt node: + interrupt-controller; + #interrupt-cells = <1>; +When referencing the IRQ line from another node, the cell represents the +sense mode; 1 for edge rising, 2 for edge falling. + +fsl,mpc5200-psc nodes +--------------------- +The PSCs should include a cell-index which is the index of the PSC in +hardware. cell-index is used to determine which shared SoC registers to +use when setting up PSC clocking. cell-index number starts at '0'. ie: + PSC1 has 'cell-index = <0>' + PSC4 has 'cell-index = <3>' + +PSC in i2s mode: The mpc5200 and mpc5200b PSCs are not compatible when in +i2s mode. An 'mpc5200b-psc-i2s' node cannot include 'mpc5200-psc-i2s' in the +compatible field. + + +fsl,mpc5200-gpio and fsl,mpc5200-gpio-wkup nodes +------------------------------------------------ +Each GPIO controller node should have the empty property gpio-controller and +#gpio-cells set to 2. First cell is the GPIO number which is interpreted +according to the bit numbers in the GPIO control registers. The second cell +is for flags which is currently unused. + +fsl,mpc5200-fec nodes +--------------------- +The FEC node can specify one of the following properties to configure +the MII link: +- fsl,7-wire-mode - An empty property that specifies the link uses 7-wire + mode instead of MII +- current-speed - Specifies that the MII should be configured for a fixed + speed. This property should contain two cells. The + first cell specifies the speed in Mbps and the second + should be '0' for half duplex and '1' for full duplex +- phy-handle - Contains a phandle to an Ethernet PHY. + +Interrupt controller (fsl,mpc5200-pic) node +------------------------------------------- +The mpc5200 pic binding splits hardware IRQ numbers into two levels. The +split reflects the layout of the PIC hardware itself, which groups +interrupts into one of three groups; CRIT, MAIN or PERP. Also, the +Bestcomm dma engine has it's own set of interrupt sources which are +cascaded off of peripheral interrupt 0, which the driver interprets as a +fourth group, SDMA. + +The interrupts property for device nodes using the mpc5200 pic consists +of three cells; + + L1 := [CRIT=0, MAIN=1, PERP=2, SDMA=3] + L2 := interrupt number; directly mapped from the value in the + "ICTL PerStat, MainStat, CritStat Encoded Register" + level := [LEVEL_HIGH=0, EDGE_RISING=1, EDGE_FALLING=2, LEVEL_LOW=3] + +For external IRQs, use the following interrupt property values (how to +specify external interrupts is a frequently asked question): +External interrupts: + external irq0: interrupts = <0 0 n>; + external irq1: interrupts = <1 1 n>; + external irq2: interrupts = <1 2 n>; + external irq3: interrupts = <1 3 n>; +'n' is sense (0: level high, 1: edge rising, 2: edge falling 3: level low) + +fsl,mpc5200-mscan nodes +----------------------- +See file can.txt in this directory. diff --git a/Documentation/devicetree/bindings/powerpc/fsl/mpic.txt b/Documentation/devicetree/bindings/powerpc/fsl/mpic.txt new file mode 100644 index 000000000000..71e39cf3215b --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/mpic.txt @@ -0,0 +1,42 @@ +* OpenPIC and its interrupt numbers on Freescale's e500/e600 cores + +The OpenPIC specification does not specify which interrupt source has to +become which interrupt number. This is up to the software implementation +of the interrupt controller. The only requirement is that every +interrupt source has to have an unique interrupt number / vector number. +To accomplish this the current implementation assigns the number zero to +the first source, the number one to the second source and so on until +all interrupt sources have their unique number. +Usually the assigned vector number equals the interrupt number mentioned +in the documentation for a given core / CPU. This is however not true +for the e500 cores (MPC85XX CPUs) where the documentation distinguishes +between internal and external interrupt sources and starts counting at +zero for both of them. + +So what to write for external interrupt source X or internal interrupt +source Y into the device tree? Here is an example: + +The memory map for the interrupt controller in the MPC8544[0] shows, +that the first interrupt source starts at 0x5_0000 (PIC Register Address +Map-Interrupt Source Configuration Registers). This source becomes the +number zero therefore: + External interrupt 0 = interrupt number 0 + External interrupt 1 = interrupt number 1 + External interrupt 2 = interrupt number 2 + ... +Every interrupt number allocates 0x20 bytes register space. So to get +its number it is sufficient to shift the lower 16bits to right by five. +So for the external interrupt 10 we have: + 0x0140 >> 5 = 10 + +After the external sources, the internal sources follow. The in core I2C +controller on the MPC8544 for instance has the internal source number +27. Oo obtain its interrupt number we take the lower 16bits of its memory +address (0x5_0560) and shift it right: + 0x0560 >> 5 = 43 + +Therefore the I2C device node for the MPC8544 CPU has to have the +interrupt number 43 specified in the device tree. + +[0] MPC8544E PowerQUICCTM III, Integrated Host Processor Family Reference Manual + MPC8544ERM Rev. 1 10/2007 diff --git a/Documentation/devicetree/bindings/powerpc/fsl/msi-pic.txt b/Documentation/devicetree/bindings/powerpc/fsl/msi-pic.txt new file mode 100644 index 000000000000..bcc30bac6831 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/msi-pic.txt @@ -0,0 +1,36 @@ +* Freescale MSI interrupt controller + +Required properties: +- compatible : compatible list, contains 2 entries, + first is "fsl,CHIP-msi", where CHIP is the processor(mpc8610, mpc8572, + etc.) and the second is "fsl,mpic-msi" or "fsl,ipic-msi" depending on + the parent type. +- reg : should contain the address and the length of the shared message + interrupt register set. +- msi-available-ranges: use style section to define which + msi interrupt can be used in the 256 msi interrupts. This property is + optional, without this, all the 256 MSI interrupts can be used. +- interrupts : each one of the interrupts here is one entry per 32 MSIs, + and routed to the host interrupt controller. the interrupts should + be set as edge sensitive. +- interrupt-parent: the phandle for the interrupt controller + that services interrupts for this device. for 83xx cpu, the interrupts + are routed to IPIC, and for 85xx/86xx cpu the interrupts are routed + to MPIC. + +Example: + msi@41600 { + compatible = "fsl,mpc8610-msi", "fsl,mpic-msi"; + reg = <0x41600 0x80>; + msi-available-ranges = <0 0x100>; + interrupts = < + 0xe0 0 + 0xe1 0 + 0xe2 0 + 0xe3 0 + 0xe4 0 + 0xe5 0 + 0xe6 0 + 0xe7 0>; + interrupt-parent = <&mpic>; + }; diff --git a/Documentation/devicetree/bindings/powerpc/fsl/pmc.txt b/Documentation/devicetree/bindings/powerpc/fsl/pmc.txt new file mode 100644 index 000000000000..07256b7ffcaa --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/pmc.txt @@ -0,0 +1,63 @@ +* Power Management Controller + +Properties: +- compatible: "fsl,-pmc". + + "fsl,mpc8349-pmc" should be listed for any chip whose PMC is + compatible. "fsl,mpc8313-pmc" should also be listed for any chip + whose PMC is compatible, and implies deep-sleep capability. + + "fsl,mpc8548-pmc" should be listed for any chip whose PMC is + compatible. "fsl,mpc8536-pmc" should also be listed for any chip + whose PMC is compatible, and implies deep-sleep capability. + + "fsl,mpc8641d-pmc" should be listed for any chip whose PMC is + compatible; all statements below that apply to "fsl,mpc8548-pmc" also + apply to "fsl,mpc8641d-pmc". + + Compatibility does not include bit assignments in SCCR/PMCDR/DEVDISR; these + bit assignments are indicated via the sleep specifier in each device's + sleep property. + +- reg: For devices compatible with "fsl,mpc8349-pmc", the first resource + is the PMC block, and the second resource is the Clock Configuration + block. + + For devices compatible with "fsl,mpc8548-pmc", the first resource + is a 32-byte block beginning with DEVDISR. + +- interrupts: For "fsl,mpc8349-pmc"-compatible devices, the first + resource is the PMC block interrupt. + +- fsl,mpc8313-wakeup-timer: For "fsl,mpc8313-pmc"-compatible devices, + this is a phandle to an "fsl,gtm" node on which timer 4 can be used as + a wakeup source from deep sleep. + +Sleep specifiers: + + fsl,mpc8349-pmc: Sleep specifiers consist of one cell. For each bit + that is set in the cell, the corresponding bit in SCCR will be saved + and cleared on suspend, and restored on resume. This sleep controller + supports disabling and resuming devices at any time. + + fsl,mpc8536-pmc: Sleep specifiers consist of three cells, the third of + which will be ORed into PMCDR upon suspend, and cleared from PMCDR + upon resume. The first two cells are as described for fsl,mpc8578-pmc. + This sleep controller only supports disabling devices during system + sleep, or permanently. + + fsl,mpc8548-pmc: Sleep specifiers consist of one or two cells, the + first of which will be ORed into DEVDISR (and the second into + DEVDISR2, if present -- this cell should be zero or absent if the + hardware does not have DEVDISR2) upon a request for permanent device + disabling. This sleep controller does not support configuring devices + to disable during system sleep (unless supported by another compatible + match), or dynamically. + +Example: + + power@b00 { + compatible = "fsl,mpc8313-pmc", "fsl,mpc8349-pmc"; + reg = <0xb00 0x100 0xa00 0x100>; + interrupts = <80 8>; + }; diff --git a/Documentation/devicetree/bindings/powerpc/fsl/sec.txt b/Documentation/devicetree/bindings/powerpc/fsl/sec.txt new file mode 100644 index 000000000000..2b6f2d45c45a --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/sec.txt @@ -0,0 +1,68 @@ +Freescale SoC SEC Security Engines + +Required properties: + +- compatible : Should contain entries for this and backward compatible + SEC versions, high to low, e.g., "fsl,sec2.1", "fsl,sec2.0" +- reg : Offset and length of the register set for the device +- interrupts : the SEC's interrupt number +- fsl,num-channels : An integer representing the number of channels + available. +- fsl,channel-fifo-len : An integer representing the number of + descriptor pointers each channel fetch fifo can hold. +- fsl,exec-units-mask : The bitmask representing what execution units + (EUs) are available. It's a single 32-bit cell. EU information + should be encoded following the SEC's Descriptor Header Dword + EU_SEL0 field documentation, i.e. as follows: + + bit 0 = reserved - should be 0 + bit 1 = set if SEC has the ARC4 EU (AFEU) + bit 2 = set if SEC has the DES/3DES EU (DEU) + bit 3 = set if SEC has the message digest EU (MDEU/MDEU-A) + bit 4 = set if SEC has the random number generator EU (RNG) + bit 5 = set if SEC has the public key EU (PKEU) + bit 6 = set if SEC has the AES EU (AESU) + bit 7 = set if SEC has the Kasumi EU (KEU) + bit 8 = set if SEC has the CRC EU (CRCU) + bit 11 = set if SEC has the message digest EU extended alg set (MDEU-B) + +remaining bits are reserved for future SEC EUs. + +- fsl,descriptor-types-mask : The bitmask representing what descriptors + are available. It's a single 32-bit cell. Descriptor type information + should be encoded following the SEC's Descriptor Header Dword DESC_TYPE + field documentation, i.e. as follows: + + bit 0 = set if SEC supports the aesu_ctr_nonsnoop desc. type + bit 1 = set if SEC supports the ipsec_esp descriptor type + bit 2 = set if SEC supports the common_nonsnoop desc. type + bit 3 = set if SEC supports the 802.11i AES ccmp desc. type + bit 4 = set if SEC supports the hmac_snoop_no_afeu desc. type + bit 5 = set if SEC supports the srtp descriptor type + bit 6 = set if SEC supports the non_hmac_snoop_no_afeu desc.type + bit 7 = set if SEC supports the pkeu_assemble descriptor type + bit 8 = set if SEC supports the aesu_key_expand_output desc.type + bit 9 = set if SEC supports the pkeu_ptmul descriptor type + bit 10 = set if SEC supports the common_nonsnoop_afeu desc. type + bit 11 = set if SEC supports the pkeu_ptadd_dbl descriptor type + + ..and so on and so forth. + +Optional properties: + +- interrupt-parent : the phandle for the interrupt controller that + services interrupts for this device. + +Example: + + /* MPC8548E */ + crypto@30000 { + compatible = "fsl,sec2.1", "fsl,sec2.0"; + reg = <0x30000 0x10000>; + interrupts = <29 2>; + interrupt-parent = <&mpic>; + fsl,num-channels = <4>; + fsl,channel-fifo-len = <24>; + fsl,exec-units-mask = <0xfe>; + fsl,descriptor-types-mask = <0x12b0ebf>; + }; diff --git a/Documentation/devicetree/bindings/powerpc/fsl/ssi.txt b/Documentation/devicetree/bindings/powerpc/fsl/ssi.txt new file mode 100644 index 000000000000..5ff76c9c57d2 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/ssi.txt @@ -0,0 +1,73 @@ +Freescale Synchronous Serial Interface + +The SSI is a serial device that communicates with audio codecs. It can +be programmed in AC97, I2S, left-justified, or right-justified modes. + +Required properties: +- compatible: Compatible list, contains "fsl,ssi". +- cell-index: The SSI, <0> = SSI1, <1> = SSI2, and so on. +- reg: Offset and length of the register set for the device. +- interrupts: where a is the interrupt number and b is a + field that represents an encoding of the sense and + level information for the interrupt. This should be + encoded based on the information in section 2) + depending on the type of interrupt controller you + have. +- interrupt-parent: The phandle for the interrupt controller that + services interrupts for this device. +- fsl,mode: The operating mode for the SSI interface. + "i2s-slave" - I2S mode, SSI is clock slave + "i2s-master" - I2S mode, SSI is clock master + "lj-slave" - left-justified mode, SSI is clock slave + "lj-master" - l.j. mode, SSI is clock master + "rj-slave" - right-justified mode, SSI is clock slave + "rj-master" - r.j., SSI is clock master + "ac97-slave" - AC97 mode, SSI is clock slave + "ac97-master" - AC97 mode, SSI is clock master +- fsl,playback-dma: Phandle to a node for the DMA channel to use for + playback of audio. This is typically dictated by SOC + design. See the notes below. +- fsl,capture-dma: Phandle to a node for the DMA channel to use for + capture (recording) of audio. This is typically dictated + by SOC design. See the notes below. +- fsl,fifo-depth: The number of elements in the transmit and receive FIFOs. + This number is the maximum allowed value for SFCSR[TFWM0]. +- fsl,ssi-asynchronous: + If specified, the SSI is to be programmed in asynchronous + mode. In this mode, pins SRCK, STCK, SRFS, and STFS must + all be connected to valid signals. In synchronous mode, + SRCK and SRFS are ignored. Asynchronous mode allows + playback and capture to use different sample sizes and + sample rates. Some drivers may require that SRCK and STCK + be connected together, and SRFS and STFS be connected + together. This would still allow different sample sizes, + but not different sample rates. + +Optional properties: +- codec-handle: Phandle to a 'codec' node that defines an audio + codec connected to this SSI. This node is typically + a child of an I2C or other control node. + +Child 'codec' node required properties: +- compatible: Compatible list, contains the name of the codec + +Child 'codec' node optional properties: +- clock-frequency: The frequency of the input clock, which typically comes + from an on-board dedicated oscillator. + +Notes on fsl,playback-dma and fsl,capture-dma: + +On SOCs that have an SSI, specific DMA channels are hard-wired for playback +and capture. On the MPC8610, for example, SSI1 must use DMA channel 0 for +playback and DMA channel 1 for capture. SSI2 must use DMA channel 2 for +playback and DMA channel 3 for capture. The developer can choose which +DMA controller to use, but the channels themselves are hard-wired. The +purpose of these two properties is to represent this hardware design. + +The device tree nodes for the DMA channels that are referenced by +"fsl,playback-dma" and "fsl,capture-dma" must be marked as compatible with +"fsl,ssi-dma-channel". The SOC-specific compatible string (e.g. +"fsl,mpc8610-dma-channel") can remain. If these nodes are left as +"fsl,elo-dma-channel" or "fsl,eloplus-dma-channel", then the generic Elo DMA +drivers (fsldma) will attempt to use them, and it will conflict with the +sound drivers. diff --git a/Documentation/devicetree/bindings/powerpc/nintendo/gamecube.txt b/Documentation/devicetree/bindings/powerpc/nintendo/gamecube.txt new file mode 100644 index 000000000000..b558585b1aaf --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/nintendo/gamecube.txt @@ -0,0 +1,109 @@ + +Nintendo GameCube device tree +============================= + +1) The "flipper" node + + This node represents the multi-function "Flipper" chip, which packages + many of the devices found in the Nintendo GameCube. + + Required properties: + + - compatible : Should be "nintendo,flipper" + +1.a) The Video Interface (VI) node + + Represents the interface between the graphics processor and a external + video encoder. + + Required properties: + + - compatible : should be "nintendo,flipper-vi" + - reg : should contain the VI registers location and length + - interrupts : should contain the VI interrupt + +1.b) The Processor Interface (PI) node + + Represents the data and control interface between the main processor + and graphics and audio processor. + + Required properties: + + - compatible : should be "nintendo,flipper-pi" + - reg : should contain the PI registers location and length + +1.b.i) The "Flipper" interrupt controller node + + Represents the interrupt controller within the "Flipper" chip. + The node for the "Flipper" interrupt controller must be placed under + the PI node. + + Required properties: + + - compatible : should be "nintendo,flipper-pic" + +1.c) The Digital Signal Procesor (DSP) node + + Represents the digital signal processor interface, designed to offload + audio related tasks. + + Required properties: + + - compatible : should be "nintendo,flipper-dsp" + - reg : should contain the DSP registers location and length + - interrupts : should contain the DSP interrupt + +1.c.i) The Auxiliary RAM (ARAM) node + + Represents the non cpu-addressable ram designed mainly to store audio + related information. + The ARAM node must be placed under the DSP node. + + Required properties: + + - compatible : should be "nintendo,flipper-aram" + - reg : should contain the ARAM start (zero-based) and length + +1.d) The Disk Interface (DI) node + + Represents the interface used to communicate with mass storage devices. + + Required properties: + + - compatible : should be "nintendo,flipper-di" + - reg : should contain the DI registers location and length + - interrupts : should contain the DI interrupt + +1.e) The Audio Interface (AI) node + + Represents the interface to the external 16-bit stereo digital-to-analog + converter. + + Required properties: + + - compatible : should be "nintendo,flipper-ai" + - reg : should contain the AI registers location and length + - interrupts : should contain the AI interrupt + +1.f) The Serial Interface (SI) node + + Represents the interface to the four single bit serial interfaces. + The SI is a proprietary serial interface used normally to control gamepads. + It's NOT a RS232-type interface. + + Required properties: + + - compatible : should be "nintendo,flipper-si" + - reg : should contain the SI registers location and length + - interrupts : should contain the SI interrupt + +1.g) The External Interface (EXI) node + + Represents the multi-channel SPI-like interface. + + Required properties: + + - compatible : should be "nintendo,flipper-exi" + - reg : should contain the EXI registers location and length + - interrupts : should contain the EXI interrupt + diff --git a/Documentation/devicetree/bindings/powerpc/nintendo/wii.txt b/Documentation/devicetree/bindings/powerpc/nintendo/wii.txt new file mode 100644 index 000000000000..a7e155a023b8 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/nintendo/wii.txt @@ -0,0 +1,184 @@ + +Nintendo Wii device tree +======================== + +0) The root node + + This node represents the Nintendo Wii video game console. + + Required properties: + + - model : Should be "nintendo,wii" + - compatible : Should be "nintendo,wii" + +1) The "hollywood" node + + This node represents the multi-function "Hollywood" chip, which packages + many of the devices found in the Nintendo Wii. + + Required properties: + + - compatible : Should be "nintendo,hollywood" + +1.a) The Video Interface (VI) node + + Represents the interface between the graphics processor and a external + video encoder. + + Required properties: + + - compatible : should be "nintendo,hollywood-vi","nintendo,flipper-vi" + - reg : should contain the VI registers location and length + - interrupts : should contain the VI interrupt + +1.b) The Processor Interface (PI) node + + Represents the data and control interface between the main processor + and graphics and audio processor. + + Required properties: + + - compatible : should be "nintendo,hollywood-pi","nintendo,flipper-pi" + - reg : should contain the PI registers location and length + +1.b.i) The "Flipper" interrupt controller node + + Represents the "Flipper" interrupt controller within the "Hollywood" chip. + The node for the "Flipper" interrupt controller must be placed under + the PI node. + + Required properties: + + - #interrupt-cells : <1> + - compatible : should be "nintendo,flipper-pic" + - interrupt-controller + +1.c) The Digital Signal Procesor (DSP) node + + Represents the digital signal processor interface, designed to offload + audio related tasks. + + Required properties: + + - compatible : should be "nintendo,hollywood-dsp","nintendo,flipper-dsp" + - reg : should contain the DSP registers location and length + - interrupts : should contain the DSP interrupt + +1.d) The Serial Interface (SI) node + + Represents the interface to the four single bit serial interfaces. + The SI is a proprietary serial interface used normally to control gamepads. + It's NOT a RS232-type interface. + + Required properties: + + - compatible : should be "nintendo,hollywood-si","nintendo,flipper-si" + - reg : should contain the SI registers location and length + - interrupts : should contain the SI interrupt + +1.e) The Audio Interface (AI) node + + Represents the interface to the external 16-bit stereo digital-to-analog + converter. + + Required properties: + + - compatible : should be "nintendo,hollywood-ai","nintendo,flipper-ai" + - reg : should contain the AI registers location and length + - interrupts : should contain the AI interrupt + +1.f) The External Interface (EXI) node + + Represents the multi-channel SPI-like interface. + + Required properties: + + - compatible : should be "nintendo,hollywood-exi","nintendo,flipper-exi" + - reg : should contain the EXI registers location and length + - interrupts : should contain the EXI interrupt + +1.g) The Open Host Controller Interface (OHCI) nodes + + Represent the USB 1.x Open Host Controller Interfaces. + + Required properties: + + - compatible : should be "nintendo,hollywood-usb-ohci","usb-ohci" + - reg : should contain the OHCI registers location and length + - interrupts : should contain the OHCI interrupt + +1.h) The Enhanced Host Controller Interface (EHCI) node + + Represents the USB 2.0 Enhanced Host Controller Interface. + + Required properties: + + - compatible : should be "nintendo,hollywood-usb-ehci","usb-ehci" + - reg : should contain the EHCI registers location and length + - interrupts : should contain the EHCI interrupt + +1.i) The Secure Digital Host Controller Interface (SDHCI) nodes + + Represent the Secure Digital Host Controller Interfaces. + + Required properties: + + - compatible : should be "nintendo,hollywood-sdhci","sdhci" + - reg : should contain the SDHCI registers location and length + - interrupts : should contain the SDHCI interrupt + +1.j) The Inter-Processsor Communication (IPC) node + + Represent the Inter-Processor Communication interface. This interface + enables communications between the Broadway and the Starlet processors. + + - compatible : should be "nintendo,hollywood-ipc" + - reg : should contain the IPC registers location and length + - interrupts : should contain the IPC interrupt + +1.k) The "Hollywood" interrupt controller node + + Represents the "Hollywood" interrupt controller within the + "Hollywood" chip. + + Required properties: + + - #interrupt-cells : <1> + - compatible : should be "nintendo,hollywood-pic" + - reg : should contain the controller registers location and length + - interrupt-controller + - interrupts : should contain the cascade interrupt of the "flipper" pic + - interrupt-parent: should contain the phandle of the "flipper" pic + +1.l) The General Purpose I/O (GPIO) controller node + + Represents the dual access 32 GPIO controller interface. + + Required properties: + + - #gpio-cells : <2> + - compatible : should be "nintendo,hollywood-gpio" + - reg : should contain the IPC registers location and length + - gpio-controller + +1.m) The control node + + Represents the control interface used to setup several miscellaneous + settings of the "Hollywood" chip like boot memory mappings, resets, + disk interface mode, etc. + + Required properties: + + - compatible : should be "nintendo,hollywood-control" + - reg : should contain the control registers location and length + +1.n) The Disk Interface (DI) node + + Represents the interface used to communicate with mass storage devices. + + Required properties: + + - compatible : should be "nintendo,hollywood-di" + - reg : should contain the DI registers location and length + - interrupts : should contain the DI interrupt + diff --git a/Documentation/devicetree/bindings/spi/fsl-spi.txt b/Documentation/devicetree/bindings/spi/fsl-spi.txt new file mode 100644 index 000000000000..777abd7399d5 --- /dev/null +++ b/Documentation/devicetree/bindings/spi/fsl-spi.txt @@ -0,0 +1,53 @@ +* SPI (Serial Peripheral Interface) + +Required properties: +- cell-index : QE SPI subblock index. + 0: QE subblock SPI1 + 1: QE subblock SPI2 +- compatible : should be "fsl,spi". +- mode : the SPI operation mode, it can be "cpu" or "cpu-qe". +- reg : Offset and length of the register set for the device +- interrupts : where a is the interrupt number and b is a + field that represents an encoding of the sense and level + information for the interrupt. This should be encoded based on + the information in section 2) depending on the type of interrupt + controller you have. +- interrupt-parent : the phandle for the interrupt controller that + services interrupts for this device. + +Optional properties: +- gpios : specifies the gpio pins to be used for chipselects. + The gpios will be referred to as reg = in the SPI child nodes. + If unspecified, a single SPI device without a chip select can be used. + +Example: + spi@4c0 { + cell-index = <0>; + compatible = "fsl,spi"; + reg = <4c0 40>; + interrupts = <82 0>; + interrupt-parent = <700>; + mode = "cpu"; + gpios = <&gpio 18 1 // device reg=<0> + &gpio 19 1>; // device reg=<1> + }; + + +* eSPI (Enhanced Serial Peripheral Interface) + +Required properties: +- compatible : should be "fsl,mpc8536-espi". +- reg : Offset and length of the register set for the device. +- interrupts : should contain eSPI interrupt, the device has one interrupt. +- fsl,espi-num-chipselects : the number of the chipselect signals. + +Example: + spi@110000 { + #address-cells = <1>; + #size-cells = <0>; + compatible = "fsl,mpc8536-espi"; + reg = <0x110000 0x1000>; + interrupts = <53 0x2>; + interrupt-parent = <&mpic>; + fsl,espi-num-chipselects = <4>; + }; diff --git a/Documentation/devicetree/bindings/spi/spi-bus.txt b/Documentation/devicetree/bindings/spi/spi-bus.txt new file mode 100644 index 000000000000..e782add2e457 --- /dev/null +++ b/Documentation/devicetree/bindings/spi/spi-bus.txt @@ -0,0 +1,57 @@ +SPI (Serial Peripheral Interface) busses + +SPI busses can be described with a node for the SPI master device +and a set of child nodes for each SPI slave on the bus. For this +discussion, it is assumed that the system's SPI controller is in +SPI master mode. This binding does not describe SPI controllers +in slave mode. + +The SPI master node requires the following properties: +- #address-cells - number of cells required to define a chip select + address on the SPI bus. +- #size-cells - should be zero. +- compatible - name of SPI bus controller following generic names + recommended practice. +No other properties are required in the SPI bus node. It is assumed +that a driver for an SPI bus device will understand that it is an SPI bus. +However, the binding does not attempt to define the specific method for +assigning chip select numbers. Since SPI chip select configuration is +flexible and non-standardized, it is left out of this binding with the +assumption that board specific platform code will be used to manage +chip selects. Individual drivers can define additional properties to +support describing the chip select layout. + +SPI slave nodes must be children of the SPI master node and can +contain the following properties. +- reg - (required) chip select address of device. +- compatible - (required) name of SPI device following generic names + recommended practice +- spi-max-frequency - (required) Maximum SPI clocking speed of device in Hz +- spi-cpol - (optional) Empty property indicating device requires + inverse clock polarity (CPOL) mode +- spi-cpha - (optional) Empty property indicating device requires + shifted clock phase (CPHA) mode +- spi-cs-high - (optional) Empty property indicating device requires + chip select active high + +SPI example for an MPC5200 SPI bus: + spi@f00 { + #address-cells = <1>; + #size-cells = <0>; + compatible = "fsl,mpc5200b-spi","fsl,mpc5200-spi"; + reg = <0xf00 0x20>; + interrupts = <2 13 0 2 14 0>; + interrupt-parent = <&mpc5200_pic>; + + ethernet-switch@0 { + compatible = "micrel,ks8995m"; + spi-max-frequency = <1000000>; + reg = <0>; + }; + + codec@1 { + compatible = "ti,tlv320aic26"; + spi-max-frequency = <100000>; + reg = <1>; + }; + }; diff --git a/Documentation/devicetree/bindings/usb/fsl-usb.txt b/Documentation/devicetree/bindings/usb/fsl-usb.txt new file mode 100644 index 000000000000..bd5723f0b67e --- /dev/null +++ b/Documentation/devicetree/bindings/usb/fsl-usb.txt @@ -0,0 +1,81 @@ +Freescale SOC USB controllers + +The device node for a USB controller that is part of a Freescale +SOC is as described in the document "Open Firmware Recommended +Practice : Universal Serial Bus" with the following modifications +and additions : + +Required properties : + - compatible : Should be "fsl-usb2-mph" for multi port host USB + controllers, or "fsl-usb2-dr" for dual role USB controllers + or "fsl,mpc5121-usb2-dr" for dual role USB controllers of MPC5121 + - phy_type : For multi port host USB controllers, should be one of + "ulpi", or "serial". For dual role USB controllers, should be + one of "ulpi", "utmi", "utmi_wide", or "serial". + - reg : Offset and length of the register set for the device + - port0 : boolean; if defined, indicates port0 is connected for + fsl-usb2-mph compatible controllers. Either this property or + "port1" (or both) must be defined for "fsl-usb2-mph" compatible + controllers. + - port1 : boolean; if defined, indicates port1 is connected for + fsl-usb2-mph compatible controllers. Either this property or + "port0" (or both) must be defined for "fsl-usb2-mph" compatible + controllers. + - dr_mode : indicates the working mode for "fsl-usb2-dr" compatible + controllers. Can be "host", "peripheral", or "otg". Default to + "host" if not defined for backward compatibility. + +Recommended properties : + - interrupts : where a is the interrupt number and b is a + field that represents an encoding of the sense and level + information for the interrupt. This should be encoded based on + the information in section 2) depending on the type of interrupt + controller you have. + - interrupt-parent : the phandle for the interrupt controller that + services interrupts for this device. + +Optional properties : + - fsl,invert-drvvbus : boolean; for MPC5121 USB0 only. Indicates the + port power polarity of internal PHY signal DRVVBUS is inverted. + - fsl,invert-pwr-fault : boolean; for MPC5121 USB0 only. Indicates + the PWR_FAULT signal polarity is inverted. + +Example multi port host USB controller device node : + usb@22000 { + compatible = "fsl-usb2-mph"; + reg = <22000 1000>; + #address-cells = <1>; + #size-cells = <0>; + interrupt-parent = <700>; + interrupts = <27 1>; + phy_type = "ulpi"; + port0; + port1; + }; + +Example dual role USB controller device node : + usb@23000 { + compatible = "fsl-usb2-dr"; + reg = <23000 1000>; + #address-cells = <1>; + #size-cells = <0>; + interrupt-parent = <700>; + interrupts = <26 1>; + dr_mode = "otg"; + phy = "ulpi"; + }; + +Example dual role USB controller device node for MPC5121ADS: + + usb@4000 { + compatible = "fsl,mpc5121-usb2-dr"; + reg = <0x4000 0x1000>; + #address-cells = <1>; + #size-cells = <0>; + interrupt-parent = < &ipic >; + interrupts = <44 0x8>; + dr_mode = "otg"; + phy_type = "utmi_wide"; + fsl,invert-drvvbus; + fsl,invert-pwr-fault; + }; diff --git a/Documentation/devicetree/bindings/usb/usb-ehci.txt b/Documentation/devicetree/bindings/usb/usb-ehci.txt new file mode 100644 index 000000000000..fa18612f757b --- /dev/null +++ b/Documentation/devicetree/bindings/usb/usb-ehci.txt @@ -0,0 +1,25 @@ +USB EHCI controllers + +Required properties: + - compatible : should be "usb-ehci". + - reg : should contain at least address and length of the standard EHCI + register set for the device. Optional platform-dependent registers + (debug-port or other) can be also specified here, but only after + definition of standard EHCI registers. + - interrupts : one EHCI interrupt should be described here. +If device registers are implemented in big endian mode, the device +node should have "big-endian-regs" property. +If controller implementation operates with big endian descriptors, +"big-endian-desc" property should be specified. +If both big endian registers and descriptors are used by the controller +implementation, "big-endian" property can be specified instead of having +both "big-endian-regs" and "big-endian-desc". + +Example (Sequoia 440EPx): + ehci@e0000300 { + compatible = "ibm,usb-ehci-440epx", "usb-ehci"; + interrupt-parent = <&UIC0>; + interrupts = <1a 4>; + reg = <0 e0000300 90 0 e0000390 70>; + big-endian; + }; diff --git a/Documentation/devicetree/bindings/xilinx.txt b/Documentation/devicetree/bindings/xilinx.txt new file mode 100644 index 000000000000..299d0923537b --- /dev/null +++ b/Documentation/devicetree/bindings/xilinx.txt @@ -0,0 +1,306 @@ + d) Xilinx IP cores + + The Xilinx EDK toolchain ships with a set of IP cores (devices) for use + in Xilinx Spartan and Virtex FPGAs. The devices cover the whole range + of standard device types (network, serial, etc.) and miscellaneous + devices (gpio, LCD, spi, etc). Also, since these devices are + implemented within the fpga fabric every instance of the device can be + synthesised with different options that change the behaviour. + + Each IP-core has a set of parameters which the FPGA designer can use to + control how the core is synthesized. Historically, the EDK tool would + extract the device parameters relevant to device drivers and copy them + into an 'xparameters.h' in the form of #define symbols. This tells the + device drivers how the IP cores are configured, but it requires the kernel + to be recompiled every time the FPGA bitstream is resynthesized. + + The new approach is to export the parameters into the device tree and + generate a new device tree each time the FPGA bitstream changes. The + parameters which used to be exported as #defines will now become + properties of the device node. In general, device nodes for IP-cores + will take the following form: + + (name): (generic-name)@(base-address) { + compatible = "xlnx,(ip-core-name)-(HW_VER)" + [, (list of compatible devices), ...]; + reg = <(baseaddr) (size)>; + interrupt-parent = <&interrupt-controller-phandle>; + interrupts = < ... >; + xlnx,(parameter1) = "(string-value)"; + xlnx,(parameter2) = <(int-value)>; + }; + + (generic-name): an open firmware-style name that describes the + generic class of device. Preferably, this is one word, such + as 'serial' or 'ethernet'. + (ip-core-name): the name of the ip block (given after the BEGIN + directive in system.mhs). Should be in lowercase + and all underscores '_' converted to dashes '-'. + (name): is derived from the "PARAMETER INSTANCE" value. + (parameter#): C_* parameters from system.mhs. The C_ prefix is + dropped from the parameter name, the name is converted + to lowercase and all underscore '_' characters are + converted to dashes '-'. + (baseaddr): the baseaddr parameter value (often named C_BASEADDR). + (HW_VER): from the HW_VER parameter. + (size): the address range size (often C_HIGHADDR - C_BASEADDR + 1). + + Typically, the compatible list will include the exact IP core version + followed by an older IP core version which implements the same + interface or any other device with the same interface. + + 'reg', 'interrupt-parent' and 'interrupts' are all optional properties. + + For example, the following block from system.mhs: + + BEGIN opb_uartlite + PARAMETER INSTANCE = opb_uartlite_0 + PARAMETER HW_VER = 1.00.b + PARAMETER C_BAUDRATE = 115200 + PARAMETER C_DATA_BITS = 8 + PARAMETER C_ODD_PARITY = 0 + PARAMETER C_USE_PARITY = 0 + PARAMETER C_CLK_FREQ = 50000000 + PARAMETER C_BASEADDR = 0xEC100000 + PARAMETER C_HIGHADDR = 0xEC10FFFF + BUS_INTERFACE SOPB = opb_7 + PORT OPB_Clk = CLK_50MHz + PORT Interrupt = opb_uartlite_0_Interrupt + PORT RX = opb_uartlite_0_RX + PORT TX = opb_uartlite_0_TX + PORT OPB_Rst = sys_bus_reset_0 + END + + becomes the following device tree node: + + opb_uartlite_0: serial@ec100000 { + device_type = "serial"; + compatible = "xlnx,opb-uartlite-1.00.b"; + reg = ; + interrupt-parent = <&opb_intc_0>; + interrupts = <1 0>; // got this from the opb_intc parameters + current-speed = ; // standard serial device prop + clock-frequency = ; // standard serial device prop + xlnx,data-bits = <8>; + xlnx,odd-parity = <0>; + xlnx,use-parity = <0>; + }; + + Some IP cores actually implement 2 or more logical devices. In + this case, the device should still describe the whole IP core with + a single node and add a child node for each logical device. The + ranges property can be used to translate from parent IP-core to the + registers of each device. In addition, the parent node should be + compatible with the bus type 'xlnx,compound', and should contain + #address-cells and #size-cells, as with any other bus. (Note: this + makes the assumption that both logical devices have the same bus + binding. If this is not true, then separate nodes should be used + for each logical device). The 'cell-index' property can be used to + enumerate logical devices within an IP core. For example, the + following is the system.mhs entry for the dual ps2 controller found + on the ml403 reference design. + + BEGIN opb_ps2_dual_ref + PARAMETER INSTANCE = opb_ps2_dual_ref_0 + PARAMETER HW_VER = 1.00.a + PARAMETER C_BASEADDR = 0xA9000000 + PARAMETER C_HIGHADDR = 0xA9001FFF + BUS_INTERFACE SOPB = opb_v20_0 + PORT Sys_Intr1 = ps2_1_intr + PORT Sys_Intr2 = ps2_2_intr + PORT Clkin1 = ps2_clk_rx_1 + PORT Clkin2 = ps2_clk_rx_2 + PORT Clkpd1 = ps2_clk_tx_1 + PORT Clkpd2 = ps2_clk_tx_2 + PORT Rx1 = ps2_d_rx_1 + PORT Rx2 = ps2_d_rx_2 + PORT Txpd1 = ps2_d_tx_1 + PORT Txpd2 = ps2_d_tx_2 + END + + It would result in the following device tree nodes: + + opb_ps2_dual_ref_0: opb-ps2-dual-ref@a9000000 { + #address-cells = <1>; + #size-cells = <1>; + compatible = "xlnx,compound"; + ranges = <0 a9000000 2000>; + // If this device had extra parameters, then they would + // go here. + ps2@0 { + compatible = "xlnx,opb-ps2-dual-ref-1.00.a"; + reg = <0 40>; + interrupt-parent = <&opb_intc_0>; + interrupts = <3 0>; + cell-index = <0>; + }; + ps2@1000 { + compatible = "xlnx,opb-ps2-dual-ref-1.00.a"; + reg = <1000 40>; + interrupt-parent = <&opb_intc_0>; + interrupts = <3 0>; + cell-index = <0>; + }; + }; + + Also, the system.mhs file defines bus attachments from the processor + to the devices. The device tree structure should reflect the bus + attachments. Again an example; this system.mhs fragment: + + BEGIN ppc405_virtex4 + PARAMETER INSTANCE = ppc405_0 + PARAMETER HW_VER = 1.01.a + BUS_INTERFACE DPLB = plb_v34_0 + BUS_INTERFACE IPLB = plb_v34_0 + END + + BEGIN opb_intc + PARAMETER INSTANCE = opb_intc_0 + PARAMETER HW_VER = 1.00.c + PARAMETER C_BASEADDR = 0xD1000FC0 + PARAMETER C_HIGHADDR = 0xD1000FDF + BUS_INTERFACE SOPB = opb_v20_0 + END + + BEGIN opb_uart16550 + PARAMETER INSTANCE = opb_uart16550_0 + PARAMETER HW_VER = 1.00.d + PARAMETER C_BASEADDR = 0xa0000000 + PARAMETER C_HIGHADDR = 0xa0001FFF + BUS_INTERFACE SOPB = opb_v20_0 + END + + BEGIN plb_v34 + PARAMETER INSTANCE = plb_v34_0 + PARAMETER HW_VER = 1.02.a + END + + BEGIN plb_bram_if_cntlr + PARAMETER INSTANCE = plb_bram_if_cntlr_0 + PARAMETER HW_VER = 1.00.b + PARAMETER C_BASEADDR = 0xFFFF0000 + PARAMETER C_HIGHADDR = 0xFFFFFFFF + BUS_INTERFACE SPLB = plb_v34_0 + END + + BEGIN plb2opb_bridge + PARAMETER INSTANCE = plb2opb_bridge_0 + PARAMETER HW_VER = 1.01.a + PARAMETER C_RNG0_BASEADDR = 0x20000000 + PARAMETER C_RNG0_HIGHADDR = 0x3FFFFFFF + PARAMETER C_RNG1_BASEADDR = 0x60000000 + PARAMETER C_RNG1_HIGHADDR = 0x7FFFFFFF + PARAMETER C_RNG2_BASEADDR = 0x80000000 + PARAMETER C_RNG2_HIGHADDR = 0xBFFFFFFF + PARAMETER C_RNG3_BASEADDR = 0xC0000000 + PARAMETER C_RNG3_HIGHADDR = 0xDFFFFFFF + BUS_INTERFACE SPLB = plb_v34_0 + BUS_INTERFACE MOPB = opb_v20_0 + END + + Gives this device tree (some properties removed for clarity): + + plb@0 { + #address-cells = <1>; + #size-cells = <1>; + compatible = "xlnx,plb-v34-1.02.a"; + device_type = "ibm,plb"; + ranges; // 1:1 translation + + plb_bram_if_cntrl_0: bram@ffff0000 { + reg = ; + } + + opb@20000000 { + #address-cells = <1>; + #size-cells = <1>; + ranges = <20000000 20000000 20000000 + 60000000 60000000 20000000 + 80000000 80000000 40000000 + c0000000 c0000000 20000000>; + + opb_uart16550_0: serial@a0000000 { + reg = ; + }; + + opb_intc_0: interrupt-controller@d1000fc0 { + reg = ; + }; + }; + }; + + That covers the general approach to binding xilinx IP cores into the + device tree. The following are bindings for specific devices: + + i) Xilinx ML300 Framebuffer + + Simple framebuffer device from the ML300 reference design (also on the + ML403 reference design as well as others). + + Optional properties: + - resolution = : pixel resolution of framebuffer. Some + implementations use a different resolution. + Default is + - virt-resolution = : Size of framebuffer in memory. + Default is . + - rotate-display (empty) : rotate display 180 degrees. + + ii) Xilinx SystemACE + + The Xilinx SystemACE device is used to program FPGAs from an FPGA + bitstream stored on a CF card. It can also be used as a generic CF + interface device. + + Optional properties: + - 8-bit (empty) : Set this property for SystemACE in 8 bit mode + + iii) Xilinx EMAC and Xilinx TEMAC + + Xilinx Ethernet devices. In addition to general xilinx properties + listed above, nodes for these devices should include a phy-handle + property, and may include other common network device properties + like local-mac-address. + + iv) Xilinx Uartlite + + Xilinx uartlite devices are simple fixed speed serial ports. + + Required properties: + - current-speed : Baud rate of uartlite + + v) Xilinx hwicap + + Xilinx hwicap devices provide access to the configuration logic + of the FPGA through the Internal Configuration Access Port + (ICAP). The ICAP enables partial reconfiguration of the FPGA, + readback of the configuration information, and some control over + 'warm boots' of the FPGA fabric. + + Required properties: + - xlnx,family : The family of the FPGA, necessary since the + capabilities of the underlying ICAP hardware + differ between different families. May be + 'virtex2p', 'virtex4', or 'virtex5'. + + vi) Xilinx Uart 16550 + + Xilinx UART 16550 devices are very similar to the NS16550 but with + different register spacing and an offset from the base address. + + Required properties: + - clock-frequency : Frequency of the clock input + - reg-offset : A value of 3 is required + - reg-shift : A value of 2 is required + + vii) Xilinx USB Host controller + + The Xilinx USB host controller is EHCI compatible but with a different + base address for the EHCI registers, and it is always a big-endian + USB Host controller. The hardware can be configured as high speed only, + or high speed/full speed hybrid. + + Required properties: + - xlnx,support-usb-fs: A value 0 means the core is built as high speed + only. A value 1 means the core also supports + full speed devices. + diff --git a/Documentation/devicetree/booting-without-of.txt b/Documentation/devicetree/booting-without-of.txt new file mode 100644 index 000000000000..7400d7555dc3 --- /dev/null +++ b/Documentation/devicetree/booting-without-of.txt @@ -0,0 +1,1447 @@ + Booting the Linux/ppc kernel without Open Firmware + -------------------------------------------------- + +(c) 2005 Benjamin Herrenschmidt , + IBM Corp. +(c) 2005 Becky Bruce , + Freescale Semiconductor, FSL SOC and 32-bit additions +(c) 2006 MontaVista Software, Inc. + Flash chip node definition + +Table of Contents +================= + + I - Introduction + 1) Entry point for arch/powerpc + 2) Board support + + II - The DT block format + 1) Header + 2) Device tree generalities + 3) Device tree "structure" block + 4) Device tree "strings" block + + III - Required content of the device tree + 1) Note about cells and address representation + 2) Note about "compatible" properties + 3) Note about "name" properties + 4) Note about node and property names and character set + 5) Required nodes and properties + a) The root node + b) The /cpus node + c) The /cpus/* nodes + d) the /memory node(s) + e) The /chosen node + f) the /soc node + + IV - "dtc", the device tree compiler + + V - Recommendations for a bootloader + + VI - System-on-a-chip devices and nodes + 1) Defining child nodes of an SOC + 2) Representing devices without a current OF specification + a) PHY nodes + b) Interrupt controllers + c) 4xx/Axon EMAC ethernet nodes + d) Xilinx IP cores + e) USB EHCI controllers + f) MDIO on GPIOs + g) SPI busses + + VII - Specifying interrupt information for devices + 1) interrupts property + 2) interrupt-parent property + 3) OpenPIC Interrupt Controllers + 4) ISA Interrupt Controllers + + VIII - Specifying device power management information (sleep property) + + Appendix A - Sample SOC node for MPC8540 + + +Revision Information +==================== + + May 18, 2005: Rev 0.1 - Initial draft, no chapter III yet. + + May 19, 2005: Rev 0.2 - Add chapter III and bits & pieces here or + clarifies the fact that a lot of things are + optional, the kernel only requires a very + small device tree, though it is encouraged + to provide an as complete one as possible. + + May 24, 2005: Rev 0.3 - Precise that DT block has to be in RAM + - Misc fixes + - Define version 3 and new format version 16 + for the DT block (version 16 needs kernel + patches, will be fwd separately). + String block now has a size, and full path + is replaced by unit name for more + compactness. + linux,phandle is made optional, only nodes + that are referenced by other nodes need it. + "name" property is now automatically + deduced from the unit name + + June 1, 2005: Rev 0.4 - Correct confusion between OF_DT_END and + OF_DT_END_NODE in structure definition. + - Change version 16 format to always align + property data to 4 bytes. Since tokens are + already aligned, that means no specific + required alignment between property size + and property data. The old style variable + alignment would make it impossible to do + "simple" insertion of properties using + memmove (thanks Milton for + noticing). Updated kernel patch as well + - Correct a few more alignment constraints + - Add a chapter about the device-tree + compiler and the textural representation of + the tree that can be "compiled" by dtc. + + November 21, 2005: Rev 0.5 + - Additions/generalizations for 32-bit + - Changed to reflect the new arch/powerpc + structure + - Added chapter VI + + + ToDo: + - Add some definitions of interrupt tree (simple/complex) + - Add some definitions for PCI host bridges + - Add some common address format examples + - Add definitions for standard properties and "compatible" + names for cells that are not already defined by the existing + OF spec. + - Compare FSL SOC use of PCI to standard and make sure no new + node definition required. + - Add more information about node definitions for SOC devices + that currently have no standard, like the FSL CPM. + + +I - Introduction +================ + +During the recent development of the Linux/ppc64 kernel, and more +specifically, the addition of new platform types outside of the old +IBM pSeries/iSeries pair, it was decided to enforce some strict rules +regarding the kernel entry and bootloader <-> kernel interfaces, in +order to avoid the degeneration that had become the ppc32 kernel entry +point and the way a new platform should be added to the kernel. The +legacy iSeries platform breaks those rules as it predates this scheme, +but no new board support will be accepted in the main tree that +doesn't follow them properly. In addition, since the advent of the +arch/powerpc merged architecture for ppc32 and ppc64, new 32-bit +platforms and 32-bit platforms which move into arch/powerpc will be +required to use these rules as well. + +The main requirement that will be defined in more detail below is +the presence of a device-tree whose format is defined after Open +Firmware specification. However, in order to make life easier +to embedded board vendors, the kernel doesn't require the device-tree +to represent every device in the system and only requires some nodes +and properties to be present. This will be described in detail in +section III, but, for example, the kernel does not require you to +create a node for every PCI device in the system. It is a requirement +to have a node for PCI host bridges in order to provide interrupt +routing informations and memory/IO ranges, among others. It is also +recommended to define nodes for on chip devices and other busses that +don't specifically fit in an existing OF specification. This creates a +great flexibility in the way the kernel can then probe those and match +drivers to device, without having to hard code all sorts of tables. It +also makes it more flexible for board vendors to do minor hardware +upgrades without significantly impacting the kernel code or cluttering +it with special cases. + + +1) Entry point for arch/powerpc +------------------------------- + + There is one and one single entry point to the kernel, at the start + of the kernel image. That entry point supports two calling + conventions: + + a) Boot from Open Firmware. If your firmware is compatible + with Open Firmware (IEEE 1275) or provides an OF compatible + client interface API (support for "interpret" callback of + forth words isn't required), you can enter the kernel with: + + r5 : OF callback pointer as defined by IEEE 1275 + bindings to powerpc. Only the 32-bit client interface + is currently supported + + r3, r4 : address & length of an initrd if any or 0 + + The MMU is either on or off; the kernel will run the + trampoline located in arch/powerpc/kernel/prom_init.c to + extract the device-tree and other information from open + firmware and build a flattened device-tree as described + in b). prom_init() will then re-enter the kernel using + the second method. This trampoline code runs in the + context of the firmware, which is supposed to handle all + exceptions during that time. + + b) Direct entry with a flattened device-tree block. This entry + point is called by a) after the OF trampoline and can also be + called directly by a bootloader that does not support the Open + Firmware client interface. It is also used by "kexec" to + implement "hot" booting of a new kernel from a previous + running one. This method is what I will describe in more + details in this document, as method a) is simply standard Open + Firmware, and thus should be implemented according to the + various standard documents defining it and its binding to the + PowerPC platform. The entry point definition then becomes: + + r3 : physical pointer to the device-tree block + (defined in chapter II) in RAM + + r4 : physical pointer to the kernel itself. This is + used by the assembly code to properly disable the MMU + in case you are entering the kernel with MMU enabled + and a non-1:1 mapping. + + r5 : NULL (as to differentiate with method a) + + Note about SMP entry: Either your firmware puts your other + CPUs in some sleep loop or spin loop in ROM where you can get + them out via a soft reset or some other means, in which case + you don't need to care, or you'll have to enter the kernel + with all CPUs. The way to do that with method b) will be + described in a later revision of this document. + + +2) Board support +---------------- + +64-bit kernels: + + Board supports (platforms) are not exclusive config options. An + arbitrary set of board supports can be built in a single kernel + image. The kernel will "know" what set of functions to use for a + given platform based on the content of the device-tree. Thus, you + should: + + a) add your platform support as a _boolean_ option in + arch/powerpc/Kconfig, following the example of PPC_PSERIES, + PPC_PMAC and PPC_MAPLE. The later is probably a good + example of a board support to start from. + + b) create your main platform file as + "arch/powerpc/platforms/myplatform/myboard_setup.c" and add it + to the Makefile under the condition of your CONFIG_ + option. This file will define a structure of type "ppc_md" + containing the various callbacks that the generic code will + use to get to your platform specific code + + c) Add a reference to your "ppc_md" structure in the + "machines" table in arch/powerpc/kernel/setup_64.c if you are + a 64-bit platform. + + d) request and get assigned a platform number (see PLATFORM_* + constants in arch/powerpc/include/asm/processor.h + +32-bit embedded kernels: + + Currently, board support is essentially an exclusive config option. + The kernel is configured for a single platform. Part of the reason + for this is to keep kernels on embedded systems small and efficient; + part of this is due to the fact the code is already that way. In the + future, a kernel may support multiple platforms, but only if the + platforms feature the same core architecture. A single kernel build + cannot support both configurations with Book E and configurations + with classic Powerpc architectures. + + 32-bit embedded platforms that are moved into arch/powerpc using a + flattened device tree should adopt the merged tree practice of + setting ppc_md up dynamically, even though the kernel is currently + built with support for only a single platform at a time. This allows + unification of the setup code, and will make it easier to go to a + multiple-platform-support model in the future. + +NOTE: I believe the above will be true once Ben's done with the merge +of the boot sequences.... someone speak up if this is wrong! + + To add a 32-bit embedded platform support, follow the instructions + for 64-bit platforms above, with the exception that the Kconfig + option should be set up such that the kernel builds exclusively for + the platform selected. The processor type for the platform should + enable another config option to select the specific board + supported. + +NOTE: If Ben doesn't merge the setup files, may need to change this to +point to setup_32.c + + + I will describe later the boot process and various callbacks that + your platform should implement. + + +II - The DT block format +======================== + + +This chapter defines the actual format of the flattened device-tree +passed to the kernel. The actual content of it and kernel requirements +are described later. You can find example of code manipulating that +format in various places, including arch/powerpc/kernel/prom_init.c +which will generate a flattened device-tree from the Open Firmware +representation, or the fs2dt utility which is part of the kexec tools +which will generate one from a filesystem representation. It is +expected that a bootloader like uboot provides a bit more support, +that will be discussed later as well. + +Note: The block has to be in main memory. It has to be accessible in +both real mode and virtual mode with no mapping other than main +memory. If you are writing a simple flash bootloader, it should copy +the block to RAM before passing it to the kernel. + + +1) Header +--------- + + The kernel is entered with r3 pointing to an area of memory that is + roughly described in arch/powerpc/include/asm/prom.h by the structure + boot_param_header: + +struct boot_param_header { + u32 magic; /* magic word OF_DT_HEADER */ + u32 totalsize; /* total size of DT block */ + u32 off_dt_struct; /* offset to structure */ + u32 off_dt_strings; /* offset to strings */ + u32 off_mem_rsvmap; /* offset to memory reserve map + */ + u32 version; /* format version */ + u32 last_comp_version; /* last compatible version */ + + /* version 2 fields below */ + u32 boot_cpuid_phys; /* Which physical CPU id we're + booting on */ + /* version 3 fields below */ + u32 size_dt_strings; /* size of the strings block */ + + /* version 17 fields below */ + u32 size_dt_struct; /* size of the DT structure block */ +}; + + Along with the constants: + +/* Definitions used by the flattened device tree */ +#define OF_DT_HEADER 0xd00dfeed /* 4: version, + 4: total size */ +#define OF_DT_BEGIN_NODE 0x1 /* Start node: full name + */ +#define OF_DT_END_NODE 0x2 /* End node */ +#define OF_DT_PROP 0x3 /* Property: name off, + size, content */ +#define OF_DT_END 0x9 + + All values in this header are in big endian format, the various + fields in this header are defined more precisely below. All + "offset" values are in bytes from the start of the header; that is + from the value of r3. + + - magic + + This is a magic value that "marks" the beginning of the + device-tree block header. It contains the value 0xd00dfeed and is + defined by the constant OF_DT_HEADER + + - totalsize + + This is the total size of the DT block including the header. The + "DT" block should enclose all data structures defined in this + chapter (who are pointed to by offsets in this header). That is, + the device-tree structure, strings, and the memory reserve map. + + - off_dt_struct + + This is an offset from the beginning of the header to the start + of the "structure" part the device tree. (see 2) device tree) + + - off_dt_strings + + This is an offset from the beginning of the header to the start + of the "strings" part of the device-tree + + - off_mem_rsvmap + + This is an offset from the beginning of the header to the start + of the reserved memory map. This map is a list of pairs of 64- + bit integers. Each pair is a physical address and a size. The + list is terminated by an entry of size 0. This map provides the + kernel with a list of physical memory areas that are "reserved" + and thus not to be used for memory allocations, especially during + early initialization. The kernel needs to allocate memory during + boot for things like un-flattening the device-tree, allocating an + MMU hash table, etc... Those allocations must be done in such a + way to avoid overriding critical things like, on Open Firmware + capable machines, the RTAS instance, or on some pSeries, the TCE + tables used for the iommu. Typically, the reserve map should + contain _at least_ this DT block itself (header,total_size). If + you are passing an initrd to the kernel, you should reserve it as + well. You do not need to reserve the kernel image itself. The map + should be 64-bit aligned. + + - version + + This is the version of this structure. Version 1 stops + here. Version 2 adds an additional field boot_cpuid_phys. + Version 3 adds the size of the strings block, allowing the kernel + to reallocate it easily at boot and free up the unused flattened + structure after expansion. Version 16 introduces a new more + "compact" format for the tree itself that is however not backward + compatible. Version 17 adds an additional field, size_dt_struct, + allowing it to be reallocated or moved more easily (this is + particularly useful for bootloaders which need to make + adjustments to a device tree based on probed information). You + should always generate a structure of the highest version defined + at the time of your implementation. Currently that is version 17, + unless you explicitly aim at being backward compatible. + + - last_comp_version + + Last compatible version. This indicates down to what version of + the DT block you are backward compatible. For example, version 2 + is backward compatible with version 1 (that is, a kernel build + for version 1 will be able to boot with a version 2 format). You + should put a 1 in this field if you generate a device tree of + version 1 to 3, or 16 if you generate a tree of version 16 or 17 + using the new unit name format. + + - boot_cpuid_phys + + This field only exist on version 2 headers. It indicate which + physical CPU ID is calling the kernel entry point. This is used, + among others, by kexec. If you are on an SMP system, this value + should match the content of the "reg" property of the CPU node in + the device-tree corresponding to the CPU calling the kernel entry + point (see further chapters for more informations on the required + device-tree contents) + + - size_dt_strings + + This field only exists on version 3 and later headers. It + gives the size of the "strings" section of the device tree (which + starts at the offset given by off_dt_strings). + + - size_dt_struct + + This field only exists on version 17 and later headers. It gives + the size of the "structure" section of the device tree (which + starts at the offset given by off_dt_struct). + + So the typical layout of a DT block (though the various parts don't + need to be in that order) looks like this (addresses go from top to + bottom): + + + ------------------------------ + r3 -> | struct boot_param_header | + ------------------------------ + | (alignment gap) (*) | + ------------------------------ + | memory reserve map | + ------------------------------ + | (alignment gap) | + ------------------------------ + | | + | device-tree structure | + | | + ------------------------------ + | (alignment gap) | + ------------------------------ + | | + | device-tree strings | + | | + -----> ------------------------------ + | + | + --- (r3 + totalsize) + + (*) The alignment gaps are not necessarily present; their presence + and size are dependent on the various alignment requirements of + the individual data blocks. + + +2) Device tree generalities +--------------------------- + +This device-tree itself is separated in two different blocks, a +structure block and a strings block. Both need to be aligned to a 4 +byte boundary. + +First, let's quickly describe the device-tree concept before detailing +the storage format. This chapter does _not_ describe the detail of the +required types of nodes & properties for the kernel, this is done +later in chapter III. + +The device-tree layout is strongly inherited from the definition of +the Open Firmware IEEE 1275 device-tree. It's basically a tree of +nodes, each node having two or more named properties. A property can +have a value or not. + +It is a tree, so each node has one and only one parent except for the +root node who has no parent. + +A node has 2 names. The actual node name is generally contained in a +property of type "name" in the node property list whose value is a +zero terminated string and is mandatory for version 1 to 3 of the +format definition (as it is in Open Firmware). Version 16 makes it +optional as it can generate it from the unit name defined below. + +There is also a "unit name" that is used to differentiate nodes with +the same name at the same level, it is usually made of the node +names, the "@" sign, and a "unit address", which definition is +specific to the bus type the node sits on. + +The unit name doesn't exist as a property per-se but is included in +the device-tree structure. It is typically used to represent "path" in +the device-tree. More details about the actual format of these will be +below. + +The kernel powerpc generic code does not make any formal use of the +unit address (though some board support code may do) so the only real +requirement here for the unit address is to ensure uniqueness of +the node unit name at a given level of the tree. Nodes with no notion +of address and no possible sibling of the same name (like /memory or +/cpus) may omit the unit address in the context of this specification, +or use the "@0" default unit address. The unit name is used to define +a node "full path", which is the concatenation of all parent node +unit names separated with "/". + +The root node doesn't have a defined name, and isn't required to have +a name property either if you are using version 3 or earlier of the +format. It also has no unit address (no @ symbol followed by a unit +address). The root node unit name is thus an empty string. The full +path to the root node is "/". + +Every node which actually represents an actual device (that is, a node +which isn't only a virtual "container" for more nodes, like "/cpus" +is) is also required to have a "device_type" property indicating the +type of node . + +Finally, every node that can be referenced from a property in another +node is required to have a "linux,phandle" property. Real open +firmware implementations provide a unique "phandle" value for every +node that the "prom_init()" trampoline code turns into +"linux,phandle" properties. However, this is made optional if the +flattened device tree is used directly. An example of a node +referencing another node via "phandle" is when laying out the +interrupt tree which will be described in a further version of this +document. + +This "linux, phandle" property is a 32-bit value that uniquely +identifies a node. You are free to use whatever values or system of +values, internal pointers, or whatever to generate these, the only +requirement is that every node for which you provide that property has +a unique value for it. + +Here is an example of a simple device-tree. In this example, an "o" +designates a node followed by the node unit name. Properties are +presented with their name followed by their content. "content" +represents an ASCII string (zero terminated) value, while +represents a 32-bit hexadecimal value. The various nodes in this +example will be discussed in a later chapter. At this point, it is +only meant to give you a idea of what a device-tree looks like. I have +purposefully kept the "name" and "linux,phandle" properties which +aren't necessary in order to give you a better idea of what the tree +looks like in practice. + + / o device-tree + |- name = "device-tree" + |- model = "MyBoardName" + |- compatible = "MyBoardFamilyName" + |- #address-cells = <2> + |- #size-cells = <2> + |- linux,phandle = <0> + | + o cpus + | | - name = "cpus" + | | - linux,phandle = <1> + | | - #address-cells = <1> + | | - #size-cells = <0> + | | + | o PowerPC,970@0 + | |- name = "PowerPC,970" + | |- device_type = "cpu" + | |- reg = <0> + | |- clock-frequency = <5f5e1000> + | |- 64-bit + | |- linux,phandle = <2> + | + o memory@0 + | |- name = "memory" + | |- device_type = "memory" + | |- reg = <00000000 00000000 00000000 20000000> + | |- linux,phandle = <3> + | + o chosen + |- name = "chosen" + |- bootargs = "root=/dev/sda2" + |- linux,phandle = <4> + +This tree is almost a minimal tree. It pretty much contains the +minimal set of required nodes and properties to boot a linux kernel; +that is, some basic model informations at the root, the CPUs, and the +physical memory layout. It also includes misc information passed +through /chosen, like in this example, the platform type (mandatory) +and the kernel command line arguments (optional). + +The /cpus/PowerPC,970@0/64-bit property is an example of a +property without a value. All other properties have a value. The +significance of the #address-cells and #size-cells properties will be +explained in chapter IV which defines precisely the required nodes and +properties and their content. + + +3) Device tree "structure" block + +The structure of the device tree is a linearized tree structure. The +"OF_DT_BEGIN_NODE" token starts a new node, and the "OF_DT_END_NODE" +ends that node definition. Child nodes are simply defined before +"OF_DT_END_NODE" (that is nodes within the node). A 'token' is a 32 +bit value. The tree has to be "finished" with a OF_DT_END token + +Here's the basic structure of a single node: + + * token OF_DT_BEGIN_NODE (that is 0x00000001) + * for version 1 to 3, this is the node full path as a zero + terminated string, starting with "/". For version 16 and later, + this is the node unit name only (or an empty string for the + root node) + * [align gap to next 4 bytes boundary] + * for each property: + * token OF_DT_PROP (that is 0x00000003) + * 32-bit value of property value size in bytes (or 0 if no + value) + * 32-bit value of offset in string block of property name + * property value data if any + * [align gap to next 4 bytes boundary] + * [child nodes if any] + * token OF_DT_END_NODE (that is 0x00000002) + +So the node content can be summarized as a start token, a full path, +a list of properties, a list of child nodes, and an end token. Every +child node is a full node structure itself as defined above. + +NOTE: The above definition requires that all property definitions for +a particular node MUST precede any subnode definitions for that node. +Although the structure would not be ambiguous if properties and +subnodes were intermingled, the kernel parser requires that the +properties come first (up until at least 2.6.22). Any tools +manipulating a flattened tree must take care to preserve this +constraint. + +4) Device tree "strings" block + +In order to save space, property names, which are generally redundant, +are stored separately in the "strings" block. This block is simply the +whole bunch of zero terminated strings for all property names +concatenated together. The device-tree property definitions in the +structure block will contain offset values from the beginning of the +strings block. + + +III - Required content of the device tree +========================================= + +WARNING: All "linux,*" properties defined in this document apply only +to a flattened device-tree. If your platform uses a real +implementation of Open Firmware or an implementation compatible with +the Open Firmware client interface, those properties will be created +by the trampoline code in the kernel's prom_init() file. For example, +that's where you'll have to add code to detect your board model and +set the platform number. However, when using the flattened device-tree +entry point, there is no prom_init() pass, and thus you have to +provide those properties yourself. + + +1) Note about cells and address representation +---------------------------------------------- + +The general rule is documented in the various Open Firmware +documentations. If you choose to describe a bus with the device-tree +and there exist an OF bus binding, then you should follow the +specification. However, the kernel does not require every single +device or bus to be described by the device tree. + +In general, the format of an address for a device is defined by the +parent bus type, based on the #address-cells and #size-cells +properties. Note that the parent's parent definitions of #address-cells +and #size-cells are not inherited so every node with children must specify +them. The kernel requires the root node to have those properties defining +addresses format for devices directly mapped on the processor bus. + +Those 2 properties define 'cells' for representing an address and a +size. A "cell" is a 32-bit number. For example, if both contain 2 +like the example tree given above, then an address and a size are both +composed of 2 cells, and each is a 64-bit number (cells are +concatenated and expected to be in big endian format). Another example +is the way Apple firmware defines them, with 2 cells for an address +and one cell for a size. Most 32-bit implementations should define +#address-cells and #size-cells to 1, which represents a 32-bit value. +Some 32-bit processors allow for physical addresses greater than 32 +bits; these processors should define #address-cells as 2. + +"reg" properties are always a tuple of the type "address size" where +the number of cells of address and size is specified by the bus +#address-cells and #size-cells. When a bus supports various address +spaces and other flags relative to a given address allocation (like +prefetchable, etc...) those flags are usually added to the top level +bits of the physical address. For example, a PCI physical address is +made of 3 cells, the bottom two containing the actual address itself +while the top cell contains address space indication, flags, and pci +bus & device numbers. + +For busses that support dynamic allocation, it's the accepted practice +to then not provide the address in "reg" (keep it 0) though while +providing a flag indicating the address is dynamically allocated, and +then, to provide a separate "assigned-addresses" property that +contains the fully allocated addresses. See the PCI OF bindings for +details. + +In general, a simple bus with no address space bits and no dynamic +allocation is preferred if it reflects your hardware, as the existing +kernel address parsing functions will work out of the box. If you +define a bus type with a more complex address format, including things +like address space bits, you'll have to add a bus translator to the +prom_parse.c file of the recent kernels for your bus type. + +The "reg" property only defines addresses and sizes (if #size-cells is +non-0) within a given bus. In order to translate addresses upward +(that is into parent bus addresses, and possibly into CPU physical +addresses), all busses must contain a "ranges" property. If the +"ranges" property is missing at a given level, it's assumed that +translation isn't possible, i.e., the registers are not visible on the +parent bus. The format of the "ranges" property for a bus is a list +of: + + bus address, parent bus address, size + +"bus address" is in the format of the bus this bus node is defining, +that is, for a PCI bridge, it would be a PCI address. Thus, (bus +address, size) defines a range of addresses for child devices. "parent +bus address" is in the format of the parent bus of this bus. For +example, for a PCI host controller, that would be a CPU address. For a +PCI<->ISA bridge, that would be a PCI address. It defines the base +address in the parent bus where the beginning of that range is mapped. + +For a new 64-bit powerpc board, I recommend either the 2/2 format or +Apple's 2/1 format which is slightly more compact since sizes usually +fit in a single 32-bit word. New 32-bit powerpc boards should use a +1/1 format, unless the processor supports physical addresses greater +than 32-bits, in which case a 2/1 format is recommended. + +Alternatively, the "ranges" property may be empty, indicating that the +registers are visible on the parent bus using an identity mapping +translation. In other words, the parent bus address space is the same +as the child bus address space. + +2) Note about "compatible" properties +------------------------------------- + +These properties are optional, but recommended in devices and the root +node. The format of a "compatible" property is a list of concatenated +zero terminated strings. They allow a device to express its +compatibility with a family of similar devices, in some cases, +allowing a single driver to match against several devices regardless +of their actual names. + +3) Note about "name" properties +------------------------------- + +While earlier users of Open Firmware like OldWorld macintoshes tended +to use the actual device name for the "name" property, it's nowadays +considered a good practice to use a name that is closer to the device +class (often equal to device_type). For example, nowadays, ethernet +controllers are named "ethernet", an additional "model" property +defining precisely the chip type/model, and "compatible" property +defining the family in case a single driver can driver more than one +of these chips. However, the kernel doesn't generally put any +restriction on the "name" property; it is simply considered good +practice to follow the standard and its evolutions as closely as +possible. + +Note also that the new format version 16 makes the "name" property +optional. If it's absent for a node, then the node's unit name is then +used to reconstruct the name. That is, the part of the unit name +before the "@" sign is used (or the entire unit name if no "@" sign +is present). + +4) Note about node and property names and character set +------------------------------------------------------- + +While open firmware provides more flexible usage of 8859-1, this +specification enforces more strict rules. Nodes and properties should +be comprised only of ASCII characters 'a' to 'z', '0' to +'9', ',', '.', '_', '+', '#', '?', and '-'. Node names additionally +allow uppercase characters 'A' to 'Z' (property names should be +lowercase. The fact that vendors like Apple don't respect this rule is +irrelevant here). Additionally, node and property names should always +begin with a character in the range 'a' to 'z' (or 'A' to 'Z' for node +names). + +The maximum number of characters for both nodes and property names +is 31. In the case of node names, this is only the leftmost part of +a unit name (the pure "name" property), it doesn't include the unit +address which can extend beyond that limit. + + +5) Required nodes and properties +-------------------------------- + These are all that are currently required. However, it is strongly + recommended that you expose PCI host bridges as documented in the + PCI binding to open firmware, and your interrupt tree as documented + in OF interrupt tree specification. + + a) The root node + + The root node requires some properties to be present: + + - model : this is your board name/model + - #address-cells : address representation for "root" devices + - #size-cells: the size representation for "root" devices + - device_type : This property shouldn't be necessary. However, if + you decide to create a device_type for your root node, make sure it + is _not_ "chrp" unless your platform is a pSeries or PAPR compliant + one for 64-bit, or a CHRP-type machine for 32-bit as this will + matched by the kernel this way. + + Additionally, some recommended properties are: + + - compatible : the board "family" generally finds its way here, + for example, if you have 2 board models with a similar layout, + that typically get driven by the same platform code in the + kernel, you would use a different "model" property but put a + value in "compatible". The kernel doesn't directly use that + value but it is generally useful. + + The root node is also generally where you add additional properties + specific to your board like the serial number if any, that sort of + thing. It is recommended that if you add any "custom" property whose + name may clash with standard defined ones, you prefix them with your + vendor name and a comma. + + b) The /cpus node + + This node is the parent of all individual CPU nodes. It doesn't + have any specific requirements, though it's generally good practice + to have at least: + + #address-cells = <00000001> + #size-cells = <00000000> + + This defines that the "address" for a CPU is a single cell, and has + no meaningful size. This is not necessary but the kernel will assume + that format when reading the "reg" properties of a CPU node, see + below + + c) The /cpus/* nodes + + So under /cpus, you are supposed to create a node for every CPU on + the machine. There is no specific restriction on the name of the + CPU, though It's common practice to call it PowerPC,. For + example, Apple uses PowerPC,G5 while IBM uses PowerPC,970FX. + + Required properties: + + - device_type : has to be "cpu" + - reg : This is the physical CPU number, it's a single 32-bit cell + and is also used as-is as the unit number for constructing the + unit name in the full path. For example, with 2 CPUs, you would + have the full path: + /cpus/PowerPC,970FX@0 + /cpus/PowerPC,970FX@1 + (unit addresses do not require leading zeroes) + - d-cache-block-size : one cell, L1 data cache block size in bytes (*) + - i-cache-block-size : one cell, L1 instruction cache block size in + bytes + - d-cache-size : one cell, size of L1 data cache in bytes + - i-cache-size : one cell, size of L1 instruction cache in bytes + +(*) The cache "block" size is the size on which the cache management +instructions operate. Historically, this document used the cache +"line" size here which is incorrect. The kernel will prefer the cache +block size and will fallback to cache line size for backward +compatibility. + + Recommended properties: + + - timebase-frequency : a cell indicating the frequency of the + timebase in Hz. This is not directly used by the generic code, + but you are welcome to copy/paste the pSeries code for setting + the kernel timebase/decrementer calibration based on this + value. + - clock-frequency : a cell indicating the CPU core clock frequency + in Hz. A new property will be defined for 64-bit values, but if + your frequency is < 4Ghz, one cell is enough. Here as well as + for the above, the common code doesn't use that property, but + you are welcome to re-use the pSeries or Maple one. A future + kernel version might provide a common function for this. + - d-cache-line-size : one cell, L1 data cache line size in bytes + if different from the block size + - i-cache-line-size : one cell, L1 instruction cache line size in + bytes if different from the block size + + You are welcome to add any property you find relevant to your board, + like some information about the mechanism used to soft-reset the + CPUs. For example, Apple puts the GPIO number for CPU soft reset + lines in there as a "soft-reset" property since they start secondary + CPUs by soft-resetting them. + + + d) the /memory node(s) + + To define the physical memory layout of your board, you should + create one or more memory node(s). You can either create a single + node with all memory ranges in its reg property, or you can create + several nodes, as you wish. The unit address (@ part) used for the + full path is the address of the first range of memory defined by a + given node. If you use a single memory node, this will typically be + @0. + + Required properties: + + - device_type : has to be "memory" + - reg : This property contains all the physical memory ranges of + your board. It's a list of addresses/sizes concatenated + together, with the number of cells of each defined by the + #address-cells and #size-cells of the root node. For example, + with both of these properties being 2 like in the example given + earlier, a 970 based machine with 6Gb of RAM could typically + have a "reg" property here that looks like: + + 00000000 00000000 00000000 80000000 + 00000001 00000000 00000001 00000000 + + That is a range starting at 0 of 0x80000000 bytes and a range + starting at 0x100000000 and of 0x100000000 bytes. You can see + that there is no memory covering the IO hole between 2Gb and + 4Gb. Some vendors prefer splitting those ranges into smaller + segments, but the kernel doesn't care. + + e) The /chosen node + + This node is a bit "special". Normally, that's where open firmware + puts some variable environment information, like the arguments, or + the default input/output devices. + + This specification makes a few of these mandatory, but also defines + some linux-specific properties that would be normally constructed by + the prom_init() trampoline when booting with an OF client interface, + but that you have to provide yourself when using the flattened format. + + Recommended properties: + + - bootargs : This zero-terminated string is passed as the kernel + command line + - linux,stdout-path : This is the full path to your standard + console device if any. Typically, if you have serial devices on + your board, you may want to put the full path to the one set as + the default console in the firmware here, for the kernel to pick + it up as its own default console. If you look at the function + set_preferred_console() in arch/ppc64/kernel/setup.c, you'll see + that the kernel tries to find out the default console and has + knowledge of various types like 8250 serial ports. You may want + to extend this function to add your own. + + Note that u-boot creates and fills in the chosen node for platforms + that use it. + + (Note: a practice that is now obsolete was to include a property + under /chosen called interrupt-controller which had a phandle value + that pointed to the main interrupt controller) + + f) the /soc node + + This node is used to represent a system-on-a-chip (SOC) and must be + present if the processor is a SOC. The top-level soc node contains + information that is global to all devices on the SOC. The node name + should contain a unit address for the SOC, which is the base address + of the memory-mapped register set for the SOC. The name of an soc + node should start with "soc", and the remainder of the name should + represent the part number for the soc. For example, the MPC8540's + soc node would be called "soc8540". + + Required properties: + + - device_type : Should be "soc" + - ranges : Should be defined as specified in 1) to describe the + translation of SOC addresses for memory mapped SOC registers. + - bus-frequency: Contains the bus frequency for the SOC node. + Typically, the value of this field is filled in by the boot + loader. + + + Recommended properties: + + - reg : This property defines the address and size of the + memory-mapped registers that are used for the SOC node itself. + It does not include the child device registers - these will be + defined inside each child node. The address specified in the + "reg" property should match the unit address of the SOC node. + - #address-cells : Address representation for "soc" devices. The + format of this field may vary depending on whether or not the + device registers are memory mapped. For memory mapped + registers, this field represents the number of cells needed to + represent the address of the registers. For SOCs that do not + use MMIO, a special address format should be defined that + contains enough cells to represent the required information. + See 1) above for more details on defining #address-cells. + - #size-cells : Size representation for "soc" devices + - #interrupt-cells : Defines the width of cells used to represent + interrupts. Typically this value is <2>, which includes a + 32-bit number that represents the interrupt number, and a + 32-bit number that represents the interrupt sense and level. + This field is only needed if the SOC contains an interrupt + controller. + + The SOC node may contain child nodes for each SOC device that the + platform uses. Nodes should not be created for devices which exist + on the SOC but are not used by a particular platform. See chapter VI + for more information on how to specify devices that are part of a SOC. + + Example SOC node for the MPC8540: + + soc8540@e0000000 { + #address-cells = <1>; + #size-cells = <1>; + #interrupt-cells = <2>; + device_type = "soc"; + ranges = <00000000 e0000000 00100000> + reg = ; + bus-frequency = <0>; + } + + + +IV - "dtc", the device tree compiler +==================================== + + +dtc source code can be found at + + +WARNING: This version is still in early development stage; the +resulting device-tree "blobs" have not yet been validated with the +kernel. The current generated block lacks a useful reserve map (it will +be fixed to generate an empty one, it's up to the bootloader to fill +it up) among others. The error handling needs work, bugs are lurking, +etc... + +dtc basically takes a device-tree in a given format and outputs a +device-tree in another format. The currently supported formats are: + + Input formats: + ------------- + + - "dtb": "blob" format, that is a flattened device-tree block + with + header all in a binary blob. + - "dts": "source" format. This is a text file containing a + "source" for a device-tree. The format is defined later in this + chapter. + - "fs" format. This is a representation equivalent to the + output of /proc/device-tree, that is nodes are directories and + properties are files + + Output formats: + --------------- + + - "dtb": "blob" format + - "dts": "source" format + - "asm": assembly language file. This is a file that can be + sourced by gas to generate a device-tree "blob". That file can + then simply be added to your Makefile. Additionally, the + assembly file exports some symbols that can be used. + + +The syntax of the dtc tool is + + dtc [-I ] [-O ] + [-o output-filename] [-V output_version] input_filename + + +The "output_version" defines what version of the "blob" format will be +generated. Supported versions are 1,2,3 and 16. The default is +currently version 3 but that may change in the future to version 16. + +Additionally, dtc performs various sanity checks on the tree, like the +uniqueness of linux, phandle properties, validity of strings, etc... + +The format of the .dts "source" file is "C" like, supports C and C++ +style comments. + +/ { +} + +The above is the "device-tree" definition. It's the only statement +supported currently at the toplevel. + +/ { + property1 = "string_value"; /* define a property containing a 0 + * terminated string + */ + + property2 = <1234abcd>; /* define a property containing a + * numerical 32-bit value (hexadecimal) + */ + + property3 = <12345678 12345678 deadbeef>; + /* define a property containing 3 + * numerical 32-bit values (cells) in + * hexadecimal + */ + property4 = [0a 0b 0c 0d de ea ad be ef]; + /* define a property whose content is + * an arbitrary array of bytes + */ + + childnode@address { /* define a child node named "childnode" + * whose unit name is "childnode at + * address" + */ + + childprop = "hello\n"; /* define a property "childprop" of + * childnode (in this case, a string) + */ + }; +}; + +Nodes can contain other nodes etc... thus defining the hierarchical +structure of the tree. + +Strings support common escape sequences from C: "\n", "\t", "\r", +"\(octal value)", "\x(hex value)". + +It is also suggested that you pipe your source file through cpp (gcc +preprocessor) so you can use #include's, #define for constants, etc... + +Finally, various options are planned but not yet implemented, like +automatic generation of phandles, labels (exported to the asm file so +you can point to a property content and change it easily from whatever +you link the device-tree with), label or path instead of numeric value +in some cells to "point" to a node (replaced by a phandle at compile +time), export of reserve map address to the asm file, ability to +specify reserve map content at compile time, etc... + +We may provide a .h include file with common definitions of that +proves useful for some properties (like building PCI properties or +interrupt maps) though it may be better to add a notion of struct +definitions to the compiler... + + +V - Recommendations for a bootloader +==================================== + + +Here are some various ideas/recommendations that have been proposed +while all this has been defined and implemented. + + - The bootloader may want to be able to use the device-tree itself + and may want to manipulate it (to add/edit some properties, + like physical memory size or kernel arguments). At this point, 2 + choices can be made. Either the bootloader works directly on the + flattened format, or the bootloader has its own internal tree + representation with pointers (similar to the kernel one) and + re-flattens the tree when booting the kernel. The former is a bit + more difficult to edit/modify, the later requires probably a bit + more code to handle the tree structure. Note that the structure + format has been designed so it's relatively easy to "insert" + properties or nodes or delete them by just memmoving things + around. It contains no internal offsets or pointers for this + purpose. + + - An example of code for iterating nodes & retrieving properties + directly from the flattened tree format can be found in the kernel + file arch/ppc64/kernel/prom.c, look at scan_flat_dt() function, + its usage in early_init_devtree(), and the corresponding various + early_init_dt_scan_*() callbacks. That code can be re-used in a + GPL bootloader, and as the author of that code, I would be happy + to discuss possible free licensing to any vendor who wishes to + integrate all or part of this code into a non-GPL bootloader. + + + +VI - System-on-a-chip devices and nodes +======================================= + +Many companies are now starting to develop system-on-a-chip +processors, where the processor core (CPU) and many peripheral devices +exist on a single piece of silicon. For these SOCs, an SOC node +should be used that defines child nodes for the devices that make +up the SOC. While platforms are not required to use this model in +order to boot the kernel, it is highly encouraged that all SOC +implementations define as complete a flat-device-tree as possible to +describe the devices on the SOC. This will allow for the +genericization of much of the kernel code. + + +1) Defining child nodes of an SOC +--------------------------------- + +Each device that is part of an SOC may have its own node entry inside +the SOC node. For each device that is included in the SOC, the unit +address property represents the address offset for this device's +memory-mapped registers in the parent's address space. The parent's +address space is defined by the "ranges" property in the top-level soc +node. The "reg" property for each node that exists directly under the +SOC node should contain the address mapping from the child address space +to the parent SOC address space and the size of the device's +memory-mapped register file. + +For many devices that may exist inside an SOC, there are predefined +specifications for the format of the device tree node. All SOC child +nodes should follow these specifications, except where noted in this +document. + +See appendix A for an example partial SOC node definition for the +MPC8540. + + +2) Representing devices without a current OF specification +---------------------------------------------------------- + +Currently, there are many devices on SOCs that do not have a standard +representation pre-defined as part of the open firmware +specifications, mainly because the boards that contain these SOCs are +not currently booted using open firmware. This section contains +descriptions for the SOC devices for which new nodes have been +defined; this list will expand as more and more SOC-containing +platforms are moved over to use the flattened-device-tree model. + +VII - Specifying interrupt information for devices +=================================================== + +The device tree represents the busses and devices of a hardware +system in a form similar to the physical bus topology of the +hardware. + +In addition, a logical 'interrupt tree' exists which represents the +hierarchy and routing of interrupts in the hardware. + +The interrupt tree model is fully described in the +document "Open Firmware Recommended Practice: Interrupt +Mapping Version 0.9". The document is available at: +. + +1) interrupts property +---------------------- + +Devices that generate interrupts to a single interrupt controller +should use the conventional OF representation described in the +OF interrupt mapping documentation. + +Each device which generates interrupts must have an 'interrupt' +property. The interrupt property value is an arbitrary number of +of 'interrupt specifier' values which describe the interrupt or +interrupts for the device. + +The encoding of an interrupt specifier is determined by the +interrupt domain in which the device is located in the +interrupt tree. The root of an interrupt domain specifies in +its #interrupt-cells property the number of 32-bit cells +required to encode an interrupt specifier. See the OF interrupt +mapping documentation for a detailed description of domains. + +For example, the binding for the OpenPIC interrupt controller +specifies an #interrupt-cells value of 2 to encode the interrupt +number and level/sense information. All interrupt children in an +OpenPIC interrupt domain use 2 cells per interrupt in their interrupts +property. + +The PCI bus binding specifies a #interrupt-cell value of 1 to encode +which interrupt pin (INTA,INTB,INTC,INTD) is used. + +2) interrupt-parent property +---------------------------- + +The interrupt-parent property is specified to define an explicit +link between a device node and its interrupt parent in +the interrupt tree. The value of interrupt-parent is the +phandle of the parent node. + +If the interrupt-parent property is not defined for a node, its +interrupt parent is assumed to be an ancestor in the node's +_device tree_ hierarchy. + +3) OpenPIC Interrupt Controllers +-------------------------------- + +OpenPIC interrupt controllers require 2 cells to encode +interrupt information. The first cell defines the interrupt +number. The second cell defines the sense and level +information. + +Sense and level information should be encoded as follows: + + 0 = low to high edge sensitive type enabled + 1 = active low level sensitive type enabled + 2 = active high level sensitive type enabled + 3 = high to low edge sensitive type enabled + +4) ISA Interrupt Controllers +---------------------------- + +ISA PIC interrupt controllers require 2 cells to encode +interrupt information. The first cell defines the interrupt +number. The second cell defines the sense and level +information. + +ISA PIC interrupt controllers should adhere to the ISA PIC +encodings listed below: + + 0 = active low level sensitive type enabled + 1 = active high level sensitive type enabled + 2 = high to low edge sensitive type enabled + 3 = low to high edge sensitive type enabled + +VIII - Specifying Device Power Management Information (sleep property) +=================================================================== + +Devices on SOCs often have mechanisms for placing devices into low-power +states that are decoupled from the devices' own register blocks. Sometimes, +this information is more complicated than a cell-index property can +reasonably describe. Thus, each device controlled in such a manner +may contain a "sleep" property which describes these connections. + +The sleep property consists of one or more sleep resources, each of +which consists of a phandle to a sleep controller, followed by a +controller-specific sleep specifier of zero or more cells. + +The semantics of what type of low power modes are possible are defined +by the sleep controller. Some examples of the types of low power modes +that may be supported are: + + - Dynamic: The device may be disabled or enabled at any time. + - System Suspend: The device may request to be disabled or remain + awake during system suspend, but will not be disabled until then. + - Permanent: The device is disabled permanently (until the next hard + reset). + +Some devices may share a clock domain with each other, such that they should +only be suspended when none of the devices are in use. Where reasonable, +such nodes should be placed on a virtual bus, where the bus has the sleep +property. If the clock domain is shared among devices that cannot be +reasonably grouped in this manner, then create a virtual sleep controller +(similar to an interrupt nexus, except that defining a standardized +sleep-map should wait until its necessity is demonstrated). + +Appendix A - Sample SOC node for MPC8540 +======================================== + + soc@e0000000 { + #address-cells = <1>; + #size-cells = <1>; + compatible = "fsl,mpc8540-ccsr", "simple-bus"; + device_type = "soc"; + ranges = <0x00000000 0xe0000000 0x00100000> + bus-frequency = <0>; + interrupt-parent = <&pic>; + + ethernet@24000 { + #address-cells = <1>; + #size-cells = <1>; + device_type = "network"; + model = "TSEC"; + compatible = "gianfar", "simple-bus"; + reg = <0x24000 0x1000>; + local-mac-address = [ 00 E0 0C 00 73 00 ]; + interrupts = <29 2 30 2 34 2>; + phy-handle = <&phy0>; + sleep = <&pmc 00000080>; + ranges; + + mdio@24520 { + reg = <0x24520 0x20>; + compatible = "fsl,gianfar-mdio"; + + phy0: ethernet-phy@0 { + interrupts = <5 1>; + reg = <0>; + device_type = "ethernet-phy"; + }; + + phy1: ethernet-phy@1 { + interrupts = <5 1>; + reg = <1>; + device_type = "ethernet-phy"; + }; + + phy3: ethernet-phy@3 { + interrupts = <7 1>; + reg = <3>; + device_type = "ethernet-phy"; + }; + }; + }; + + ethernet@25000 { + device_type = "network"; + model = "TSEC"; + compatible = "gianfar"; + reg = <0x25000 0x1000>; + local-mac-address = [ 00 E0 0C 00 73 01 ]; + interrupts = <13 2 14 2 18 2>; + phy-handle = <&phy1>; + sleep = <&pmc 00000040>; + }; + + ethernet@26000 { + device_type = "network"; + model = "FEC"; + compatible = "gianfar"; + reg = <0x26000 0x1000>; + local-mac-address = [ 00 E0 0C 00 73 02 ]; + interrupts = <41 2>; + phy-handle = <&phy3>; + sleep = <&pmc 00000020>; + }; + + serial@4500 { + #address-cells = <1>; + #size-cells = <1>; + compatible = "fsl,mpc8540-duart", "simple-bus"; + sleep = <&pmc 00000002>; + ranges; + + serial@4500 { + device_type = "serial"; + compatible = "ns16550"; + reg = <0x4500 0x100>; + clock-frequency = <0>; + interrupts = <42 2>; + }; + + serial@4600 { + device_type = "serial"; + compatible = "ns16550"; + reg = <0x4600 0x100>; + clock-frequency = <0>; + interrupts = <42 2>; + }; + }; + + pic: pic@40000 { + interrupt-controller; + #address-cells = <0>; + #interrupt-cells = <2>; + reg = <0x40000 0x40000>; + compatible = "chrp,open-pic"; + device_type = "open-pic"; + }; + + i2c@3000 { + interrupts = <43 2>; + reg = <0x3000 0x100>; + compatible = "fsl-i2c"; + dfsrr; + sleep = <&pmc 00000004>; + }; + + pmc: power@e0070 { + compatible = "fsl,mpc8540-pmc", "fsl,mpc8548-pmc"; + reg = <0xe0070 0x20>; + }; + }; diff --git a/Documentation/powerpc/booting-without-of.txt b/Documentation/powerpc/booting-without-of.txt deleted file mode 100644 index 7400d7555dc3..000000000000 --- a/Documentation/powerpc/booting-without-of.txt +++ /dev/null @@ -1,1447 +0,0 @@ - Booting the Linux/ppc kernel without Open Firmware - -------------------------------------------------- - -(c) 2005 Benjamin Herrenschmidt , - IBM Corp. -(c) 2005 Becky Bruce , - Freescale Semiconductor, FSL SOC and 32-bit additions -(c) 2006 MontaVista Software, Inc. - Flash chip node definition - -Table of Contents -================= - - I - Introduction - 1) Entry point for arch/powerpc - 2) Board support - - II - The DT block format - 1) Header - 2) Device tree generalities - 3) Device tree "structure" block - 4) Device tree "strings" block - - III - Required content of the device tree - 1) Note about cells and address representation - 2) Note about "compatible" properties - 3) Note about "name" properties - 4) Note about node and property names and character set - 5) Required nodes and properties - a) The root node - b) The /cpus node - c) The /cpus/* nodes - d) the /memory node(s) - e) The /chosen node - f) the /soc node - - IV - "dtc", the device tree compiler - - V - Recommendations for a bootloader - - VI - System-on-a-chip devices and nodes - 1) Defining child nodes of an SOC - 2) Representing devices without a current OF specification - a) PHY nodes - b) Interrupt controllers - c) 4xx/Axon EMAC ethernet nodes - d) Xilinx IP cores - e) USB EHCI controllers - f) MDIO on GPIOs - g) SPI busses - - VII - Specifying interrupt information for devices - 1) interrupts property - 2) interrupt-parent property - 3) OpenPIC Interrupt Controllers - 4) ISA Interrupt Controllers - - VIII - Specifying device power management information (sleep property) - - Appendix A - Sample SOC node for MPC8540 - - -Revision Information -==================== - - May 18, 2005: Rev 0.1 - Initial draft, no chapter III yet. - - May 19, 2005: Rev 0.2 - Add chapter III and bits & pieces here or - clarifies the fact that a lot of things are - optional, the kernel only requires a very - small device tree, though it is encouraged - to provide an as complete one as possible. - - May 24, 2005: Rev 0.3 - Precise that DT block has to be in RAM - - Misc fixes - - Define version 3 and new format version 16 - for the DT block (version 16 needs kernel - patches, will be fwd separately). - String block now has a size, and full path - is replaced by unit name for more - compactness. - linux,phandle is made optional, only nodes - that are referenced by other nodes need it. - "name" property is now automatically - deduced from the unit name - - June 1, 2005: Rev 0.4 - Correct confusion between OF_DT_END and - OF_DT_END_NODE in structure definition. - - Change version 16 format to always align - property data to 4 bytes. Since tokens are - already aligned, that means no specific - required alignment between property size - and property data. The old style variable - alignment would make it impossible to do - "simple" insertion of properties using - memmove (thanks Milton for - noticing). Updated kernel patch as well - - Correct a few more alignment constraints - - Add a chapter about the device-tree - compiler and the textural representation of - the tree that can be "compiled" by dtc. - - November 21, 2005: Rev 0.5 - - Additions/generalizations for 32-bit - - Changed to reflect the new arch/powerpc - structure - - Added chapter VI - - - ToDo: - - Add some definitions of interrupt tree (simple/complex) - - Add some definitions for PCI host bridges - - Add some common address format examples - - Add definitions for standard properties and "compatible" - names for cells that are not already defined by the existing - OF spec. - - Compare FSL SOC use of PCI to standard and make sure no new - node definition required. - - Add more information about node definitions for SOC devices - that currently have no standard, like the FSL CPM. - - -I - Introduction -================ - -During the recent development of the Linux/ppc64 kernel, and more -specifically, the addition of new platform types outside of the old -IBM pSeries/iSeries pair, it was decided to enforce some strict rules -regarding the kernel entry and bootloader <-> kernel interfaces, in -order to avoid the degeneration that had become the ppc32 kernel entry -point and the way a new platform should be added to the kernel. The -legacy iSeries platform breaks those rules as it predates this scheme, -but no new board support will be accepted in the main tree that -doesn't follow them properly. In addition, since the advent of the -arch/powerpc merged architecture for ppc32 and ppc64, new 32-bit -platforms and 32-bit platforms which move into arch/powerpc will be -required to use these rules as well. - -The main requirement that will be defined in more detail below is -the presence of a device-tree whose format is defined after Open -Firmware specification. However, in order to make life easier -to embedded board vendors, the kernel doesn't require the device-tree -to represent every device in the system and only requires some nodes -and properties to be present. This will be described in detail in -section III, but, for example, the kernel does not require you to -create a node for every PCI device in the system. It is a requirement -to have a node for PCI host bridges in order to provide interrupt -routing informations and memory/IO ranges, among others. It is also -recommended to define nodes for on chip devices and other busses that -don't specifically fit in an existing OF specification. This creates a -great flexibility in the way the kernel can then probe those and match -drivers to device, without having to hard code all sorts of tables. It -also makes it more flexible for board vendors to do minor hardware -upgrades without significantly impacting the kernel code or cluttering -it with special cases. - - -1) Entry point for arch/powerpc -------------------------------- - - There is one and one single entry point to the kernel, at the start - of the kernel image. That entry point supports two calling - conventions: - - a) Boot from Open Firmware. If your firmware is compatible - with Open Firmware (IEEE 1275) or provides an OF compatible - client interface API (support for "interpret" callback of - forth words isn't required), you can enter the kernel with: - - r5 : OF callback pointer as defined by IEEE 1275 - bindings to powerpc. Only the 32-bit client interface - is currently supported - - r3, r4 : address & length of an initrd if any or 0 - - The MMU is either on or off; the kernel will run the - trampoline located in arch/powerpc/kernel/prom_init.c to - extract the device-tree and other information from open - firmware and build a flattened device-tree as described - in b). prom_init() will then re-enter the kernel using - the second method. This trampoline code runs in the - context of the firmware, which is supposed to handle all - exceptions during that time. - - b) Direct entry with a flattened device-tree block. This entry - point is called by a) after the OF trampoline and can also be - called directly by a bootloader that does not support the Open - Firmware client interface. It is also used by "kexec" to - implement "hot" booting of a new kernel from a previous - running one. This method is what I will describe in more - details in this document, as method a) is simply standard Open - Firmware, and thus should be implemented according to the - various standard documents defining it and its binding to the - PowerPC platform. The entry point definition then becomes: - - r3 : physical pointer to the device-tree block - (defined in chapter II) in RAM - - r4 : physical pointer to the kernel itself. This is - used by the assembly code to properly disable the MMU - in case you are entering the kernel with MMU enabled - and a non-1:1 mapping. - - r5 : NULL (as to differentiate with method a) - - Note about SMP entry: Either your firmware puts your other - CPUs in some sleep loop or spin loop in ROM where you can get - them out via a soft reset or some other means, in which case - you don't need to care, or you'll have to enter the kernel - with all CPUs. The way to do that with method b) will be - described in a later revision of this document. - - -2) Board support ----------------- - -64-bit kernels: - - Board supports (platforms) are not exclusive config options. An - arbitrary set of board supports can be built in a single kernel - image. The kernel will "know" what set of functions to use for a - given platform based on the content of the device-tree. Thus, you - should: - - a) add your platform support as a _boolean_ option in - arch/powerpc/Kconfig, following the example of PPC_PSERIES, - PPC_PMAC and PPC_MAPLE. The later is probably a good - example of a board support to start from. - - b) create your main platform file as - "arch/powerpc/platforms/myplatform/myboard_setup.c" and add it - to the Makefile under the condition of your CONFIG_ - option. This file will define a structure of type "ppc_md" - containing the various callbacks that the generic code will - use to get to your platform specific code - - c) Add a reference to your "ppc_md" structure in the - "machines" table in arch/powerpc/kernel/setup_64.c if you are - a 64-bit platform. - - d) request and get assigned a platform number (see PLATFORM_* - constants in arch/powerpc/include/asm/processor.h - -32-bit embedded kernels: - - Currently, board support is essentially an exclusive config option. - The kernel is configured for a single platform. Part of the reason - for this is to keep kernels on embedded systems small and efficient; - part of this is due to the fact the code is already that way. In the - future, a kernel may support multiple platforms, but only if the - platforms feature the same core architecture. A single kernel build - cannot support both configurations with Book E and configurations - with classic Powerpc architectures. - - 32-bit embedded platforms that are moved into arch/powerpc using a - flattened device tree should adopt the merged tree practice of - setting ppc_md up dynamically, even though the kernel is currently - built with support for only a single platform at a time. This allows - unification of the setup code, and will make it easier to go to a - multiple-platform-support model in the future. - -NOTE: I believe the above will be true once Ben's done with the merge -of the boot sequences.... someone speak up if this is wrong! - - To add a 32-bit embedded platform support, follow the instructions - for 64-bit platforms above, with the exception that the Kconfig - option should be set up such that the kernel builds exclusively for - the platform selected. The processor type for the platform should - enable another config option to select the specific board - supported. - -NOTE: If Ben doesn't merge the setup files, may need to change this to -point to setup_32.c - - - I will describe later the boot process and various callbacks that - your platform should implement. - - -II - The DT block format -======================== - - -This chapter defines the actual format of the flattened device-tree -passed to the kernel. The actual content of it and kernel requirements -are described later. You can find example of code manipulating that -format in various places, including arch/powerpc/kernel/prom_init.c -which will generate a flattened device-tree from the Open Firmware -representation, or the fs2dt utility which is part of the kexec tools -which will generate one from a filesystem representation. It is -expected that a bootloader like uboot provides a bit more support, -that will be discussed later as well. - -Note: The block has to be in main memory. It has to be accessible in -both real mode and virtual mode with no mapping other than main -memory. If you are writing a simple flash bootloader, it should copy -the block to RAM before passing it to the kernel. - - -1) Header ---------- - - The kernel is entered with r3 pointing to an area of memory that is - roughly described in arch/powerpc/include/asm/prom.h by the structure - boot_param_header: - -struct boot_param_header { - u32 magic; /* magic word OF_DT_HEADER */ - u32 totalsize; /* total size of DT block */ - u32 off_dt_struct; /* offset to structure */ - u32 off_dt_strings; /* offset to strings */ - u32 off_mem_rsvmap; /* offset to memory reserve map - */ - u32 version; /* format version */ - u32 last_comp_version; /* last compatible version */ - - /* version 2 fields below */ - u32 boot_cpuid_phys; /* Which physical CPU id we're - booting on */ - /* version 3 fields below */ - u32 size_dt_strings; /* size of the strings block */ - - /* version 17 fields below */ - u32 size_dt_struct; /* size of the DT structure block */ -}; - - Along with the constants: - -/* Definitions used by the flattened device tree */ -#define OF_DT_HEADER 0xd00dfeed /* 4: version, - 4: total size */ -#define OF_DT_BEGIN_NODE 0x1 /* Start node: full name - */ -#define OF_DT_END_NODE 0x2 /* End node */ -#define OF_DT_PROP 0x3 /* Property: name off, - size, content */ -#define OF_DT_END 0x9 - - All values in this header are in big endian format, the various - fields in this header are defined more precisely below. All - "offset" values are in bytes from the start of the header; that is - from the value of r3. - - - magic - - This is a magic value that "marks" the beginning of the - device-tree block header. It contains the value 0xd00dfeed and is - defined by the constant OF_DT_HEADER - - - totalsize - - This is the total size of the DT block including the header. The - "DT" block should enclose all data structures defined in this - chapter (who are pointed to by offsets in this header). That is, - the device-tree structure, strings, and the memory reserve map. - - - off_dt_struct - - This is an offset from the beginning of the header to the start - of the "structure" part the device tree. (see 2) device tree) - - - off_dt_strings - - This is an offset from the beginning of the header to the start - of the "strings" part of the device-tree - - - off_mem_rsvmap - - This is an offset from the beginning of the header to the start - of the reserved memory map. This map is a list of pairs of 64- - bit integers. Each pair is a physical address and a size. The - list is terminated by an entry of size 0. This map provides the - kernel with a list of physical memory areas that are "reserved" - and thus not to be used for memory allocations, especially during - early initialization. The kernel needs to allocate memory during - boot for things like un-flattening the device-tree, allocating an - MMU hash table, etc... Those allocations must be done in such a - way to avoid overriding critical things like, on Open Firmware - capable machines, the RTAS instance, or on some pSeries, the TCE - tables used for the iommu. Typically, the reserve map should - contain _at least_ this DT block itself (header,total_size). If - you are passing an initrd to the kernel, you should reserve it as - well. You do not need to reserve the kernel image itself. The map - should be 64-bit aligned. - - - version - - This is the version of this structure. Version 1 stops - here. Version 2 adds an additional field boot_cpuid_phys. - Version 3 adds the size of the strings block, allowing the kernel - to reallocate it easily at boot and free up the unused flattened - structure after expansion. Version 16 introduces a new more - "compact" format for the tree itself that is however not backward - compatible. Version 17 adds an additional field, size_dt_struct, - allowing it to be reallocated or moved more easily (this is - particularly useful for bootloaders which need to make - adjustments to a device tree based on probed information). You - should always generate a structure of the highest version defined - at the time of your implementation. Currently that is version 17, - unless you explicitly aim at being backward compatible. - - - last_comp_version - - Last compatible version. This indicates down to what version of - the DT block you are backward compatible. For example, version 2 - is backward compatible with version 1 (that is, a kernel build - for version 1 will be able to boot with a version 2 format). You - should put a 1 in this field if you generate a device tree of - version 1 to 3, or 16 if you generate a tree of version 16 or 17 - using the new unit name format. - - - boot_cpuid_phys - - This field only exist on version 2 headers. It indicate which - physical CPU ID is calling the kernel entry point. This is used, - among others, by kexec. If you are on an SMP system, this value - should match the content of the "reg" property of the CPU node in - the device-tree corresponding to the CPU calling the kernel entry - point (see further chapters for more informations on the required - device-tree contents) - - - size_dt_strings - - This field only exists on version 3 and later headers. It - gives the size of the "strings" section of the device tree (which - starts at the offset given by off_dt_strings). - - - size_dt_struct - - This field only exists on version 17 and later headers. It gives - the size of the "structure" section of the device tree (which - starts at the offset given by off_dt_struct). - - So the typical layout of a DT block (though the various parts don't - need to be in that order) looks like this (addresses go from top to - bottom): - - - ------------------------------ - r3 -> | struct boot_param_header | - ------------------------------ - | (alignment gap) (*) | - ------------------------------ - | memory reserve map | - ------------------------------ - | (alignment gap) | - ------------------------------ - | | - | device-tree structure | - | | - ------------------------------ - | (alignment gap) | - ------------------------------ - | | - | device-tree strings | - | | - -----> ------------------------------ - | - | - --- (r3 + totalsize) - - (*) The alignment gaps are not necessarily present; their presence - and size are dependent on the various alignment requirements of - the individual data blocks. - - -2) Device tree generalities ---------------------------- - -This device-tree itself is separated in two different blocks, a -structure block and a strings block. Both need to be aligned to a 4 -byte boundary. - -First, let's quickly describe the device-tree concept before detailing -the storage format. This chapter does _not_ describe the detail of the -required types of nodes & properties for the kernel, this is done -later in chapter III. - -The device-tree layout is strongly inherited from the definition of -the Open Firmware IEEE 1275 device-tree. It's basically a tree of -nodes, each node having two or more named properties. A property can -have a value or not. - -It is a tree, so each node has one and only one parent except for the -root node who has no parent. - -A node has 2 names. The actual node name is generally contained in a -property of type "name" in the node property list whose value is a -zero terminated string and is mandatory for version 1 to 3 of the -format definition (as it is in Open Firmware). Version 16 makes it -optional as it can generate it from the unit name defined below. - -There is also a "unit name" that is used to differentiate nodes with -the same name at the same level, it is usually made of the node -names, the "@" sign, and a "unit address", which definition is -specific to the bus type the node sits on. - -The unit name doesn't exist as a property per-se but is included in -the device-tree structure. It is typically used to represent "path" in -the device-tree. More details about the actual format of these will be -below. - -The kernel powerpc generic code does not make any formal use of the -unit address (though some board support code may do) so the only real -requirement here for the unit address is to ensure uniqueness of -the node unit name at a given level of the tree. Nodes with no notion -of address and no possible sibling of the same name (like /memory or -/cpus) may omit the unit address in the context of this specification, -or use the "@0" default unit address. The unit name is used to define -a node "full path", which is the concatenation of all parent node -unit names separated with "/". - -The root node doesn't have a defined name, and isn't required to have -a name property either if you are using version 3 or earlier of the -format. It also has no unit address (no @ symbol followed by a unit -address). The root node unit name is thus an empty string. The full -path to the root node is "/". - -Every node which actually represents an actual device (that is, a node -which isn't only a virtual "container" for more nodes, like "/cpus" -is) is also required to have a "device_type" property indicating the -type of node . - -Finally, every node that can be referenced from a property in another -node is required to have a "linux,phandle" property. Real open -firmware implementations provide a unique "phandle" value for every -node that the "prom_init()" trampoline code turns into -"linux,phandle" properties. However, this is made optional if the -flattened device tree is used directly. An example of a node -referencing another node via "phandle" is when laying out the -interrupt tree which will be described in a further version of this -document. - -This "linux, phandle" property is a 32-bit value that uniquely -identifies a node. You are free to use whatever values or system of -values, internal pointers, or whatever to generate these, the only -requirement is that every node for which you provide that property has -a unique value for it. - -Here is an example of a simple device-tree. In this example, an "o" -designates a node followed by the node unit name. Properties are -presented with their name followed by their content. "content" -represents an ASCII string (zero terminated) value, while -represents a 32-bit hexadecimal value. The various nodes in this -example will be discussed in a later chapter. At this point, it is -only meant to give you a idea of what a device-tree looks like. I have -purposefully kept the "name" and "linux,phandle" properties which -aren't necessary in order to give you a better idea of what the tree -looks like in practice. - - / o device-tree - |- name = "device-tree" - |- model = "MyBoardName" - |- compatible = "MyBoardFamilyName" - |- #address-cells = <2> - |- #size-cells = <2> - |- linux,phandle = <0> - | - o cpus - | | - name = "cpus" - | | - linux,phandle = <1> - | | - #address-cells = <1> - | | - #size-cells = <0> - | | - | o PowerPC,970@0 - | |- name = "PowerPC,970" - | |- device_type = "cpu" - | |- reg = <0> - | |- clock-frequency = <5f5e1000> - | |- 64-bit - | |- linux,phandle = <2> - | - o memory@0 - | |- name = "memory" - | |- device_type = "memory" - | |- reg = <00000000 00000000 00000000 20000000> - | |- linux,phandle = <3> - | - o chosen - |- name = "chosen" - |- bootargs = "root=/dev/sda2" - |- linux,phandle = <4> - -This tree is almost a minimal tree. It pretty much contains the -minimal set of required nodes and properties to boot a linux kernel; -that is, some basic model informations at the root, the CPUs, and the -physical memory layout. It also includes misc information passed -through /chosen, like in this example, the platform type (mandatory) -and the kernel command line arguments (optional). - -The /cpus/PowerPC,970@0/64-bit property is an example of a -property without a value. All other properties have a value. The -significance of the #address-cells and #size-cells properties will be -explained in chapter IV which defines precisely the required nodes and -properties and their content. - - -3) Device tree "structure" block - -The structure of the device tree is a linearized tree structure. The -"OF_DT_BEGIN_NODE" token starts a new node, and the "OF_DT_END_NODE" -ends that node definition. Child nodes are simply defined before -"OF_DT_END_NODE" (that is nodes within the node). A 'token' is a 32 -bit value. The tree has to be "finished" with a OF_DT_END token - -Here's the basic structure of a single node: - - * token OF_DT_BEGIN_NODE (that is 0x00000001) - * for version 1 to 3, this is the node full path as a zero - terminated string, starting with "/". For version 16 and later, - this is the node unit name only (or an empty string for the - root node) - * [align gap to next 4 bytes boundary] - * for each property: - * token OF_DT_PROP (that is 0x00000003) - * 32-bit value of property value size in bytes (or 0 if no - value) - * 32-bit value of offset in string block of property name - * property value data if any - * [align gap to next 4 bytes boundary] - * [child nodes if any] - * token OF_DT_END_NODE (that is 0x00000002) - -So the node content can be summarized as a start token, a full path, -a list of properties, a list of child nodes, and an end token. Every -child node is a full node structure itself as defined above. - -NOTE: The above definition requires that all property definitions for -a particular node MUST precede any subnode definitions for that node. -Although the structure would not be ambiguous if properties and -subnodes were intermingled, the kernel parser requires that the -properties come first (up until at least 2.6.22). Any tools -manipulating a flattened tree must take care to preserve this -constraint. - -4) Device tree "strings" block - -In order to save space, property names, which are generally redundant, -are stored separately in the "strings" block. This block is simply the -whole bunch of zero terminated strings for all property names -concatenated together. The device-tree property definitions in the -structure block will contain offset values from the beginning of the -strings block. - - -III - Required content of the device tree -========================================= - -WARNING: All "linux,*" properties defined in this document apply only -to a flattened device-tree. If your platform uses a real -implementation of Open Firmware or an implementation compatible with -the Open Firmware client interface, those properties will be created -by the trampoline code in the kernel's prom_init() file. For example, -that's where you'll have to add code to detect your board model and -set the platform number. However, when using the flattened device-tree -entry point, there is no prom_init() pass, and thus you have to -provide those properties yourself. - - -1) Note about cells and address representation ----------------------------------------------- - -The general rule is documented in the various Open Firmware -documentations. If you choose to describe a bus with the device-tree -and there exist an OF bus binding, then you should follow the -specification. However, the kernel does not require every single -device or bus to be described by the device tree. - -In general, the format of an address for a device is defined by the -parent bus type, based on the #address-cells and #size-cells -properties. Note that the parent's parent definitions of #address-cells -and #size-cells are not inherited so every node with children must specify -them. The kernel requires the root node to have those properties defining -addresses format for devices directly mapped on the processor bus. - -Those 2 properties define 'cells' for representing an address and a -size. A "cell" is a 32-bit number. For example, if both contain 2 -like the example tree given above, then an address and a size are both -composed of 2 cells, and each is a 64-bit number (cells are -concatenated and expected to be in big endian format). Another example -is the way Apple firmware defines them, with 2 cells for an address -and one cell for a size. Most 32-bit implementations should define -#address-cells and #size-cells to 1, which represents a 32-bit value. -Some 32-bit processors allow for physical addresses greater than 32 -bits; these processors should define #address-cells as 2. - -"reg" properties are always a tuple of the type "address size" where -the number of cells of address and size is specified by the bus -#address-cells and #size-cells. When a bus supports various address -spaces and other flags relative to a given address allocation (like -prefetchable, etc...) those flags are usually added to the top level -bits of the physical address. For example, a PCI physical address is -made of 3 cells, the bottom two containing the actual address itself -while the top cell contains address space indication, flags, and pci -bus & device numbers. - -For busses that support dynamic allocation, it's the accepted practice -to then not provide the address in "reg" (keep it 0) though while -providing a flag indicating the address is dynamically allocated, and -then, to provide a separate "assigned-addresses" property that -contains the fully allocated addresses. See the PCI OF bindings for -details. - -In general, a simple bus with no address space bits and no dynamic -allocation is preferred if it reflects your hardware, as the existing -kernel address parsing functions will work out of the box. If you -define a bus type with a more complex address format, including things -like address space bits, you'll have to add a bus translator to the -prom_parse.c file of the recent kernels for your bus type. - -The "reg" property only defines addresses and sizes (if #size-cells is -non-0) within a given bus. In order to translate addresses upward -(that is into parent bus addresses, and possibly into CPU physical -addresses), all busses must contain a "ranges" property. If the -"ranges" property is missing at a given level, it's assumed that -translation isn't possible, i.e., the registers are not visible on the -parent bus. The format of the "ranges" property for a bus is a list -of: - - bus address, parent bus address, size - -"bus address" is in the format of the bus this bus node is defining, -that is, for a PCI bridge, it would be a PCI address. Thus, (bus -address, size) defines a range of addresses for child devices. "parent -bus address" is in the format of the parent bus of this bus. For -example, for a PCI host controller, that would be a CPU address. For a -PCI<->ISA bridge, that would be a PCI address. It defines the base -address in the parent bus where the beginning of that range is mapped. - -For a new 64-bit powerpc board, I recommend either the 2/2 format or -Apple's 2/1 format which is slightly more compact since sizes usually -fit in a single 32-bit word. New 32-bit powerpc boards should use a -1/1 format, unless the processor supports physical addresses greater -than 32-bits, in which case a 2/1 format is recommended. - -Alternatively, the "ranges" property may be empty, indicating that the -registers are visible on the parent bus using an identity mapping -translation. In other words, the parent bus address space is the same -as the child bus address space. - -2) Note about "compatible" properties -------------------------------------- - -These properties are optional, but recommended in devices and the root -node. The format of a "compatible" property is a list of concatenated -zero terminated strings. They allow a device to express its -compatibility with a family of similar devices, in some cases, -allowing a single driver to match against several devices regardless -of their actual names. - -3) Note about "name" properties -------------------------------- - -While earlier users of Open Firmware like OldWorld macintoshes tended -to use the actual device name for the "name" property, it's nowadays -considered a good practice to use a name that is closer to the device -class (often equal to device_type). For example, nowadays, ethernet -controllers are named "ethernet", an additional "model" property -defining precisely the chip type/model, and "compatible" property -defining the family in case a single driver can driver more than one -of these chips. However, the kernel doesn't generally put any -restriction on the "name" property; it is simply considered good -practice to follow the standard and its evolutions as closely as -possible. - -Note also that the new format version 16 makes the "name" property -optional. If it's absent for a node, then the node's unit name is then -used to reconstruct the name. That is, the part of the unit name -before the "@" sign is used (or the entire unit name if no "@" sign -is present). - -4) Note about node and property names and character set -------------------------------------------------------- - -While open firmware provides more flexible usage of 8859-1, this -specification enforces more strict rules. Nodes and properties should -be comprised only of ASCII characters 'a' to 'z', '0' to -'9', ',', '.', '_', '+', '#', '?', and '-'. Node names additionally -allow uppercase characters 'A' to 'Z' (property names should be -lowercase. The fact that vendors like Apple don't respect this rule is -irrelevant here). Additionally, node and property names should always -begin with a character in the range 'a' to 'z' (or 'A' to 'Z' for node -names). - -The maximum number of characters for both nodes and property names -is 31. In the case of node names, this is only the leftmost part of -a unit name (the pure "name" property), it doesn't include the unit -address which can extend beyond that limit. - - -5) Required nodes and properties --------------------------------- - These are all that are currently required. However, it is strongly - recommended that you expose PCI host bridges as documented in the - PCI binding to open firmware, and your interrupt tree as documented - in OF interrupt tree specification. - - a) The root node - - The root node requires some properties to be present: - - - model : this is your board name/model - - #address-cells : address representation for "root" devices - - #size-cells: the size representation for "root" devices - - device_type : This property shouldn't be necessary. However, if - you decide to create a device_type for your root node, make sure it - is _not_ "chrp" unless your platform is a pSeries or PAPR compliant - one for 64-bit, or a CHRP-type machine for 32-bit as this will - matched by the kernel this way. - - Additionally, some recommended properties are: - - - compatible : the board "family" generally finds its way here, - for example, if you have 2 board models with a similar layout, - that typically get driven by the same platform code in the - kernel, you would use a different "model" property but put a - value in "compatible". The kernel doesn't directly use that - value but it is generally useful. - - The root node is also generally where you add additional properties - specific to your board like the serial number if any, that sort of - thing. It is recommended that if you add any "custom" property whose - name may clash with standard defined ones, you prefix them with your - vendor name and a comma. - - b) The /cpus node - - This node is the parent of all individual CPU nodes. It doesn't - have any specific requirements, though it's generally good practice - to have at least: - - #address-cells = <00000001> - #size-cells = <00000000> - - This defines that the "address" for a CPU is a single cell, and has - no meaningful size. This is not necessary but the kernel will assume - that format when reading the "reg" properties of a CPU node, see - below - - c) The /cpus/* nodes - - So under /cpus, you are supposed to create a node for every CPU on - the machine. There is no specific restriction on the name of the - CPU, though It's common practice to call it PowerPC,. For - example, Apple uses PowerPC,G5 while IBM uses PowerPC,970FX. - - Required properties: - - - device_type : has to be "cpu" - - reg : This is the physical CPU number, it's a single 32-bit cell - and is also used as-is as the unit number for constructing the - unit name in the full path. For example, with 2 CPUs, you would - have the full path: - /cpus/PowerPC,970FX@0 - /cpus/PowerPC,970FX@1 - (unit addresses do not require leading zeroes) - - d-cache-block-size : one cell, L1 data cache block size in bytes (*) - - i-cache-block-size : one cell, L1 instruction cache block size in - bytes - - d-cache-size : one cell, size of L1 data cache in bytes - - i-cache-size : one cell, size of L1 instruction cache in bytes - -(*) The cache "block" size is the size on which the cache management -instructions operate. Historically, this document used the cache -"line" size here which is incorrect. The kernel will prefer the cache -block size and will fallback to cache line size for backward -compatibility. - - Recommended properties: - - - timebase-frequency : a cell indicating the frequency of the - timebase in Hz. This is not directly used by the generic code, - but you are welcome to copy/paste the pSeries code for setting - the kernel timebase/decrementer calibration based on this - value. - - clock-frequency : a cell indicating the CPU core clock frequency - in Hz. A new property will be defined for 64-bit values, but if - your frequency is < 4Ghz, one cell is enough. Here as well as - for the above, the common code doesn't use that property, but - you are welcome to re-use the pSeries or Maple one. A future - kernel version might provide a common function for this. - - d-cache-line-size : one cell, L1 data cache line size in bytes - if different from the block size - - i-cache-line-size : one cell, L1 instruction cache line size in - bytes if different from the block size - - You are welcome to add any property you find relevant to your board, - like some information about the mechanism used to soft-reset the - CPUs. For example, Apple puts the GPIO number for CPU soft reset - lines in there as a "soft-reset" property since they start secondary - CPUs by soft-resetting them. - - - d) the /memory node(s) - - To define the physical memory layout of your board, you should - create one or more memory node(s). You can either create a single - node with all memory ranges in its reg property, or you can create - several nodes, as you wish. The unit address (@ part) used for the - full path is the address of the first range of memory defined by a - given node. If you use a single memory node, this will typically be - @0. - - Required properties: - - - device_type : has to be "memory" - - reg : This property contains all the physical memory ranges of - your board. It's a list of addresses/sizes concatenated - together, with the number of cells of each defined by the - #address-cells and #size-cells of the root node. For example, - with both of these properties being 2 like in the example given - earlier, a 970 based machine with 6Gb of RAM could typically - have a "reg" property here that looks like: - - 00000000 00000000 00000000 80000000 - 00000001 00000000 00000001 00000000 - - That is a range starting at 0 of 0x80000000 bytes and a range - starting at 0x100000000 and of 0x100000000 bytes. You can see - that there is no memory covering the IO hole between 2Gb and - 4Gb. Some vendors prefer splitting those ranges into smaller - segments, but the kernel doesn't care. - - e) The /chosen node - - This node is a bit "special". Normally, that's where open firmware - puts some variable environment information, like the arguments, or - the default input/output devices. - - This specification makes a few of these mandatory, but also defines - some linux-specific properties that would be normally constructed by - the prom_init() trampoline when booting with an OF client interface, - but that you have to provide yourself when using the flattened format. - - Recommended properties: - - - bootargs : This zero-terminated string is passed as the kernel - command line - - linux,stdout-path : This is the full path to your standard - console device if any. Typically, if you have serial devices on - your board, you may want to put the full path to the one set as - the default console in the firmware here, for the kernel to pick - it up as its own default console. If you look at the function - set_preferred_console() in arch/ppc64/kernel/setup.c, you'll see - that the kernel tries to find out the default console and has - knowledge of various types like 8250 serial ports. You may want - to extend this function to add your own. - - Note that u-boot creates and fills in the chosen node for platforms - that use it. - - (Note: a practice that is now obsolete was to include a property - under /chosen called interrupt-controller which had a phandle value - that pointed to the main interrupt controller) - - f) the /soc node - - This node is used to represent a system-on-a-chip (SOC) and must be - present if the processor is a SOC. The top-level soc node contains - information that is global to all devices on the SOC. The node name - should contain a unit address for the SOC, which is the base address - of the memory-mapped register set for the SOC. The name of an soc - node should start with "soc", and the remainder of the name should - represent the part number for the soc. For example, the MPC8540's - soc node would be called "soc8540". - - Required properties: - - - device_type : Should be "soc" - - ranges : Should be defined as specified in 1) to describe the - translation of SOC addresses for memory mapped SOC registers. - - bus-frequency: Contains the bus frequency for the SOC node. - Typically, the value of this field is filled in by the boot - loader. - - - Recommended properties: - - - reg : This property defines the address and size of the - memory-mapped registers that are used for the SOC node itself. - It does not include the child device registers - these will be - defined inside each child node. The address specified in the - "reg" property should match the unit address of the SOC node. - - #address-cells : Address representation for "soc" devices. The - format of this field may vary depending on whether or not the - device registers are memory mapped. For memory mapped - registers, this field represents the number of cells needed to - represent the address of the registers. For SOCs that do not - use MMIO, a special address format should be defined that - contains enough cells to represent the required information. - See 1) above for more details on defining #address-cells. - - #size-cells : Size representation for "soc" devices - - #interrupt-cells : Defines the width of cells used to represent - interrupts. Typically this value is <2>, which includes a - 32-bit number that represents the interrupt number, and a - 32-bit number that represents the interrupt sense and level. - This field is only needed if the SOC contains an interrupt - controller. - - The SOC node may contain child nodes for each SOC device that the - platform uses. Nodes should not be created for devices which exist - on the SOC but are not used by a particular platform. See chapter VI - for more information on how to specify devices that are part of a SOC. - - Example SOC node for the MPC8540: - - soc8540@e0000000 { - #address-cells = <1>; - #size-cells = <1>; - #interrupt-cells = <2>; - device_type = "soc"; - ranges = <00000000 e0000000 00100000> - reg = ; - bus-frequency = <0>; - } - - - -IV - "dtc", the device tree compiler -==================================== - - -dtc source code can be found at - - -WARNING: This version is still in early development stage; the -resulting device-tree "blobs" have not yet been validated with the -kernel. The current generated block lacks a useful reserve map (it will -be fixed to generate an empty one, it's up to the bootloader to fill -it up) among others. The error handling needs work, bugs are lurking, -etc... - -dtc basically takes a device-tree in a given format and outputs a -device-tree in another format. The currently supported formats are: - - Input formats: - ------------- - - - "dtb": "blob" format, that is a flattened device-tree block - with - header all in a binary blob. - - "dts": "source" format. This is a text file containing a - "source" for a device-tree. The format is defined later in this - chapter. - - "fs" format. This is a representation equivalent to the - output of /proc/device-tree, that is nodes are directories and - properties are files - - Output formats: - --------------- - - - "dtb": "blob" format - - "dts": "source" format - - "asm": assembly language file. This is a file that can be - sourced by gas to generate a device-tree "blob". That file can - then simply be added to your Makefile. Additionally, the - assembly file exports some symbols that can be used. - - -The syntax of the dtc tool is - - dtc [-I ] [-O ] - [-o output-filename] [-V output_version] input_filename - - -The "output_version" defines what version of the "blob" format will be -generated. Supported versions are 1,2,3 and 16. The default is -currently version 3 but that may change in the future to version 16. - -Additionally, dtc performs various sanity checks on the tree, like the -uniqueness of linux, phandle properties, validity of strings, etc... - -The format of the .dts "source" file is "C" like, supports C and C++ -style comments. - -/ { -} - -The above is the "device-tree" definition. It's the only statement -supported currently at the toplevel. - -/ { - property1 = "string_value"; /* define a property containing a 0 - * terminated string - */ - - property2 = <1234abcd>; /* define a property containing a - * numerical 32-bit value (hexadecimal) - */ - - property3 = <12345678 12345678 deadbeef>; - /* define a property containing 3 - * numerical 32-bit values (cells) in - * hexadecimal - */ - property4 = [0a 0b 0c 0d de ea ad be ef]; - /* define a property whose content is - * an arbitrary array of bytes - */ - - childnode@address { /* define a child node named "childnode" - * whose unit name is "childnode at - * address" - */ - - childprop = "hello\n"; /* define a property "childprop" of - * childnode (in this case, a string) - */ - }; -}; - -Nodes can contain other nodes etc... thus defining the hierarchical -structure of the tree. - -Strings support common escape sequences from C: "\n", "\t", "\r", -"\(octal value)", "\x(hex value)". - -It is also suggested that you pipe your source file through cpp (gcc -preprocessor) so you can use #include's, #define for constants, etc... - -Finally, various options are planned but not yet implemented, like -automatic generation of phandles, labels (exported to the asm file so -you can point to a property content and change it easily from whatever -you link the device-tree with), label or path instead of numeric value -in some cells to "point" to a node (replaced by a phandle at compile -time), export of reserve map address to the asm file, ability to -specify reserve map content at compile time, etc... - -We may provide a .h include file with common definitions of that -proves useful for some properties (like building PCI properties or -interrupt maps) though it may be better to add a notion of struct -definitions to the compiler... - - -V - Recommendations for a bootloader -==================================== - - -Here are some various ideas/recommendations that have been proposed -while all this has been defined and implemented. - - - The bootloader may want to be able to use the device-tree itself - and may want to manipulate it (to add/edit some properties, - like physical memory size or kernel arguments). At this point, 2 - choices can be made. Either the bootloader works directly on the - flattened format, or the bootloader has its own internal tree - representation with pointers (similar to the kernel one) and - re-flattens the tree when booting the kernel. The former is a bit - more difficult to edit/modify, the later requires probably a bit - more code to handle the tree structure. Note that the structure - format has been designed so it's relatively easy to "insert" - properties or nodes or delete them by just memmoving things - around. It contains no internal offsets or pointers for this - purpose. - - - An example of code for iterating nodes & retrieving properties - directly from the flattened tree format can be found in the kernel - file arch/ppc64/kernel/prom.c, look at scan_flat_dt() function, - its usage in early_init_devtree(), and the corresponding various - early_init_dt_scan_*() callbacks. That code can be re-used in a - GPL bootloader, and as the author of that code, I would be happy - to discuss possible free licensing to any vendor who wishes to - integrate all or part of this code into a non-GPL bootloader. - - - -VI - System-on-a-chip devices and nodes -======================================= - -Many companies are now starting to develop system-on-a-chip -processors, where the processor core (CPU) and many peripheral devices -exist on a single piece of silicon. For these SOCs, an SOC node -should be used that defines child nodes for the devices that make -up the SOC. While platforms are not required to use this model in -order to boot the kernel, it is highly encouraged that all SOC -implementations define as complete a flat-device-tree as possible to -describe the devices on the SOC. This will allow for the -genericization of much of the kernel code. - - -1) Defining child nodes of an SOC ---------------------------------- - -Each device that is part of an SOC may have its own node entry inside -the SOC node. For each device that is included in the SOC, the unit -address property represents the address offset for this device's -memory-mapped registers in the parent's address space. The parent's -address space is defined by the "ranges" property in the top-level soc -node. The "reg" property for each node that exists directly under the -SOC node should contain the address mapping from the child address space -to the parent SOC address space and the size of the device's -memory-mapped register file. - -For many devices that may exist inside an SOC, there are predefined -specifications for the format of the device tree node. All SOC child -nodes should follow these specifications, except where noted in this -document. - -See appendix A for an example partial SOC node definition for the -MPC8540. - - -2) Representing devices without a current OF specification ----------------------------------------------------------- - -Currently, there are many devices on SOCs that do not have a standard -representation pre-defined as part of the open firmware -specifications, mainly because the boards that contain these SOCs are -not currently booted using open firmware. This section contains -descriptions for the SOC devices for which new nodes have been -defined; this list will expand as more and more SOC-containing -platforms are moved over to use the flattened-device-tree model. - -VII - Specifying interrupt information for devices -=================================================== - -The device tree represents the busses and devices of a hardware -system in a form similar to the physical bus topology of the -hardware. - -In addition, a logical 'interrupt tree' exists which represents the -hierarchy and routing of interrupts in the hardware. - -The interrupt tree model is fully described in the -document "Open Firmware Recommended Practice: Interrupt -Mapping Version 0.9". The document is available at: -. - -1) interrupts property ----------------------- - -Devices that generate interrupts to a single interrupt controller -should use the conventional OF representation described in the -OF interrupt mapping documentation. - -Each device which generates interrupts must have an 'interrupt' -property. The interrupt property value is an arbitrary number of -of 'interrupt specifier' values which describe the interrupt or -interrupts for the device. - -The encoding of an interrupt specifier is determined by the -interrupt domain in which the device is located in the -interrupt tree. The root of an interrupt domain specifies in -its #interrupt-cells property the number of 32-bit cells -required to encode an interrupt specifier. See the OF interrupt -mapping documentation for a detailed description of domains. - -For example, the binding for the OpenPIC interrupt controller -specifies an #interrupt-cells value of 2 to encode the interrupt -number and level/sense information. All interrupt children in an -OpenPIC interrupt domain use 2 cells per interrupt in their interrupts -property. - -The PCI bus binding specifies a #interrupt-cell value of 1 to encode -which interrupt pin (INTA,INTB,INTC,INTD) is used. - -2) interrupt-parent property ----------------------------- - -The interrupt-parent property is specified to define an explicit -link between a device node and its interrupt parent in -the interrupt tree. The value of interrupt-parent is the -phandle of the parent node. - -If the interrupt-parent property is not defined for a node, its -interrupt parent is assumed to be an ancestor in the node's -_device tree_ hierarchy. - -3) OpenPIC Interrupt Controllers --------------------------------- - -OpenPIC interrupt controllers require 2 cells to encode -interrupt information. The first cell defines the interrupt -number. The second cell defines the sense and level -information. - -Sense and level information should be encoded as follows: - - 0 = low to high edge sensitive type enabled - 1 = active low level sensitive type enabled - 2 = active high level sensitive type enabled - 3 = high to low edge sensitive type enabled - -4) ISA Interrupt Controllers ----------------------------- - -ISA PIC interrupt controllers require 2 cells to encode -interrupt information. The first cell defines the interrupt -number. The second cell defines the sense and level -information. - -ISA PIC interrupt controllers should adhere to the ISA PIC -encodings listed below: - - 0 = active low level sensitive type enabled - 1 = active high level sensitive type enabled - 2 = high to low edge sensitive type enabled - 3 = low to high edge sensitive type enabled - -VIII - Specifying Device Power Management Information (sleep property) -=================================================================== - -Devices on SOCs often have mechanisms for placing devices into low-power -states that are decoupled from the devices' own register blocks. Sometimes, -this information is more complicated than a cell-index property can -reasonably describe. Thus, each device controlled in such a manner -may contain a "sleep" property which describes these connections. - -The sleep property consists of one or more sleep resources, each of -which consists of a phandle to a sleep controller, followed by a -controller-specific sleep specifier of zero or more cells. - -The semantics of what type of low power modes are possible are defined -by the sleep controller. Some examples of the types of low power modes -that may be supported are: - - - Dynamic: The device may be disabled or enabled at any time. - - System Suspend: The device may request to be disabled or remain - awake during system suspend, but will not be disabled until then. - - Permanent: The device is disabled permanently (until the next hard - reset). - -Some devices may share a clock domain with each other, such that they should -only be suspended when none of the devices are in use. Where reasonable, -such nodes should be placed on a virtual bus, where the bus has the sleep -property. If the clock domain is shared among devices that cannot be -reasonably grouped in this manner, then create a virtual sleep controller -(similar to an interrupt nexus, except that defining a standardized -sleep-map should wait until its necessity is demonstrated). - -Appendix A - Sample SOC node for MPC8540 -======================================== - - soc@e0000000 { - #address-cells = <1>; - #size-cells = <1>; - compatible = "fsl,mpc8540-ccsr", "simple-bus"; - device_type = "soc"; - ranges = <0x00000000 0xe0000000 0x00100000> - bus-frequency = <0>; - interrupt-parent = <&pic>; - - ethernet@24000 { - #address-cells = <1>; - #size-cells = <1>; - device_type = "network"; - model = "TSEC"; - compatible = "gianfar", "simple-bus"; - reg = <0x24000 0x1000>; - local-mac-address = [ 00 E0 0C 00 73 00 ]; - interrupts = <29 2 30 2 34 2>; - phy-handle = <&phy0>; - sleep = <&pmc 00000080>; - ranges; - - mdio@24520 { - reg = <0x24520 0x20>; - compatible = "fsl,gianfar-mdio"; - - phy0: ethernet-phy@0 { - interrupts = <5 1>; - reg = <0>; - device_type = "ethernet-phy"; - }; - - phy1: ethernet-phy@1 { - interrupts = <5 1>; - reg = <1>; - device_type = "ethernet-phy"; - }; - - phy3: ethernet-phy@3 { - interrupts = <7 1>; - reg = <3>; - device_type = "ethernet-phy"; - }; - }; - }; - - ethernet@25000 { - device_type = "network"; - model = "TSEC"; - compatible = "gianfar"; - reg = <0x25000 0x1000>; - local-mac-address = [ 00 E0 0C 00 73 01 ]; - interrupts = <13 2 14 2 18 2>; - phy-handle = <&phy1>; - sleep = <&pmc 00000040>; - }; - - ethernet@26000 { - device_type = "network"; - model = "FEC"; - compatible = "gianfar"; - reg = <0x26000 0x1000>; - local-mac-address = [ 00 E0 0C 00 73 02 ]; - interrupts = <41 2>; - phy-handle = <&phy3>; - sleep = <&pmc 00000020>; - }; - - serial@4500 { - #address-cells = <1>; - #size-cells = <1>; - compatible = "fsl,mpc8540-duart", "simple-bus"; - sleep = <&pmc 00000002>; - ranges; - - serial@4500 { - device_type = "serial"; - compatible = "ns16550"; - reg = <0x4500 0x100>; - clock-frequency = <0>; - interrupts = <42 2>; - }; - - serial@4600 { - device_type = "serial"; - compatible = "ns16550"; - reg = <0x4600 0x100>; - clock-frequency = <0>; - interrupts = <42 2>; - }; - }; - - pic: pic@40000 { - interrupt-controller; - #address-cells = <0>; - #interrupt-cells = <2>; - reg = <0x40000 0x40000>; - compatible = "chrp,open-pic"; - device_type = "open-pic"; - }; - - i2c@3000 { - interrupts = <43 2>; - reg = <0x3000 0x100>; - compatible = "fsl-i2c"; - dfsrr; - sleep = <&pmc 00000004>; - }; - - pmc: power@e0070 { - compatible = "fsl,mpc8540-pmc", "fsl,mpc8548-pmc"; - reg = <0xe0070 0x20>; - }; - }; diff --git a/Documentation/powerpc/dts-bindings/4xx/cpm.txt b/Documentation/powerpc/dts-bindings/4xx/cpm.txt deleted file mode 100644 index ee459806d35e..000000000000 --- a/Documentation/powerpc/dts-bindings/4xx/cpm.txt +++ /dev/null @@ -1,52 +0,0 @@ -PPC4xx Clock Power Management (CPM) node - -Required properties: - - compatible : compatible list, currently only "ibm,cpm" - - dcr-access-method : "native" - - dcr-reg : < DCR register range > - -Optional properties: - - er-offset : All 4xx SoCs with a CPM controller have - one of two different order for the CPM - registers. Some have the CPM registers - in the following order (ER,FR,SR). The - others have them in the following order - (SR,ER,FR). For the second case set - er-offset = <1>. - - unused-units : specifier consist of one cell. For each - bit in the cell, the corresponding bit - in CPM will be set to turn off unused - devices. - - idle-doze : specifier consist of one cell. For each - bit in the cell, the corresponding bit - in CPM will be set to turn off unused - devices. This is usually just CPM[CPU]. - - standby : specifier consist of one cell. For each - bit in the cell, the corresponding bit - in CPM will be set on standby and - restored on resume. - - suspend : specifier consist of one cell. For each - bit in the cell, the corresponding bit - in CPM will be set on suspend (mem) and - restored on resume. Note, for standby - and suspend the corresponding bits can - be different or the same. Usually for - standby only class 2 and 3 units are set. - However, the interface does not care. - If they are the same, the additional - power saving will be seeing if support - is available to put the DDR in self - refresh mode and any additional power - saving techniques for the specific SoC. - -Example: - CPM0: cpm { - compatible = "ibm,cpm"; - dcr-access-method = "native"; - dcr-reg = <0x160 0x003>; - er-offset = <0>; - unused-units = <0x00000100>; - idle-doze = <0x02000000>; - standby = <0xfeff0000>; - suspend = <0xfeff791d>; -}; diff --git a/Documentation/powerpc/dts-bindings/4xx/emac.txt b/Documentation/powerpc/dts-bindings/4xx/emac.txt deleted file mode 100644 index 2161334a7ca5..000000000000 --- a/Documentation/powerpc/dts-bindings/4xx/emac.txt +++ /dev/null @@ -1,148 +0,0 @@ - 4xx/Axon EMAC ethernet nodes - - The EMAC ethernet controller in IBM and AMCC 4xx chips, and also - the Axon bridge. To operate this needs to interact with a ths - special McMAL DMA controller, and sometimes an RGMII or ZMII - interface. In addition to the nodes and properties described - below, the node for the OPB bus on which the EMAC sits must have a - correct clock-frequency property. - - i) The EMAC node itself - - Required properties: - - device_type : "network" - - - compatible : compatible list, contains 2 entries, first is - "ibm,emac-CHIP" where CHIP is the host ASIC (440gx, - 405gp, Axon) and second is either "ibm,emac" or - "ibm,emac4". For Axon, thus, we have: "ibm,emac-axon", - "ibm,emac4" - - interrupts : - - interrupt-parent : optional, if needed for interrupt mapping - - reg : - - local-mac-address : 6 bytes, MAC address - - mal-device : phandle of the associated McMAL node - - mal-tx-channel : 1 cell, index of the tx channel on McMAL associated - with this EMAC - - mal-rx-channel : 1 cell, index of the rx channel on McMAL associated - with this EMAC - - cell-index : 1 cell, hardware index of the EMAC cell on a given - ASIC (typically 0x0 and 0x1 for EMAC0 and EMAC1 on - each Axon chip) - - max-frame-size : 1 cell, maximum frame size supported in bytes - - rx-fifo-size : 1 cell, Rx fifo size in bytes for 10 and 100 Mb/sec - operations. - For Axon, 2048 - - tx-fifo-size : 1 cell, Tx fifo size in bytes for 10 and 100 Mb/sec - operations. - For Axon, 2048. - - fifo-entry-size : 1 cell, size of a fifo entry (used to calculate - thresholds). - For Axon, 0x00000010 - - mal-burst-size : 1 cell, MAL burst size (used to calculate thresholds) - in bytes. - For Axon, 0x00000100 (I think ...) - - phy-mode : string, mode of operations of the PHY interface. - Supported values are: "mii", "rmii", "smii", "rgmii", - "tbi", "gmii", rtbi", "sgmii". - For Axon on CAB, it is "rgmii" - - mdio-device : 1 cell, required iff using shared MDIO registers - (440EP). phandle of the EMAC to use to drive the - MDIO lines for the PHY used by this EMAC. - - zmii-device : 1 cell, required iff connected to a ZMII. phandle of - the ZMII device node - - zmii-channel : 1 cell, required iff connected to a ZMII. Which ZMII - channel or 0xffffffff if ZMII is only used for MDIO. - - rgmii-device : 1 cell, required iff connected to an RGMII. phandle - of the RGMII device node. - For Axon: phandle of plb5/plb4/opb/rgmii - - rgmii-channel : 1 cell, required iff connected to an RGMII. Which - RGMII channel is used by this EMAC. - Fox Axon: present, whatever value is appropriate for each - EMAC, that is the content of the current (bogus) "phy-port" - property. - - Optional properties: - - phy-address : 1 cell, optional, MDIO address of the PHY. If absent, - a search is performed. - - phy-map : 1 cell, optional, bitmap of addresses to probe the PHY - for, used if phy-address is absent. bit 0x00000001 is - MDIO address 0. - For Axon it can be absent, though my current driver - doesn't handle phy-address yet so for now, keep - 0x00ffffff in it. - - rx-fifo-size-gige : 1 cell, Rx fifo size in bytes for 1000 Mb/sec - operations (if absent the value is the same as - rx-fifo-size). For Axon, either absent or 2048. - - tx-fifo-size-gige : 1 cell, Tx fifo size in bytes for 1000 Mb/sec - operations (if absent the value is the same as - tx-fifo-size). For Axon, either absent or 2048. - - tah-device : 1 cell, optional. If connected to a TAH engine for - offload, phandle of the TAH device node. - - tah-channel : 1 cell, optional. If appropriate, channel used on the - TAH engine. - - Example: - - EMAC0: ethernet@40000800 { - device_type = "network"; - compatible = "ibm,emac-440gp", "ibm,emac"; - interrupt-parent = <&UIC1>; - interrupts = <1c 4 1d 4>; - reg = <40000800 70>; - local-mac-address = [00 04 AC E3 1B 1E]; - mal-device = <&MAL0>; - mal-tx-channel = <0 1>; - mal-rx-channel = <0>; - cell-index = <0>; - max-frame-size = <5dc>; - rx-fifo-size = <1000>; - tx-fifo-size = <800>; - phy-mode = "rmii"; - phy-map = <00000001>; - zmii-device = <&ZMII0>; - zmii-channel = <0>; - }; - - ii) McMAL node - - Required properties: - - device_type : "dma-controller" - - compatible : compatible list, containing 2 entries, first is - "ibm,mcmal-CHIP" where CHIP is the host ASIC (like - emac) and the second is either "ibm,mcmal" or - "ibm,mcmal2". - For Axon, "ibm,mcmal-axon","ibm,mcmal2" - - interrupts : . - For Axon: This is _different_ from the current - firmware. We use the "delayed" interrupts for txeob - and rxeob. Thus we end up with mapping those 5 MPIC - interrupts, all level positive sensitive: 10, 11, 32, - 33, 34 (in decimal) - - dcr-reg : < DCR registers range > - - dcr-parent : if needed for dcr-reg - - num-tx-chans : 1 cell, number of Tx channels - - num-rx-chans : 1 cell, number of Rx channels - - iii) ZMII node - - Required properties: - - compatible : compatible list, containing 2 entries, first is - "ibm,zmii-CHIP" where CHIP is the host ASIC (like - EMAC) and the second is "ibm,zmii". - For Axon, there is no ZMII node. - - reg : - - iv) RGMII node - - Required properties: - - compatible : compatible list, containing 2 entries, first is - "ibm,rgmii-CHIP" where CHIP is the host ASIC (like - EMAC) and the second is "ibm,rgmii". - For Axon, "ibm,rgmii-axon","ibm,rgmii" - - reg : - - revision : as provided by the RGMII new version register if - available. - For Axon: 0x0000012a - diff --git a/Documentation/powerpc/dts-bindings/4xx/ndfc.txt b/Documentation/powerpc/dts-bindings/4xx/ndfc.txt deleted file mode 100644 index 869f0b5f16e8..000000000000 --- a/Documentation/powerpc/dts-bindings/4xx/ndfc.txt +++ /dev/null @@ -1,39 +0,0 @@ -AMCC NDFC (NanD Flash Controller) - -Required properties: -- compatible : "ibm,ndfc". -- reg : should specify chip select and size used for the chip (0x2000). - -Optional properties: -- ccr : NDFC config and control register value (default 0). -- bank-settings : NDFC bank configuration register value (default 0). - -Notes: -- partition(s) - follows the OF MTD standard for partitions - -Example: - -ndfc@1,0 { - compatible = "ibm,ndfc"; - reg = <0x00000001 0x00000000 0x00002000>; - ccr = <0x00001000>; - bank-settings = <0x80002222>; - #address-cells = <1>; - #size-cells = <1>; - - nand { - #address-cells = <1>; - #size-cells = <1>; - - partition@0 { - label = "kernel"; - reg = <0x00000000 0x00200000>; - }; - partition@200000 { - label = "root"; - reg = <0x00200000 0x03E00000>; - }; - }; -}; - - diff --git a/Documentation/powerpc/dts-bindings/4xx/ppc440spe-adma.txt b/Documentation/powerpc/dts-bindings/4xx/ppc440spe-adma.txt deleted file mode 100644 index 515ebcf1b97d..000000000000 --- a/Documentation/powerpc/dts-bindings/4xx/ppc440spe-adma.txt +++ /dev/null @@ -1,93 +0,0 @@ -PPC440SPe DMA/XOR (DMA Controller and XOR Accelerator) - -Device nodes needed for operation of the ppc440spe-adma driver -are specified hereby. These are I2O/DMA, DMA and XOR nodes -for DMA engines and Memory Queue Module node. The latter is used -by ADMA driver for configuration of RAID-6 H/W capabilities of -the PPC440SPe. In addition to the nodes and properties described -below, the ranges property of PLB node must specify ranges for -DMA devices. - - i) The I2O node - - Required properties: - - - compatible : "ibm,i2o-440spe"; - - reg : - - dcr-reg : - - Example: - - I2O: i2o@400100000 { - compatible = "ibm,i2o-440spe"; - reg = <0x00000004 0x00100000 0x100>; - dcr-reg = <0x060 0x020>; - }; - - - ii) The DMA node - - Required properties: - - - compatible : "ibm,dma-440spe"; - - cell-index : 1 cell, hardware index of the DMA engine - (typically 0x0 and 0x1 for DMA0 and DMA1) - - reg : - - dcr-reg : - - interrupts : . - - interrupt-parent : needed for interrupt mapping - - Example: - - DMA0: dma0@400100100 { - compatible = "ibm,dma-440spe"; - cell-index = <0>; - reg = <0x00000004 0x00100100 0x100>; - dcr-reg = <0x060 0x020>; - interrupt-parent = <&DMA0>; - interrupts = <0 1>; - #interrupt-cells = <1>; - #address-cells = <0>; - #size-cells = <0>; - interrupt-map = < - 0 &UIC0 0x14 4 - 1 &UIC1 0x16 4>; - }; - - - iii) XOR Accelerator node - - Required properties: - - - compatible : "amcc,xor-accelerator"; - - reg : - - interrupts : - - interrupt-parent : for interrupt mapping - - Example: - - xor-accel@400200000 { - compatible = "amcc,xor-accelerator"; - reg = <0x00000004 0x00200000 0x400>; - interrupt-parent = <&UIC1>; - interrupts = <0x1f 4>; - }; - - - iv) Memory Queue Module node - - Required properties: - - - compatible : "ibm,mq-440spe"; - - dcr-reg : - - Example: - - MQ0: mq { - compatible = "ibm,mq-440spe"; - dcr-reg = <0x040 0x020>; - }; - diff --git a/Documentation/powerpc/dts-bindings/4xx/reboot.txt b/Documentation/powerpc/dts-bindings/4xx/reboot.txt deleted file mode 100644 index d7217260589c..000000000000 --- a/Documentation/powerpc/dts-bindings/4xx/reboot.txt +++ /dev/null @@ -1,18 +0,0 @@ -Reboot property to control system reboot on PPC4xx systems: - -By setting "reset_type" to one of the following values, the default -software reset mechanism may be overidden. Here the possible values of -"reset_type": - - 1 - PPC4xx core reset - 2 - PPC4xx chip reset - 3 - PPC4xx system reset (default) - -Example: - - cpu@0 { - device_type = "cpu"; - model = "PowerPC,440SPe"; - ... - reset-type = <2>; /* Use chip-reset */ - }; diff --git a/Documentation/powerpc/dts-bindings/can/sja1000.txt b/Documentation/powerpc/dts-bindings/can/sja1000.txt deleted file mode 100644 index d6d209ded937..000000000000 --- a/Documentation/powerpc/dts-bindings/can/sja1000.txt +++ /dev/null @@ -1,53 +0,0 @@ -Memory mapped SJA1000 CAN controller from NXP (formerly Philips) - -Required properties: - -- compatible : should be "nxp,sja1000". - -- reg : should specify the chip select, address offset and size required - to map the registers of the SJA1000. The size is usually 0x80. - -- interrupts: property with a value describing the interrupt source - (number and sensitivity) required for the SJA1000. - -Optional properties: - -- nxp,external-clock-frequency : Frequency of the external oscillator - clock in Hz. Note that the internal clock frequency used by the - SJA1000 is half of that value. If not specified, a default value - of 16000000 (16 MHz) is used. - -- nxp,tx-output-mode : operation mode of the TX output control logic: - <0x0> : bi-phase output mode - <0x1> : normal output mode (default) - <0x2> : test output mode - <0x3> : clock output mode - -- nxp,tx-output-config : TX output pin configuration: - <0x01> : TX0 invert - <0x02> : TX0 pull-down (default) - <0x04> : TX0 pull-up - <0x06> : TX0 push-pull - <0x08> : TX1 invert - <0x10> : TX1 pull-down - <0x20> : TX1 pull-up - <0x30> : TX1 push-pull - -- nxp,clock-out-frequency : clock frequency in Hz on the CLKOUT pin. - If not specified or if the specified value is 0, the CLKOUT pin - will be disabled. - -- nxp,no-comparator-bypass : Allows to disable the CAN input comperator. - -For futher information, please have a look to the SJA1000 data sheet. - -Examples: - -can@3,100 { - compatible = "nxp,sja1000"; - reg = <3 0x100 0x80>; - interrupts = <2 0>; - interrupt-parent = <&mpic>; - nxp,external-clock-frequency = <16000000>; -}; - diff --git a/Documentation/powerpc/dts-bindings/ecm.txt b/Documentation/powerpc/dts-bindings/ecm.txt deleted file mode 100644 index f514f29c67d6..000000000000 --- a/Documentation/powerpc/dts-bindings/ecm.txt +++ /dev/null @@ -1,64 +0,0 @@ -===================================================================== -E500 LAW & Coherency Module Device Tree Binding -Copyright (C) 2009 Freescale Semiconductor Inc. -===================================================================== - -Local Access Window (LAW) Node - -The LAW node represents the region of CCSR space where local access -windows are configured. For ECM based devices this is the first 4k -of CCSR space that includes CCSRBAR, ALTCBAR, ALTCAR, BPTR, and some -number of local access windows as specified by fsl,num-laws. - -PROPERTIES - - - compatible - Usage: required - Value type: - Definition: Must include "fsl,ecm-law" - - - reg - Usage: required - Value type: - Definition: A standard property. The value specifies the - physical address offset and length of the CCSR space - registers. - - - fsl,num-laws - Usage: required - Value type: - Definition: The value specifies the number of local access - windows for this device. - -===================================================================== - -E500 Coherency Module Node - -The E500 LAW node represents the region of CCSR space where ECM config -and error reporting registers exist, this is the second 4k (0x1000) -of CCSR space. - -PROPERTIES - - - compatible - Usage: required - Value type: - Definition: Must include "fsl,CHIP-ecm", "fsl,ecm" where - CHIP is the processor (mpc8572, mpc8544, etc.) - - - reg - Usage: required - Value type: - Definition: A standard property. The value specifies the - physical address offset and length of the CCSR space - registers. - - - interrupts - Usage: required - Value type: - - - interrupt-parent - Usage: required - Value type: - -===================================================================== diff --git a/Documentation/powerpc/dts-bindings/eeprom.txt b/Documentation/powerpc/dts-bindings/eeprom.txt deleted file mode 100644 index 4342c10de1bf..000000000000 --- a/Documentation/powerpc/dts-bindings/eeprom.txt +++ /dev/null @@ -1,28 +0,0 @@ -EEPROMs (I2C) - -Required properties: - - - compatible : should be "," - If there is no specific driver for , a generic - driver based on is selected. Possible types are: - 24c00, 24c01, 24c02, 24c04, 24c08, 24c16, 24c32, 24c64, - 24c128, 24c256, 24c512, 24c1024, spd - - - reg : the I2C address of the EEPROM - -Optional properties: - - - pagesize : the length of the pagesize for writing. Please consult the - manual of your device, that value varies a lot. A wrong value - may result in data loss! If not specified, a safety value of - '1' is used which will be very slow. - - - read-only: this parameterless property disables writes to the eeprom - -Example: - -eeprom@52 { - compatible = "atmel,24c32"; - reg = <0x52>; - pagesize = <32>; -}; diff --git a/Documentation/powerpc/dts-bindings/fsl/83xx-512x-pci.txt b/Documentation/powerpc/dts-bindings/fsl/83xx-512x-pci.txt deleted file mode 100644 index 35a465362408..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/83xx-512x-pci.txt +++ /dev/null @@ -1,40 +0,0 @@ -* Freescale 83xx and 512x PCI bridges - -Freescale 83xx and 512x SOCs include the same pci bridge core. - -83xx/512x specific notes: -- reg: should contain two address length tuples - The first is for the internal pci bridge registers - The second is for the pci config space access registers - -Example (MPC8313ERDB) - pci0: pci@e0008500 { - cell-index = <1>; - interrupt-map-mask = <0xf800 0x0 0x0 0x7>; - interrupt-map = < - /* IDSEL 0x0E -mini PCI */ - 0x7000 0x0 0x0 0x1 &ipic 18 0x8 - 0x7000 0x0 0x0 0x2 &ipic 18 0x8 - 0x7000 0x0 0x0 0x3 &ipic 18 0x8 - 0x7000 0x0 0x0 0x4 &ipic 18 0x8 - - /* IDSEL 0x0F - PCI slot */ - 0x7800 0x0 0x0 0x1 &ipic 17 0x8 - 0x7800 0x0 0x0 0x2 &ipic 18 0x8 - 0x7800 0x0 0x0 0x3 &ipic 17 0x8 - 0x7800 0x0 0x0 0x4 &ipic 18 0x8>; - interrupt-parent = <&ipic>; - interrupts = <66 0x8>; - bus-range = <0x0 0x0>; - ranges = <0x02000000 0x0 0x90000000 0x90000000 0x0 0x10000000 - 0x42000000 0x0 0x80000000 0x80000000 0x0 0x10000000 - 0x01000000 0x0 0x00000000 0xe2000000 0x0 0x00100000>; - clock-frequency = <66666666>; - #interrupt-cells = <1>; - #size-cells = <2>; - #address-cells = <3>; - reg = <0xe0008500 0x100 /* internal registers */ - 0xe0008300 0x8>; /* config space access registers */ - compatible = "fsl,mpc8349-pci"; - device_type = "pci"; - }; diff --git a/Documentation/powerpc/dts-bindings/fsl/8xxx_gpio.txt b/Documentation/powerpc/dts-bindings/fsl/8xxx_gpio.txt deleted file mode 100644 index b0019eb5330e..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/8xxx_gpio.txt +++ /dev/null @@ -1,60 +0,0 @@ -GPIO controllers on MPC8xxx SoCs - -This is for the non-QE/CPM/GUTs GPIO controllers as found on -8349, 8572, 8610 and compatible. - -Every GPIO controller node must have #gpio-cells property defined, -this information will be used to translate gpio-specifiers. - -Required properties: -- compatible : "fsl,-gpio" followed by "fsl,mpc8349-gpio" for - 83xx, "fsl,mpc8572-gpio" for 85xx and "fsl,mpc8610-gpio" for 86xx. -- #gpio-cells : Should be two. The first cell is the pin number and the - second cell is used to specify optional parameters (currently unused). - - interrupts : Interrupt mapping for GPIO IRQ. - - interrupt-parent : Phandle for the interrupt controller that - services interrupts for this device. -- gpio-controller : Marks the port as GPIO controller. - -Example of gpio-controller nodes for a MPC8347 SoC: - - gpio1: gpio-controller@c00 { - #gpio-cells = <2>; - compatible = "fsl,mpc8347-gpio", "fsl,mpc8349-gpio"; - reg = <0xc00 0x100>; - interrupts = <74 0x8>; - interrupt-parent = <&ipic>; - gpio-controller; - }; - - gpio2: gpio-controller@d00 { - #gpio-cells = <2>; - compatible = "fsl,mpc8347-gpio", "fsl,mpc8349-gpio"; - reg = <0xd00 0x100>; - interrupts = <75 0x8>; - interrupt-parent = <&ipic>; - gpio-controller; - }; - -See booting-without-of.txt for details of how to specify GPIO -information for devices. - -To use GPIO pins as interrupt sources for peripherals, specify the -GPIO controller as the interrupt parent and define GPIO number + -trigger mode using the interrupts property, which is defined like -this: - -interrupts = , where: - - number: GPIO pin (0..31) - - trigger: trigger mode: - 2 = trigger on falling edge - 3 = trigger on both edges - -Example of device using this is: - - funkyfpga@0 { - compatible = "funky-fpga"; - ... - interrupts = <4 3>; - interrupt-parent = <&gpio1>; - }; diff --git a/Documentation/powerpc/dts-bindings/fsl/board.txt b/Documentation/powerpc/dts-bindings/fsl/board.txt deleted file mode 100644 index 39e941515a36..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/board.txt +++ /dev/null @@ -1,63 +0,0 @@ -* Board Control and Status (BCSR) - -Required properties: - - - compatible : Should be "fsl,-bcsr" - - reg : Offset and length of the register set for the device - -Example: - - bcsr@f8000000 { - compatible = "fsl,mpc8360mds-bcsr"; - reg = ; - }; - -* Freescale on board FPGA - -This is the memory-mapped registers for on board FPGA. - -Required properities: -- compatible : should be "fsl,fpga-pixis". -- reg : should contain the address and the length of the FPPGA register - set. -- interrupt-parent: should specify phandle for the interrupt controller. -- interrupts : should specify event (wakeup) IRQ. - -Example (MPC8610HPCD): - - board-control@e8000000 { - compatible = "fsl,fpga-pixis"; - reg = <0xe8000000 32>; - interrupt-parent = <&mpic>; - interrupts = <8 8>; - }; - -* Freescale BCSR GPIO banks - -Some BCSR registers act as simple GPIO controllers, each such -register can be represented by the gpio-controller node. - -Required properities: -- compatible : Should be "fsl,-bcsr-gpio". -- reg : Should contain the address and the length of the GPIO bank - register. -- #gpio-cells : Should be two. The first cell is the pin number and the - second cell is used to specify optional parameters (currently unused). -- gpio-controller : Marks the port as GPIO controller. - -Example: - - bcsr@1,0 { - #address-cells = <1>; - #size-cells = <1>; - compatible = "fsl,mpc8360mds-bcsr"; - reg = <1 0 0x8000>; - ranges = <0 1 0 0x8000>; - - bcsr13: gpio-controller@d { - #gpio-cells = <2>; - compatible = "fsl,mpc8360mds-bcsr-gpio"; - reg = <0xd 1>; - gpio-controller; - }; - }; diff --git a/Documentation/powerpc/dts-bindings/fsl/can.txt b/Documentation/powerpc/dts-bindings/fsl/can.txt deleted file mode 100644 index 2fa4fcd38fd6..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/can.txt +++ /dev/null @@ -1,53 +0,0 @@ -CAN Device Tree Bindings ------------------------- - -(c) 2006-2009 Secret Lab Technologies Ltd -Grant Likely - -fsl,mpc5200-mscan nodes ------------------------ -In addition to the required compatible-, reg- and interrupt-properties, you can -also specify which clock source shall be used for the controller: - -- fsl,mscan-clock-source : a string describing the clock source. Valid values - are: "ip" for ip bus clock - "ref" for reference clock (XTAL) - "ref" is default in case this property is not - present. - -fsl,mpc5121-mscan nodes ------------------------ -In addition to the required compatible-, reg- and interrupt-properties, you can -also specify which clock source and divider shall be used for the controller: - -- fsl,mscan-clock-source : a string describing the clock source. Valid values - are: "ip" for ip bus clock - "ref" for reference clock - "sys" for system clock - If this property is not present, an optimal CAN - clock source and frequency based on the system - clock will be selected. If this is not possible, - the reference clock will be used. - -- fsl,mscan-clock-divider: for the reference and system clock, an additional - clock divider can be specified. By default, a - value of 1 is used. - -Note that the MPC5121 Rev. 1 processor is not supported. - -Examples: - can@1300 { - compatible = "fsl,mpc5121-mscan"; - interrupts = <12 0x8>; - interrupt-parent = <&ipic>; - reg = <0x1300 0x80>; - }; - - can@1380 { - compatible = "fsl,mpc5121-mscan"; - interrupts = <13 0x8>; - interrupt-parent = <&ipic>; - reg = <0x1380 0x80>; - fsl,mscan-clock-source = "ref"; - fsl,mscan-clock-divider = <3>; - }; diff --git a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm.txt b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm.txt deleted file mode 100644 index 160c752484b4..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm.txt +++ /dev/null @@ -1,67 +0,0 @@ -* Freescale Communications Processor Module - -NOTE: This is an interim binding, and will likely change slightly, -as more devices are supported. The QE bindings especially are -incomplete. - -* Root CPM node - -Properties: -- compatible : "fsl,cpm1", "fsl,cpm2", or "fsl,qe". -- reg : A 48-byte region beginning with CPCR. - -Example: - cpm@119c0 { - #address-cells = <1>; - #size-cells = <1>; - #interrupt-cells = <2>; - compatible = "fsl,mpc8272-cpm", "fsl,cpm2"; - reg = <119c0 30>; - } - -* Properties common to multiple CPM/QE devices - -- fsl,cpm-command : This value is ORed with the opcode and command flag - to specify the device on which a CPM command operates. - -- fsl,cpm-brg : Indicates which baud rate generator the device - is associated with. If absent, an unused BRG - should be dynamically allocated. If zero, the - device uses an external clock rather than a BRG. - -- reg : Unless otherwise specified, the first resource represents the - scc/fcc/ucc registers, and the second represents the device's - parameter RAM region (if it has one). - -* Multi-User RAM (MURAM) - -The multi-user/dual-ported RAM is expressed as a bus under the CPM node. - -Ranges must be set up subject to the following restrictions: - -- Children's reg nodes must be offsets from the start of all muram, even - if the user-data area does not begin at zero. -- If multiple range entries are used, the difference between the parent - address and the child address must be the same in all, so that a single - mapping can cover them all while maintaining the ability to determine - CPM-side offsets with pointer subtraction. It is recommended that - multiple range entries not be used. -- A child address of zero must be translatable, even if no reg resources - contain it. - -A child "data" node must exist, compatible with "fsl,cpm-muram-data", to -indicate the portion of muram that is usable by the OS for arbitrary -purposes. The data node may have an arbitrary number of reg resources, -all of which contribute to the allocatable muram pool. - -Example, based on mpc8272: - muram@0 { - #address-cells = <1>; - #size-cells = <1>; - ranges = <0 0 10000>; - - data@0 { - compatible = "fsl,cpm-muram-data"; - reg = <0 2000 9800 800>; - }; - }; diff --git a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/brg.txt b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/brg.txt deleted file mode 100644 index 4c7d45eaf025..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/brg.txt +++ /dev/null @@ -1,21 +0,0 @@ -* Baud Rate Generators - -Currently defined compatibles: -fsl,cpm-brg -fsl,cpm1-brg -fsl,cpm2-brg - -Properties: -- reg : There may be an arbitrary number of reg resources; BRG - numbers are assigned to these in order. -- clock-frequency : Specifies the base frequency driving - the BRG. - -Example: - brg@119f0 { - compatible = "fsl,mpc8272-brg", - "fsl,cpm2-brg", - "fsl,cpm-brg"; - reg = <119f0 10 115f0 10>; - clock-frequency = ; - }; diff --git a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/i2c.txt b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/i2c.txt deleted file mode 100644 index 87bc6048667e..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/i2c.txt +++ /dev/null @@ -1,41 +0,0 @@ -* I2C - -The I2C controller is expressed as a bus under the CPM node. - -Properties: -- compatible : "fsl,cpm1-i2c", "fsl,cpm2-i2c" -- reg : On CPM2 devices, the second resource doesn't specify the I2C - Parameter RAM itself, but the I2C_BASE field of the CPM2 Parameter RAM - (typically 0x8afc 0x2). -- #address-cells : Should be one. The cell is the i2c device address with - the r/w bit set to zero. -- #size-cells : Should be zero. -- clock-frequency : Can be used to set the i2c clock frequency. If - unspecified, a default frequency of 60kHz is being used. -The following two properties are deprecated. They are only used by legacy -i2c drivers to find the bus to probe: -- linux,i2c-index : Can be used to hard code an i2c bus number. By default, - the bus number is dynamically assigned by the i2c core. -- linux,i2c-class : Can be used to override the i2c class. The class is used - by legacy i2c device drivers to find a bus in a specific context like - system management, video or sound. By default, I2C_CLASS_HWMON (1) is - being used. The definition of the classes can be found in - include/i2c/i2c.h - -Example, based on mpc823: - - i2c@860 { - compatible = "fsl,mpc823-i2c", - "fsl,cpm1-i2c"; - reg = <0x860 0x20 0x3c80 0x30>; - interrupts = <16>; - interrupt-parent = <&CPM_PIC>; - fsl,cpm-command = <0x10>; - #address-cells = <1>; - #size-cells = <0>; - - rtc@68 { - compatible = "dallas,ds1307"; - reg = <0x68>; - }; - }; diff --git a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/pic.txt b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/pic.txt deleted file mode 100644 index 8e3ee1681618..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/pic.txt +++ /dev/null @@ -1,18 +0,0 @@ -* Interrupt Controllers - -Currently defined compatibles: -- fsl,cpm1-pic - - only one interrupt cell -- fsl,pq1-pic -- fsl,cpm2-pic - - second interrupt cell is level/sense: - - 2 is falling edge - - 8 is active low - -Example: - interrupt-controller@10c00 { - #interrupt-cells = <2>; - interrupt-controller; - reg = <10c00 80>; - compatible = "mpc8272-pic", "fsl,cpm2-pic"; - }; diff --git a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/usb.txt b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/usb.txt deleted file mode 100644 index 74bfda4bb824..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/usb.txt +++ /dev/null @@ -1,15 +0,0 @@ -* USB (Universal Serial Bus Controller) - -Properties: -- compatible : "fsl,cpm1-usb", "fsl,cpm2-usb", "fsl,qe-usb" - -Example: - usb@11bc0 { - #address-cells = <1>; - #size-cells = <0>; - compatible = "fsl,cpm2-usb"; - reg = <11b60 18 8b00 100>; - interrupts = ; - interrupt-parent = <&PIC>; - fsl,cpm-command = <2e600000>; - }; diff --git a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/gpio.txt b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/gpio.txt deleted file mode 100644 index 349f79fd7076..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/gpio.txt +++ /dev/null @@ -1,38 +0,0 @@ -Every GPIO controller node must have #gpio-cells property defined, -this information will be used to translate gpio-specifiers. - -On CPM1 devices, all ports are using slightly different register layouts. -Ports A, C and D are 16bit ports and Ports B and E are 32bit ports. - -On CPM2 devices, all ports are 32bit ports and use a common register layout. - -Required properties: -- compatible : "fsl,cpm1-pario-bank-a", "fsl,cpm1-pario-bank-b", - "fsl,cpm1-pario-bank-c", "fsl,cpm1-pario-bank-d", - "fsl,cpm1-pario-bank-e", "fsl,cpm2-pario-bank" -- #gpio-cells : Should be two. The first cell is the pin number and the - second cell is used to specify optional parameters (currently unused). -- gpio-controller : Marks the port as GPIO controller. - -Example of three SOC GPIO banks defined as gpio-controller nodes: - - CPM1_PIO_A: gpio-controller@950 { - #gpio-cells = <2>; - compatible = "fsl,cpm1-pario-bank-a"; - reg = <0x950 0x10>; - gpio-controller; - }; - - CPM1_PIO_B: gpio-controller@ab8 { - #gpio-cells = <2>; - compatible = "fsl,cpm1-pario-bank-b"; - reg = <0xab8 0x10>; - gpio-controller; - }; - - CPM1_PIO_E: gpio-controller@ac8 { - #gpio-cells = <2>; - compatible = "fsl,cpm1-pario-bank-e"; - reg = <0xac8 0x18>; - gpio-controller; - }; diff --git a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/network.txt b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/network.txt deleted file mode 100644 index 0e4269446580..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/network.txt +++ /dev/null @@ -1,45 +0,0 @@ -* Network - -Currently defined compatibles: -- fsl,cpm1-scc-enet -- fsl,cpm2-scc-enet -- fsl,cpm1-fec-enet -- fsl,cpm2-fcc-enet (third resource is GFEMR) -- fsl,qe-enet - -Example: - - ethernet@11300 { - device_type = "network"; - compatible = "fsl,mpc8272-fcc-enet", - "fsl,cpm2-fcc-enet"; - reg = <11300 20 8400 100 11390 1>; - local-mac-address = [ 00 00 00 00 00 00 ]; - interrupts = <20 8>; - interrupt-parent = <&PIC>; - phy-handle = <&PHY0>; - fsl,cpm-command = <12000300>; - }; - -* MDIO - -Currently defined compatibles: -fsl,pq1-fec-mdio (reg is same as first resource of FEC device) -fsl,cpm2-mdio-bitbang (reg is port C registers) - -Properties for fsl,cpm2-mdio-bitbang: -fsl,mdio-pin : pin of port C controlling mdio data -fsl,mdc-pin : pin of port C controlling mdio clock - -Example: - mdio@10d40 { - device_type = "mdio"; - compatible = "fsl,mpc8272ads-mdio-bitbang", - "fsl,mpc8272-mdio-bitbang", - "fsl,cpm2-mdio-bitbang"; - reg = <10d40 14>; - #address-cells = <1>; - #size-cells = <0>; - fsl,mdio-pin = <12>; - fsl,mdc-pin = <13>; - }; diff --git a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe.txt b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe.txt deleted file mode 100644 index 4f8930263dd9..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe.txt +++ /dev/null @@ -1,115 +0,0 @@ -* Freescale QUICC Engine module (QE) -This represents qe module that is installed on PowerQUICC II Pro. - -NOTE: This is an interim binding; it should be updated to fit -in with the CPM binding later in this document. - -Basically, it is a bus of devices, that could act more or less -as a complete entity (UCC, USB etc ). All of them should be siblings on -the "root" qe node, using the common properties from there. -The description below applies to the qe of MPC8360 and -more nodes and properties would be extended in the future. - -i) Root QE device - -Required properties: -- compatible : should be "fsl,qe"; -- model : precise model of the QE, Can be "QE", "CPM", or "CPM2" -- reg : offset and length of the device registers. -- bus-frequency : the clock frequency for QUICC Engine. -- fsl,qe-num-riscs: define how many RISC engines the QE has. -- fsl,qe-num-snums: define how many serial number(SNUM) the QE can use for the - threads. - -Optional properties: -- fsl,firmware-phandle: - Usage: required only if there is no fsl,qe-firmware child node - Value type: - Definition: Points to a firmware node (see "QE Firmware Node" below) - that contains the firmware that should be uploaded for this QE. - The compatible property for the firmware node should say, - "fsl,qe-firmware". - -Recommended properties -- brg-frequency : the internal clock source frequency for baud-rate - generators in Hz. - -Example: - qe@e0100000 { - #address-cells = <1>; - #size-cells = <1>; - #interrupt-cells = <2>; - compatible = "fsl,qe"; - ranges = <0 e0100000 00100000>; - reg = ; - brg-frequency = <0>; - bus-frequency = <179A7B00>; - } - -* Multi-User RAM (MURAM) - -Required properties: -- compatible : should be "fsl,qe-muram", "fsl,cpm-muram". -- mode : the could be "host" or "slave". -- ranges : Should be defined as specified in 1) to describe the - translation of MURAM addresses. -- data-only : sub-node which defines the address area under MURAM - bus that can be allocated as data/parameter - -Example: - - muram@10000 { - compatible = "fsl,qe-muram", "fsl,cpm-muram"; - ranges = <0 00010000 0000c000>; - - data-only@0{ - compatible = "fsl,qe-muram-data", - "fsl,cpm-muram-data"; - reg = <0 c000>; - }; - }; - -* QE Firmware Node - -This node defines a firmware binary that is embedded in the device tree, for -the purpose of passing the firmware from bootloader to the kernel, or from -the hypervisor to the guest. - -The firmware node itself contains the firmware binary contents, a compatible -property, and any firmware-specific properties. The node should be placed -inside a QE node that needs it. Doing so eliminates the need for a -fsl,firmware-phandle property. Other QE nodes that need the same firmware -should define an fsl,firmware-phandle property that points to the firmware node -in the first QE node. - -The fsl,firmware property can be specified in the DTS (possibly using incbin) -or can be inserted by the boot loader at boot time. - -Required properties: - - compatible - Usage: required - Value type: - Definition: A standard property. Specify a string that indicates what - kind of firmware it is. For QE, this should be "fsl,qe-firmware". - - - fsl,firmware - Usage: required - Value type: , encoded as an array of bytes - Definition: A standard property. This property contains the firmware - binary "blob". - -Example: - qe1@e0080000 { - compatible = "fsl,qe"; - qe_firmware:qe-firmware { - compatible = "fsl,qe-firmware"; - fsl,firmware = [0x70 0xcd 0x00 0x00 0x01 0x46 0x45 ...]; - }; - ... - }; - - qe2@e0090000 { - compatible = "fsl,qe"; - fsl,firmware-phandle = <&qe_firmware>; - ... - }; diff --git a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/firmware.txt b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/firmware.txt deleted file mode 100644 index 249db3a15d15..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/firmware.txt +++ /dev/null @@ -1,24 +0,0 @@ -* Uploaded QE firmware - - If a new firmware has been uploaded to the QE (usually by the - boot loader), then a 'firmware' child node should be added to the QE - node. This node provides information on the uploaded firmware that - device drivers may need. - - Required properties: - - id: The string name of the firmware. This is taken from the 'id' - member of the qe_firmware structure of the uploaded firmware. - Device drivers can search this string to determine if the - firmware they want is already present. - - extended-modes: The Extended Modes bitfield, taken from the - firmware binary. It is a 64-bit number represented - as an array of two 32-bit numbers. - - virtual-traps: The virtual traps, taken from the firmware binary. - It is an array of 8 32-bit numbers. - -Example: - firmware { - id = "Soft-UART"; - extended-modes = <0 0>; - virtual-traps = <0 0 0 0 0 0 0 0>; - }; diff --git a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/par_io.txt b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/par_io.txt deleted file mode 100644 index 60984260207b..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/par_io.txt +++ /dev/null @@ -1,51 +0,0 @@ -* Parallel I/O Ports - -This node configures Parallel I/O ports for CPUs with QE support. -The node should reside in the "soc" node of the tree. For each -device that using parallel I/O ports, a child node should be created. -See the definition of the Pin configuration nodes below for more -information. - -Required properties: -- device_type : should be "par_io". -- reg : offset to the register set and its length. -- num-ports : number of Parallel I/O ports - -Example: -par_io@1400 { - reg = <1400 100>; - #address-cells = <1>; - #size-cells = <0>; - device_type = "par_io"; - num-ports = <7>; - ucc_pin@01 { - ...... - }; - -Note that "par_io" nodes are obsolete, and should not be used for -the new device trees. Instead, each Par I/O bank should be represented -via its own gpio-controller node: - -Required properties: -- #gpio-cells : should be "2". -- compatible : should be "fsl,-qe-pario-bank", - "fsl,mpc8323-qe-pario-bank". -- reg : offset to the register set and its length. -- gpio-controller : node to identify gpio controllers. - -Example: - qe_pio_a: gpio-controller@1400 { - #gpio-cells = <2>; - compatible = "fsl,mpc8360-qe-pario-bank", - "fsl,mpc8323-qe-pario-bank"; - reg = <0x1400 0x18>; - gpio-controller; - }; - - qe_pio_e: gpio-controller@1460 { - #gpio-cells = <2>; - compatible = "fsl,mpc8360-qe-pario-bank", - "fsl,mpc8323-qe-pario-bank"; - reg = <0x1460 0x18>; - gpio-controller; - }; diff --git a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/pincfg.txt b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/pincfg.txt deleted file mode 100644 index c5b43061db3a..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/pincfg.txt +++ /dev/null @@ -1,60 +0,0 @@ -* Pin configuration nodes - -Required properties: -- linux,phandle : phandle of this node; likely referenced by a QE - device. -- pio-map : array of pin configurations. Each pin is defined by 6 - integers. The six numbers are respectively: port, pin, dir, - open_drain, assignment, has_irq. - - port : port number of the pin; 0-6 represent port A-G in UM. - - pin : pin number in the port. - - dir : direction of the pin, should encode as follows: - - 0 = The pin is disabled - 1 = The pin is an output - 2 = The pin is an input - 3 = The pin is I/O - - - open_drain : indicates the pin is normal or wired-OR: - - 0 = The pin is actively driven as an output - 1 = The pin is an open-drain driver. As an output, the pin is - driven active-low, otherwise it is three-stated. - - - assignment : function number of the pin according to the Pin Assignment - tables in User Manual. Each pin can have up to 4 possible functions in - QE and two options for CPM. - - has_irq : indicates if the pin is used as source of external - interrupts. - -Example: - ucc_pin@01 { - linux,phandle = <140001>; - pio-map = < - /* port pin dir open_drain assignment has_irq */ - 0 3 1 0 1 0 /* TxD0 */ - 0 4 1 0 1 0 /* TxD1 */ - 0 5 1 0 1 0 /* TxD2 */ - 0 6 1 0 1 0 /* TxD3 */ - 1 6 1 0 3 0 /* TxD4 */ - 1 7 1 0 1 0 /* TxD5 */ - 1 9 1 0 2 0 /* TxD6 */ - 1 a 1 0 2 0 /* TxD7 */ - 0 9 2 0 1 0 /* RxD0 */ - 0 a 2 0 1 0 /* RxD1 */ - 0 b 2 0 1 0 /* RxD2 */ - 0 c 2 0 1 0 /* RxD3 */ - 0 d 2 0 1 0 /* RxD4 */ - 1 1 2 0 2 0 /* RxD5 */ - 1 0 2 0 2 0 /* RxD6 */ - 1 4 2 0 2 0 /* RxD7 */ - 0 7 1 0 1 0 /* TX_EN */ - 0 8 1 0 1 0 /* TX_ER */ - 0 f 2 0 1 0 /* RX_DV */ - 0 10 2 0 1 0 /* RX_ER */ - 0 0 2 0 1 0 /* RX_CLK */ - 2 9 1 0 3 0 /* GTX_CLK - CLK10 */ - 2 8 2 0 1 0>; /* GTX125 - CLK9 */ - }; - - diff --git a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/ucc.txt b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/ucc.txt deleted file mode 100644 index e47734bee3f0..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/ucc.txt +++ /dev/null @@ -1,70 +0,0 @@ -* UCC (Unified Communications Controllers) - -Required properties: -- device_type : should be "network", "hldc", "uart", "transparent" - "bisync", "atm", or "serial". -- compatible : could be "ucc_geth" or "fsl_atm" and so on. -- cell-index : the ucc number(1-8), corresponding to UCCx in UM. -- reg : Offset and length of the register set for the device -- interrupts : where a is the interrupt number and b is a - field that represents an encoding of the sense and level - information for the interrupt. This should be encoded based on - the information in section 2) depending on the type of interrupt - controller you have. -- interrupt-parent : the phandle for the interrupt controller that - services interrupts for this device. -- pio-handle : The phandle for the Parallel I/O port configuration. -- port-number : for UART drivers, the port number to use, between 0 and 3. - This usually corresponds to the /dev/ttyQE device, e.g. <0> = /dev/ttyQE0. - The port number is added to the minor number of the device. Unlike the - CPM UART driver, the port-number is required for the QE UART driver. -- soft-uart : for UART drivers, if specified this means the QE UART device - driver should use "Soft-UART" mode, which is needed on some SOCs that have - broken UART hardware. Soft-UART is provided via a microcode upload. -- rx-clock-name: the UCC receive clock source - "none": clock source is disabled - "brg1" through "brg16": clock source is BRG1-BRG16, respectively - "clk1" through "clk24": clock source is CLK1-CLK24, respectively -- tx-clock-name: the UCC transmit clock source - "none": clock source is disabled - "brg1" through "brg16": clock source is BRG1-BRG16, respectively - "clk1" through "clk24": clock source is CLK1-CLK24, respectively -The following two properties are deprecated. rx-clock has been replaced -with rx-clock-name, and tx-clock has been replaced with tx-clock-name. -Drivers that currently use the deprecated properties should continue to -do so, in order to support older device trees, but they should be updated -to check for the new properties first. -- rx-clock : represents the UCC receive clock source. - 0x00 : clock source is disabled; - 0x1~0x10 : clock source is BRG1~BRG16 respectively; - 0x11~0x28: clock source is QE_CLK1~QE_CLK24 respectively. -- tx-clock: represents the UCC transmit clock source; - 0x00 : clock source is disabled; - 0x1~0x10 : clock source is BRG1~BRG16 respectively; - 0x11~0x28: clock source is QE_CLK1~QE_CLK24 respectively. - -Required properties for network device_type: -- mac-address : list of bytes representing the ethernet address. -- phy-handle : The phandle for the PHY connected to this controller. - -Recommended properties: -- phy-connection-type : a string naming the controller/PHY interface type, - i.e., "mii" (default), "rmii", "gmii", "rgmii", "rgmii-id" (Internal - Delay), "rgmii-txid" (delay on TX only), "rgmii-rxid" (delay on RX only), - "tbi", or "rtbi". - -Example: - ucc@2000 { - device_type = "network"; - compatible = "ucc_geth"; - cell-index = <1>; - reg = <2000 200>; - interrupts = ; - interrupt-parent = <700>; - mac-address = [ 00 04 9f 00 23 23 ]; - rx-clock = "none"; - tx-clock = "clk9"; - phy-handle = <212000>; - phy-connection-type = "gmii"; - pio-handle = <140001>; - }; diff --git a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/usb.txt b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/usb.txt deleted file mode 100644 index 9ccd5f30405b..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/usb.txt +++ /dev/null @@ -1,37 +0,0 @@ -Freescale QUICC Engine USB Controller - -Required properties: -- compatible : should be "fsl,-qe-usb", "fsl,mpc8323-qe-usb". -- reg : the first two cells should contain usb registers location and - length, the next two two cells should contain PRAM location and - length. -- interrupts : should contain USB interrupt. -- interrupt-parent : interrupt source phandle. -- fsl,fullspeed-clock : specifies the full speed USB clock source: - "none": clock source is disabled - "brg1" through "brg16": clock source is BRG1-BRG16, respectively - "clk1" through "clk24": clock source is CLK1-CLK24, respectively -- fsl,lowspeed-clock : specifies the low speed USB clock source: - "none": clock source is disabled - "brg1" through "brg16": clock source is BRG1-BRG16, respectively - "clk1" through "clk24": clock source is CLK1-CLK24, respectively -- hub-power-budget : USB power budget for the root hub, in mA. -- gpios : should specify GPIOs in this order: USBOE, USBTP, USBTN, USBRP, - USBRN, SPEED (optional), and POWER (optional). - -Example: - -usb@6c0 { - compatible = "fsl,mpc8360-qe-usb", "fsl,mpc8323-qe-usb"; - reg = <0x6c0 0x40 0x8b00 0x100>; - interrupts = <11>; - interrupt-parent = <&qeic>; - fsl,fullspeed-clock = "clk21"; - gpios = <&qe_pio_b 2 0 /* USBOE */ - &qe_pio_b 3 0 /* USBTP */ - &qe_pio_b 8 0 /* USBTN */ - &qe_pio_b 9 0 /* USBRP */ - &qe_pio_b 11 0 /* USBRN */ - &qe_pio_e 20 0 /* SPEED */ - &qe_pio_e 21 0 /* POWER */>; -}; diff --git a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/serial.txt b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/serial.txt deleted file mode 100644 index 2ea76d9d137c..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/serial.txt +++ /dev/null @@ -1,32 +0,0 @@ -* Serial - -Currently defined compatibles: -- fsl,cpm1-smc-uart -- fsl,cpm2-smc-uart -- fsl,cpm1-scc-uart -- fsl,cpm2-scc-uart -- fsl,qe-uart - -Modem control lines connected to GPIO controllers are listed in the gpios -property as described in booting-without-of.txt, section IX.1 in the following -order: - -CTS, RTS, DCD, DSR, DTR, and RI. - -The gpios property is optional and can be left out when control lines are -not used. - -Example: - - serial@11a00 { - device_type = "serial"; - compatible = "fsl,mpc8272-scc-uart", - "fsl,cpm2-scc-uart"; - reg = <11a00 20 8000 100>; - interrupts = <28 8>; - interrupt-parent = <&PIC>; - fsl,cpm-brg = <1>; - fsl,cpm-command = <00800000>; - gpios = <&gpio_c 15 0 - &gpio_d 29 0>; - }; diff --git a/Documentation/powerpc/dts-bindings/fsl/diu.txt b/Documentation/powerpc/dts-bindings/fsl/diu.txt deleted file mode 100644 index b66cb6d31d69..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/diu.txt +++ /dev/null @@ -1,34 +0,0 @@ -* Freescale Display Interface Unit - -The Freescale DIU is a LCD controller, with proper hardware, it can also -drive DVI monitors. - -Required properties: -- compatible : should be "fsl,diu" or "fsl,mpc5121-diu". -- reg : should contain at least address and length of the DIU register - set. -- interrupts : one DIU interrupt should be described here. -- interrupt-parent : the phandle for the interrupt controller that - services interrupts for this device. - -Optional properties: -- edid : verbatim EDID data block describing attached display. - Data from the detailed timing descriptor will be used to - program the display controller. - -Example (MPC8610HPCD): - display@2c000 { - compatible = "fsl,diu"; - reg = <0x2c000 100>; - interrupts = <72 2>; - interrupt-parent = <&mpic>; - }; - -Example for MPC5121: - display@2100 { - compatible = "fsl,mpc5121-diu"; - reg = <0x2100 0x100>; - interrupts = <64 0x8>; - interrupt-parent = <&ipic>; - edid = [edid-data]; - }; diff --git a/Documentation/powerpc/dts-bindings/fsl/dma.txt b/Documentation/powerpc/dts-bindings/fsl/dma.txt deleted file mode 100644 index 2a4b4bce6110..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/dma.txt +++ /dev/null @@ -1,144 +0,0 @@ -* Freescale 83xx DMA Controller - -Freescale PowerPC 83xx have on chip general purpose DMA controllers. - -Required properties: - -- compatible : compatible list, contains 2 entries, first is - "fsl,CHIP-dma", where CHIP is the processor - (mpc8349, mpc8360, etc.) and the second is - "fsl,elo-dma" -- reg : -- ranges : Should be defined as specified in 1) to describe the - DMA controller channels. -- cell-index : controller index. 0 for controller @ 0x8100 -- interrupts : -- interrupt-parent : optional, if needed for interrupt mapping - - -- DMA channel nodes: - - compatible : compatible list, contains 2 entries, first is - "fsl,CHIP-dma-channel", where CHIP is the processor - (mpc8349, mpc8350, etc.) and the second is - "fsl,elo-dma-channel". However, see note below. - - reg : - - cell-index : dma channel index starts at 0. - -Optional properties: - - interrupts : - (on 83xx this is expected to be identical to - the interrupts property of the parent node) - - interrupt-parent : optional, if needed for interrupt mapping - -Example: - dma@82a8 { - #address-cells = <1>; - #size-cells = <1>; - compatible = "fsl,mpc8349-dma", "fsl,elo-dma"; - reg = <0x82a8 4>; - ranges = <0 0x8100 0x1a4>; - interrupt-parent = <&ipic>; - interrupts = <71 8>; - cell-index = <0>; - dma-channel@0 { - compatible = "fsl,mpc8349-dma-channel", "fsl,elo-dma-channel"; - cell-index = <0>; - reg = <0 0x80>; - interrupt-parent = <&ipic>; - interrupts = <71 8>; - }; - dma-channel@80 { - compatible = "fsl,mpc8349-dma-channel", "fsl,elo-dma-channel"; - cell-index = <1>; - reg = <0x80 0x80>; - interrupt-parent = <&ipic>; - interrupts = <71 8>; - }; - dma-channel@100 { - compatible = "fsl,mpc8349-dma-channel", "fsl,elo-dma-channel"; - cell-index = <2>; - reg = <0x100 0x80>; - interrupt-parent = <&ipic>; - interrupts = <71 8>; - }; - dma-channel@180 { - compatible = "fsl,mpc8349-dma-channel", "fsl,elo-dma-channel"; - cell-index = <3>; - reg = <0x180 0x80>; - interrupt-parent = <&ipic>; - interrupts = <71 8>; - }; - }; - -* Freescale 85xx/86xx DMA Controller - -Freescale PowerPC 85xx/86xx have on chip general purpose DMA controllers. - -Required properties: - -- compatible : compatible list, contains 2 entries, first is - "fsl,CHIP-dma", where CHIP is the processor - (mpc8540, mpc8540, etc.) and the second is - "fsl,eloplus-dma" -- reg : -- cell-index : controller index. 0 for controller @ 0x21000, - 1 for controller @ 0xc000 -- ranges : Should be defined as specified in 1) to describe the - DMA controller channels. - -- DMA channel nodes: - - compatible : compatible list, contains 2 entries, first is - "fsl,CHIP-dma-channel", where CHIP is the processor - (mpc8540, mpc8560, etc.) and the second is - "fsl,eloplus-dma-channel". However, see note below. - - cell-index : dma channel index starts at 0. - - reg : - - interrupts : - - interrupt-parent : optional, if needed for interrupt mapping - -Example: - dma@21300 { - #address-cells = <1>; - #size-cells = <1>; - compatible = "fsl,mpc8540-dma", "fsl,eloplus-dma"; - reg = <0x21300 4>; - ranges = <0 0x21100 0x200>; - cell-index = <0>; - dma-channel@0 { - compatible = "fsl,mpc8540-dma-channel", "fsl,eloplus-dma-channel"; - reg = <0 0x80>; - cell-index = <0>; - interrupt-parent = <&mpic>; - interrupts = <20 2>; - }; - dma-channel@80 { - compatible = "fsl,mpc8540-dma-channel", "fsl,eloplus-dma-channel"; - reg = <0x80 0x80>; - cell-index = <1>; - interrupt-parent = <&mpic>; - interrupts = <21 2>; - }; - dma-channel@100 { - compatible = "fsl,mpc8540-dma-channel", "fsl,eloplus-dma-channel"; - reg = <0x100 0x80>; - cell-index = <2>; - interrupt-parent = <&mpic>; - interrupts = <22 2>; - }; - dma-channel@180 { - compatible = "fsl,mpc8540-dma-channel", "fsl,eloplus-dma-channel"; - reg = <0x180 0x80>; - cell-index = <3>; - interrupt-parent = <&mpic>; - interrupts = <23 2>; - }; - }; - -Note on DMA channel compatible properties: The compatible property must say -"fsl,elo-dma-channel" or "fsl,eloplus-dma-channel" to be used by the Elo DMA -driver (fsldma). Any DMA channel used by fsldma cannot be used by another -DMA driver, such as the SSI sound drivers for the MPC8610. Therefore, any DMA -channel that should be used for another driver should not use -"fsl,elo-dma-channel" or "fsl,eloplus-dma-channel". For the SSI drivers, for -example, the compatible property should be "fsl,ssi-dma-channel". See ssi.txt -for more information. diff --git a/Documentation/powerpc/dts-bindings/fsl/esdhc.txt b/Documentation/powerpc/dts-bindings/fsl/esdhc.txt deleted file mode 100644 index 64bcb8be973c..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/esdhc.txt +++ /dev/null @@ -1,29 +0,0 @@ -* Freescale Enhanced Secure Digital Host Controller (eSDHC) - -The Enhanced Secure Digital Host Controller provides an interface -for MMC, SD, and SDIO types of memory cards. - -Required properties: - - compatible : should be - "fsl,-esdhc", "fsl,esdhc" - - reg : should contain eSDHC registers location and length. - - interrupts : should contain eSDHC interrupt. - - interrupt-parent : interrupt source phandle. - - clock-frequency : specifies eSDHC base clock frequency. - - sdhci,wp-inverted : (optional) specifies that eSDHC controller - reports inverted write-protect state; - - sdhci,1-bit-only : (optional) specifies that a controller can - only handle 1-bit data transfers. - - sdhci,auto-cmd12: (optional) specifies that a controller can - only handle auto CMD12. - -Example: - -sdhci@2e000 { - compatible = "fsl,mpc8378-esdhc", "fsl,esdhc"; - reg = <0x2e000 0x1000>; - interrupts = <42 0x8>; - interrupt-parent = <&ipic>; - /* Filled in by U-Boot */ - clock-frequency = <0>; -}; diff --git a/Documentation/powerpc/dts-bindings/fsl/gtm.txt b/Documentation/powerpc/dts-bindings/fsl/gtm.txt deleted file mode 100644 index 9a33efded4bc..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/gtm.txt +++ /dev/null @@ -1,31 +0,0 @@ -* Freescale General-purpose Timers Module - -Required properties: - - compatible : should be - "fsl,-gtm", "fsl,gtm" for SOC GTMs - "fsl,-qe-gtm", "fsl,qe-gtm", "fsl,gtm" for QE GTMs - "fsl,-cpm2-gtm", "fsl,cpm2-gtm", "fsl,gtm" for CPM2 GTMs - - reg : should contain gtm registers location and length (0x40). - - interrupts : should contain four interrupts. - - interrupt-parent : interrupt source phandle. - - clock-frequency : specifies the frequency driving the timer. - -Example: - -timer@500 { - compatible = "fsl,mpc8360-gtm", "fsl,gtm"; - reg = <0x500 0x40>; - interrupts = <90 8 78 8 84 8 72 8>; - interrupt-parent = <&ipic>; - /* filled by u-boot */ - clock-frequency = <0>; -}; - -timer@440 { - compatible = "fsl,mpc8360-qe-gtm", "fsl,qe-gtm", "fsl,gtm"; - reg = <0x440 0x40>; - interrupts = <12 13 14 15>; - interrupt-parent = <&qeic>; - /* filled by u-boot */ - clock-frequency = <0>; -}; diff --git a/Documentation/powerpc/dts-bindings/fsl/guts.txt b/Documentation/powerpc/dts-bindings/fsl/guts.txt deleted file mode 100644 index 9e7a2417dac5..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/guts.txt +++ /dev/null @@ -1,25 +0,0 @@ -* Global Utilities Block - -The global utilities block controls power management, I/O device -enabling, power-on-reset configuration monitoring, general-purpose -I/O signal configuration, alternate function selection for multiplexed -signals, and clock control. - -Required properties: - - - compatible : Should define the compatible device type for - global-utilities. - - reg : Offset and length of the register set for the device. - -Recommended properties: - - - fsl,has-rstcr : Indicates that the global utilities register set - contains a functioning "reset control register" (i.e. the board - is wired to reset upon setting the HRESET_REQ bit in this register). - -Example: - global-utilities@e0000 { /* global utilities block */ - compatible = "fsl,mpc8548-guts"; - reg = ; - fsl,has-rstcr; - }; diff --git a/Documentation/powerpc/dts-bindings/fsl/i2c.txt b/Documentation/powerpc/dts-bindings/fsl/i2c.txt deleted file mode 100644 index 1eacd6b20ed5..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/i2c.txt +++ /dev/null @@ -1,64 +0,0 @@ -* I2C - -Required properties : - - - reg : Offset and length of the register set for the device - - compatible : should be "fsl,CHIP-i2c" where CHIP is the name of a - compatible processor, e.g. mpc8313, mpc8543, mpc8544, mpc5121, - mpc5200 or mpc5200b. For the mpc5121, an additional node - "fsl,mpc5121-i2c-ctrl" is required as shown in the example below. - -Recommended properties : - - - interrupts : where a is the interrupt number and b is a - field that represents an encoding of the sense and level - information for the interrupt. This should be encoded based on - the information in section 2) depending on the type of interrupt - controller you have. - - interrupt-parent : the phandle for the interrupt controller that - services interrupts for this device. - - fsl,preserve-clocking : boolean; if defined, the clock settings - from the bootloader are preserved (not touched). - - clock-frequency : desired I2C bus clock frequency in Hz. - - fsl,timeout : I2C bus timeout in microseconds. - -Examples : - - /* MPC5121 based board */ - i2c@1740 { - #address-cells = <1>; - #size-cells = <0>; - compatible = "fsl,mpc5121-i2c", "fsl-i2c"; - reg = <0x1740 0x20>; - interrupts = <11 0x8>; - interrupt-parent = <&ipic>; - clock-frequency = <100000>; - }; - - i2ccontrol@1760 { - compatible = "fsl,mpc5121-i2c-ctrl"; - reg = <0x1760 0x8>; - }; - - /* MPC5200B based board */ - i2c@3d00 { - #address-cells = <1>; - #size-cells = <0>; - compatible = "fsl,mpc5200b-i2c","fsl,mpc5200-i2c","fsl-i2c"; - reg = <0x3d00 0x40>; - interrupts = <2 15 0>; - interrupt-parent = <&mpc5200_pic>; - fsl,preserve-clocking; - }; - - /* MPC8544 base board */ - i2c@3100 { - #address-cells = <1>; - #size-cells = <0>; - compatible = "fsl,mpc8544-i2c", "fsl-i2c"; - reg = <0x3100 0x100>; - interrupts = <43 2>; - interrupt-parent = <&mpic>; - clock-frequency = <400000>; - fsl,timeout = <10000>; - }; diff --git a/Documentation/powerpc/dts-bindings/fsl/lbc.txt b/Documentation/powerpc/dts-bindings/fsl/lbc.txt deleted file mode 100644 index 3300fec501c5..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/lbc.txt +++ /dev/null @@ -1,35 +0,0 @@ -* Chipselect/Local Bus - -Properties: -- name : Should be localbus -- #address-cells : Should be either two or three. The first cell is the - chipselect number, and the remaining cells are the - offset into the chipselect. -- #size-cells : Either one or two, depending on how large each chipselect - can be. -- ranges : Each range corresponds to a single chipselect, and cover - the entire access window as configured. - -Example: - localbus@f0010100 { - compatible = "fsl,mpc8272-localbus", - "fsl,pq2-localbus"; - #address-cells = <2>; - #size-cells = <1>; - reg = ; - - ranges = <0 0 fe000000 02000000 - 1 0 f4500000 00008000>; - - flash@0,0 { - compatible = "jedec-flash"; - reg = <0 0 2000000>; - bank-width = <4>; - device-width = <1>; - }; - - board-control@1,0 { - reg = <1 0 20>; - compatible = "fsl,mpc8272ads-bcsr"; - }; - }; diff --git a/Documentation/powerpc/dts-bindings/fsl/mcm.txt b/Documentation/powerpc/dts-bindings/fsl/mcm.txt deleted file mode 100644 index 4ceda9b3b413..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/mcm.txt +++ /dev/null @@ -1,64 +0,0 @@ -===================================================================== -MPX LAW & Coherency Module Device Tree Binding -Copyright (C) 2009 Freescale Semiconductor Inc. -===================================================================== - -Local Access Window (LAW) Node - -The LAW node represents the region of CCSR space where local access -windows are configured. For MCM based devices this is the first 4k -of CCSR space that includes CCSRBAR, ALTCBAR, ALTCAR, BPTR, and some -number of local access windows as specified by fsl,num-laws. - -PROPERTIES - - - compatible - Usage: required - Value type: - Definition: Must include "fsl,mcm-law" - - - reg - Usage: required - Value type: - Definition: A standard property. The value specifies the - physical address offset and length of the CCSR space - registers. - - - fsl,num-laws - Usage: required - Value type: - Definition: The value specifies the number of local access - windows for this device. - -===================================================================== - -MPX Coherency Module Node - -The MPX LAW node represents the region of CCSR space where MCM config -and error reporting registers exist, this is the second 4k (0x1000) -of CCSR space. - -PROPERTIES - - - compatible - Usage: required - Value type: - Definition: Must include "fsl,CHIP-mcm", "fsl,mcm" where - CHIP is the processor (mpc8641, mpc8610, etc.) - - - reg - Usage: required - Value type: - Definition: A standard property. The value specifies the - physical address offset and length of the CCSR space - registers. - - - interrupts - Usage: required - Value type: - - - interrupt-parent - Usage: required - Value type: - -===================================================================== diff --git a/Documentation/powerpc/dts-bindings/fsl/mcu-mpc8349emitx.txt b/Documentation/powerpc/dts-bindings/fsl/mcu-mpc8349emitx.txt deleted file mode 100644 index 0f766333b6eb..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/mcu-mpc8349emitx.txt +++ /dev/null @@ -1,17 +0,0 @@ -Freescale MPC8349E-mITX-compatible Power Management Micro Controller Unit (MCU) - -Required properties: -- compatible : "fsl,-", "fsl,mcu-mpc8349emitx". -- reg : should specify I2C address (0x0a). -- #gpio-cells : should be 2. -- gpio-controller : should be present. - -Example: - -mcu@0a { - #gpio-cells = <2>; - compatible = "fsl,mc9s08qg8-mpc8349emitx", - "fsl,mcu-mpc8349emitx"; - reg = <0x0a>; - gpio-controller; -}; diff --git a/Documentation/powerpc/dts-bindings/fsl/mpc5121-psc.txt b/Documentation/powerpc/dts-bindings/fsl/mpc5121-psc.txt deleted file mode 100644 index 8832e8798912..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/mpc5121-psc.txt +++ /dev/null @@ -1,70 +0,0 @@ -MPC5121 PSC Device Tree Bindings - -PSC in UART mode ----------------- - -For PSC in UART mode the needed PSC serial devices -are specified by fsl,mpc5121-psc-uart nodes in the -fsl,mpc5121-immr SoC node. Additionally the PSC FIFO -Controller node fsl,mpc5121-psc-fifo is requered there: - -fsl,mpc5121-psc-uart nodes --------------------------- - -Required properties : - - compatible : Should contain "fsl,mpc5121-psc-uart" and "fsl,mpc5121-psc" - - cell-index : Index of the PSC in hardware - - reg : Offset and length of the register set for the PSC device - - interrupts : where a is the interrupt number of the - PSC FIFO Controller and b is a field that represents an - encoding of the sense and level information for the interrupt. - - interrupt-parent : the phandle for the interrupt controller that - services interrupts for this device. - -Recommended properties : - - fsl,rx-fifo-size : the size of the RX fifo slice (a multiple of 4) - - fsl,tx-fifo-size : the size of the TX fifo slice (a multiple of 4) - - -fsl,mpc5121-psc-fifo node -------------------------- - -Required properties : - - compatible : Should be "fsl,mpc5121-psc-fifo" - - reg : Offset and length of the register set for the PSC - FIFO Controller - - interrupts : where a is the interrupt number of the - PSC FIFO Controller and b is a field that represents an - encoding of the sense and level information for the interrupt. - - interrupt-parent : the phandle for the interrupt controller that - services interrupts for this device. - - -Example for a board using PSC0 and PSC1 devices in serial mode: - -serial@11000 { - compatible = "fsl,mpc5121-psc-uart", "fsl,mpc5121-psc"; - cell-index = <0>; - reg = <0x11000 0x100>; - interrupts = <40 0x8>; - interrupt-parent = < &ipic >; - fsl,rx-fifo-size = <16>; - fsl,tx-fifo-size = <16>; -}; - -serial@11100 { - compatible = "fsl,mpc5121-psc-uart", "fsl,mpc5121-psc"; - cell-index = <1>; - reg = <0x11100 0x100>; - interrupts = <40 0x8>; - interrupt-parent = < &ipic >; - fsl,rx-fifo-size = <16>; - fsl,tx-fifo-size = <16>; -}; - -pscfifo@11f00 { - compatible = "fsl,mpc5121-psc-fifo"; - reg = <0x11f00 0x100>; - interrupts = <40 0x8>; - interrupt-parent = < &ipic >; -}; diff --git a/Documentation/powerpc/dts-bindings/fsl/mpc5200.txt b/Documentation/powerpc/dts-bindings/fsl/mpc5200.txt deleted file mode 100644 index 4ccb2cd5df94..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/mpc5200.txt +++ /dev/null @@ -1,198 +0,0 @@ -MPC5200 Device Tree Bindings ----------------------------- - -(c) 2006-2009 Secret Lab Technologies Ltd -Grant Likely - -Naming conventions ------------------- -For mpc5200 on-chip devices, the format for each compatible value is --[-]. The OS should be able to match a device driver -to the device based solely on the compatible value. If two drivers -match on the compatible list; the 'most compatible' driver should be -selected. - -The split between the MPC5200 and the MPC5200B leaves a bit of a -conundrum. How should the compatible property be set up to provide -maximum compatibility information; but still accurately describe the -chip? For the MPC5200; the answer is easy. Most of the SoC devices -originally appeared on the MPC5200. Since they didn't exist anywhere -else; the 5200 compatible properties will contain only one item; -"fsl,mpc5200-". - -The 5200B is almost the same as the 5200, but not quite. It fixes -silicon bugs and it adds a small number of enhancements. Most of the -devices either provide exactly the same interface as on the 5200. A few -devices have extra functions but still have a backwards compatible mode. -To express this information as completely as possible, 5200B device trees -should have two items in the compatible list: - compatible = "fsl,mpc5200b-","fsl,mpc5200-"; - -It is *strongly* recommended that 5200B device trees follow this convention -(instead of only listing the base mpc5200 item). - -ie. ethernet on mpc5200: compatible = "fsl,mpc5200-fec"; - ethernet on mpc5200b: compatible = "fsl,mpc5200b-fec", "fsl,mpc5200-fec"; - -Modal devices, like PSCs, also append the configured function to the -end of the compatible field. ie. A PSC in i2s mode would specify -"fsl,mpc5200-psc-i2s", not "fsl,mpc5200-i2s". This convention is chosen to -avoid naming conflicts with non-psc devices providing the same -function. For example, "fsl,mpc5200-spi" and "fsl,mpc5200-psc-spi" describe -the mpc5200 simple spi device and a PSC spi mode respectively. - -At the time of writing, exact chip may be either 'fsl,mpc5200' or -'fsl,mpc5200b'. - -The soc node ------------- -This node describes the on chip SOC peripherals. Every mpc5200 based -board will have this node, and as such there is a common naming -convention for SOC devices. - -Required properties: -name description ----- ----------- -ranges Memory range of the internal memory mapped registers. - Should be <0 [baseaddr] 0xc000> -reg Should be <[baseaddr] 0x100> -compatible mpc5200: "fsl,mpc5200-immr" - mpc5200b: "fsl,mpc5200b-immr" -system-frequency 'fsystem' frequency in Hz; XLB, IPB, USB and PCI - clocks are derived from the fsystem clock. -bus-frequency IPB bus frequency in Hz. Clock rate - used by most of the soc devices. - -soc child nodes ---------------- -Any on chip SOC devices available to Linux must appear as soc5200 child nodes. - -Note: The tables below show the value for the mpc5200. A mpc5200b device -tree should use the "fsl,mpc5200b-","fsl,mpc5200-" form. - -Required soc5200 child nodes: -name compatible Description ----- ---------- ----------- -cdm@ fsl,mpc5200-cdm Clock Distribution -interrupt-controller@ fsl,mpc5200-pic need an interrupt - controller to boot -bestcomm@ fsl,mpc5200-bestcomm Bestcomm DMA controller - -Recommended soc5200 child nodes; populate as needed for your board -name compatible Description ----- ---------- ----------- -timer@ fsl,mpc5200-gpt General purpose timers -gpio@ fsl,mpc5200-gpio MPC5200 simple gpio controller -gpio@ fsl,mpc5200-gpio-wkup MPC5200 wakeup gpio controller -rtc@ fsl,mpc5200-rtc Real time clock -mscan@ fsl,mpc5200-mscan CAN bus controller -pci@ fsl,mpc5200-pci PCI bridge -serial@ fsl,mpc5200-psc-uart PSC in serial mode -i2s@ fsl,mpc5200-psc-i2s PSC in i2s mode -ac97@ fsl,mpc5200-psc-ac97 PSC in ac97 mode -spi@ fsl,mpc5200-psc-spi PSC in spi mode -irda@ fsl,mpc5200-psc-irda PSC in IrDA mode -spi@ fsl,mpc5200-spi MPC5200 spi device -ethernet@ fsl,mpc5200-fec MPC5200 ethernet device -ata@ fsl,mpc5200-ata IDE ATA interface -i2c@ fsl,mpc5200-i2c I2C controller -usb@ fsl,mpc5200-ohci,ohci-be USB controller -xlb@ fsl,mpc5200-xlb XLB arbitrator - -fsl,mpc5200-gpt nodes ---------------------- -On the mpc5200 and 5200b, GPT0 has a watchdog timer function. If the board -design supports the internal wdt, then the device node for GPT0 should -include the empty property 'fsl,has-wdt'. Note that this does not activate -the watchdog. The timer will function as a GPT if the timer api is used, and -it will function as watchdog if the watchdog device is used. The watchdog -mode has priority over the gpt mode, i.e. if the watchdog is activated, any -gpt api call to this timer will fail with -EBUSY. - -If you add the property - fsl,wdt-on-boot = ; -GPT0 will be marked as in-use watchdog, i.e. blocking every gpt access to it. -If n>0, the watchdog is started with a timeout of n seconds. If n=0, the -configuration of the watchdog is not touched. This is useful in two cases: -- just mark GPT0 as watchdog, blocking gpt accesses, and configure it later; -- do not touch a configuration assigned by the boot loader which supervises - the boot process itself. - -The watchdog will respect the CONFIG_WATCHDOG_NOWAYOUT option. - -An mpc5200-gpt can be used as a single line GPIO controller. To do so, -add the following properties to the gpt node: - gpio-controller; - #gpio-cells = <2>; -When referencing the GPIO line from another node, the first cell must always -be zero and the second cell represents the gpio flags and described in the -gpio device tree binding. - -An mpc5200-gpt can be used as a single line edge sensitive interrupt -controller. To do so, add the following properties to the gpt node: - interrupt-controller; - #interrupt-cells = <1>; -When referencing the IRQ line from another node, the cell represents the -sense mode; 1 for edge rising, 2 for edge falling. - -fsl,mpc5200-psc nodes ---------------------- -The PSCs should include a cell-index which is the index of the PSC in -hardware. cell-index is used to determine which shared SoC registers to -use when setting up PSC clocking. cell-index number starts at '0'. ie: - PSC1 has 'cell-index = <0>' - PSC4 has 'cell-index = <3>' - -PSC in i2s mode: The mpc5200 and mpc5200b PSCs are not compatible when in -i2s mode. An 'mpc5200b-psc-i2s' node cannot include 'mpc5200-psc-i2s' in the -compatible field. - - -fsl,mpc5200-gpio and fsl,mpc5200-gpio-wkup nodes ------------------------------------------------- -Each GPIO controller node should have the empty property gpio-controller and -#gpio-cells set to 2. First cell is the GPIO number which is interpreted -according to the bit numbers in the GPIO control registers. The second cell -is for flags which is currently unused. - -fsl,mpc5200-fec nodes ---------------------- -The FEC node can specify one of the following properties to configure -the MII link: -- fsl,7-wire-mode - An empty property that specifies the link uses 7-wire - mode instead of MII -- current-speed - Specifies that the MII should be configured for a fixed - speed. This property should contain two cells. The - first cell specifies the speed in Mbps and the second - should be '0' for half duplex and '1' for full duplex -- phy-handle - Contains a phandle to an Ethernet PHY. - -Interrupt controller (fsl,mpc5200-pic) node -------------------------------------------- -The mpc5200 pic binding splits hardware IRQ numbers into two levels. The -split reflects the layout of the PIC hardware itself, which groups -interrupts into one of three groups; CRIT, MAIN or PERP. Also, the -Bestcomm dma engine has it's own set of interrupt sources which are -cascaded off of peripheral interrupt 0, which the driver interprets as a -fourth group, SDMA. - -The interrupts property for device nodes using the mpc5200 pic consists -of three cells; - - L1 := [CRIT=0, MAIN=1, PERP=2, SDMA=3] - L2 := interrupt number; directly mapped from the value in the - "ICTL PerStat, MainStat, CritStat Encoded Register" - level := [LEVEL_HIGH=0, EDGE_RISING=1, EDGE_FALLING=2, LEVEL_LOW=3] - -For external IRQs, use the following interrupt property values (how to -specify external interrupts is a frequently asked question): -External interrupts: - external irq0: interrupts = <0 0 n>; - external irq1: interrupts = <1 1 n>; - external irq2: interrupts = <1 2 n>; - external irq3: interrupts = <1 3 n>; -'n' is sense (0: level high, 1: edge rising, 2: edge falling 3: level low) - -fsl,mpc5200-mscan nodes ------------------------ -See file can.txt in this directory. diff --git a/Documentation/powerpc/dts-bindings/fsl/mpic.txt b/Documentation/powerpc/dts-bindings/fsl/mpic.txt deleted file mode 100644 index 71e39cf3215b..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/mpic.txt +++ /dev/null @@ -1,42 +0,0 @@ -* OpenPIC and its interrupt numbers on Freescale's e500/e600 cores - -The OpenPIC specification does not specify which interrupt source has to -become which interrupt number. This is up to the software implementation -of the interrupt controller. The only requirement is that every -interrupt source has to have an unique interrupt number / vector number. -To accomplish this the current implementation assigns the number zero to -the first source, the number one to the second source and so on until -all interrupt sources have their unique number. -Usually the assigned vector number equals the interrupt number mentioned -in the documentation for a given core / CPU. This is however not true -for the e500 cores (MPC85XX CPUs) where the documentation distinguishes -between internal and external interrupt sources and starts counting at -zero for both of them. - -So what to write for external interrupt source X or internal interrupt -source Y into the device tree? Here is an example: - -The memory map for the interrupt controller in the MPC8544[0] shows, -that the first interrupt source starts at 0x5_0000 (PIC Register Address -Map-Interrupt Source Configuration Registers). This source becomes the -number zero therefore: - External interrupt 0 = interrupt number 0 - External interrupt 1 = interrupt number 1 - External interrupt 2 = interrupt number 2 - ... -Every interrupt number allocates 0x20 bytes register space. So to get -its number it is sufficient to shift the lower 16bits to right by five. -So for the external interrupt 10 we have: - 0x0140 >> 5 = 10 - -After the external sources, the internal sources follow. The in core I2C -controller on the MPC8544 for instance has the internal source number -27. Oo obtain its interrupt number we take the lower 16bits of its memory -address (0x5_0560) and shift it right: - 0x0560 >> 5 = 43 - -Therefore the I2C device node for the MPC8544 CPU has to have the -interrupt number 43 specified in the device tree. - -[0] MPC8544E PowerQUICCTM III, Integrated Host Processor Family Reference Manual - MPC8544ERM Rev. 1 10/2007 diff --git a/Documentation/powerpc/dts-bindings/fsl/msi-pic.txt b/Documentation/powerpc/dts-bindings/fsl/msi-pic.txt deleted file mode 100644 index bcc30bac6831..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/msi-pic.txt +++ /dev/null @@ -1,36 +0,0 @@ -* Freescale MSI interrupt controller - -Required properties: -- compatible : compatible list, contains 2 entries, - first is "fsl,CHIP-msi", where CHIP is the processor(mpc8610, mpc8572, - etc.) and the second is "fsl,mpic-msi" or "fsl,ipic-msi" depending on - the parent type. -- reg : should contain the address and the length of the shared message - interrupt register set. -- msi-available-ranges: use style section to define which - msi interrupt can be used in the 256 msi interrupts. This property is - optional, without this, all the 256 MSI interrupts can be used. -- interrupts : each one of the interrupts here is one entry per 32 MSIs, - and routed to the host interrupt controller. the interrupts should - be set as edge sensitive. -- interrupt-parent: the phandle for the interrupt controller - that services interrupts for this device. for 83xx cpu, the interrupts - are routed to IPIC, and for 85xx/86xx cpu the interrupts are routed - to MPIC. - -Example: - msi@41600 { - compatible = "fsl,mpc8610-msi", "fsl,mpic-msi"; - reg = <0x41600 0x80>; - msi-available-ranges = <0 0x100>; - interrupts = < - 0xe0 0 - 0xe1 0 - 0xe2 0 - 0xe3 0 - 0xe4 0 - 0xe5 0 - 0xe6 0 - 0xe7 0>; - interrupt-parent = <&mpic>; - }; diff --git a/Documentation/powerpc/dts-bindings/fsl/pmc.txt b/Documentation/powerpc/dts-bindings/fsl/pmc.txt deleted file mode 100644 index 07256b7ffcaa..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/pmc.txt +++ /dev/null @@ -1,63 +0,0 @@ -* Power Management Controller - -Properties: -- compatible: "fsl,-pmc". - - "fsl,mpc8349-pmc" should be listed for any chip whose PMC is - compatible. "fsl,mpc8313-pmc" should also be listed for any chip - whose PMC is compatible, and implies deep-sleep capability. - - "fsl,mpc8548-pmc" should be listed for any chip whose PMC is - compatible. "fsl,mpc8536-pmc" should also be listed for any chip - whose PMC is compatible, and implies deep-sleep capability. - - "fsl,mpc8641d-pmc" should be listed for any chip whose PMC is - compatible; all statements below that apply to "fsl,mpc8548-pmc" also - apply to "fsl,mpc8641d-pmc". - - Compatibility does not include bit assignments in SCCR/PMCDR/DEVDISR; these - bit assignments are indicated via the sleep specifier in each device's - sleep property. - -- reg: For devices compatible with "fsl,mpc8349-pmc", the first resource - is the PMC block, and the second resource is the Clock Configuration - block. - - For devices compatible with "fsl,mpc8548-pmc", the first resource - is a 32-byte block beginning with DEVDISR. - -- interrupts: For "fsl,mpc8349-pmc"-compatible devices, the first - resource is the PMC block interrupt. - -- fsl,mpc8313-wakeup-timer: For "fsl,mpc8313-pmc"-compatible devices, - this is a phandle to an "fsl,gtm" node on which timer 4 can be used as - a wakeup source from deep sleep. - -Sleep specifiers: - - fsl,mpc8349-pmc: Sleep specifiers consist of one cell. For each bit - that is set in the cell, the corresponding bit in SCCR will be saved - and cleared on suspend, and restored on resume. This sleep controller - supports disabling and resuming devices at any time. - - fsl,mpc8536-pmc: Sleep specifiers consist of three cells, the third of - which will be ORed into PMCDR upon suspend, and cleared from PMCDR - upon resume. The first two cells are as described for fsl,mpc8578-pmc. - This sleep controller only supports disabling devices during system - sleep, or permanently. - - fsl,mpc8548-pmc: Sleep specifiers consist of one or two cells, the - first of which will be ORed into DEVDISR (and the second into - DEVDISR2, if present -- this cell should be zero or absent if the - hardware does not have DEVDISR2) upon a request for permanent device - disabling. This sleep controller does not support configuring devices - to disable during system sleep (unless supported by another compatible - match), or dynamically. - -Example: - - power@b00 { - compatible = "fsl,mpc8313-pmc", "fsl,mpc8349-pmc"; - reg = <0xb00 0x100 0xa00 0x100>; - interrupts = <80 8>; - }; diff --git a/Documentation/powerpc/dts-bindings/fsl/sata.txt b/Documentation/powerpc/dts-bindings/fsl/sata.txt deleted file mode 100644 index b46bcf46c3d8..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/sata.txt +++ /dev/null @@ -1,29 +0,0 @@ -* Freescale 8xxx/3.0 Gb/s SATA nodes - -SATA nodes are defined to describe on-chip Serial ATA controllers. -Each SATA port should have its own node. - -Required properties: -- compatible : compatible list, contains 2 entries, first is - "fsl,CHIP-sata", where CHIP is the processor - (mpc8315, mpc8379, etc.) and the second is - "fsl,pq-sata" -- interrupts : -- cell-index : controller index. - 1 for controller @ 0x18000 - 2 for controller @ 0x19000 - 3 for controller @ 0x1a000 - 4 for controller @ 0x1b000 - -Optional properties: -- interrupt-parent : optional, if needed for interrupt mapping -- reg : - -Example: - sata@18000 { - compatible = "fsl,mpc8379-sata", "fsl,pq-sata"; - reg = <0x18000 0x1000>; - cell-index = <1>; - interrupts = <2c 8>; - interrupt-parent = < &ipic >; - }; diff --git a/Documentation/powerpc/dts-bindings/fsl/sec.txt b/Documentation/powerpc/dts-bindings/fsl/sec.txt deleted file mode 100644 index 2b6f2d45c45a..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/sec.txt +++ /dev/null @@ -1,68 +0,0 @@ -Freescale SoC SEC Security Engines - -Required properties: - -- compatible : Should contain entries for this and backward compatible - SEC versions, high to low, e.g., "fsl,sec2.1", "fsl,sec2.0" -- reg : Offset and length of the register set for the device -- interrupts : the SEC's interrupt number -- fsl,num-channels : An integer representing the number of channels - available. -- fsl,channel-fifo-len : An integer representing the number of - descriptor pointers each channel fetch fifo can hold. -- fsl,exec-units-mask : The bitmask representing what execution units - (EUs) are available. It's a single 32-bit cell. EU information - should be encoded following the SEC's Descriptor Header Dword - EU_SEL0 field documentation, i.e. as follows: - - bit 0 = reserved - should be 0 - bit 1 = set if SEC has the ARC4 EU (AFEU) - bit 2 = set if SEC has the DES/3DES EU (DEU) - bit 3 = set if SEC has the message digest EU (MDEU/MDEU-A) - bit 4 = set if SEC has the random number generator EU (RNG) - bit 5 = set if SEC has the public key EU (PKEU) - bit 6 = set if SEC has the AES EU (AESU) - bit 7 = set if SEC has the Kasumi EU (KEU) - bit 8 = set if SEC has the CRC EU (CRCU) - bit 11 = set if SEC has the message digest EU extended alg set (MDEU-B) - -remaining bits are reserved for future SEC EUs. - -- fsl,descriptor-types-mask : The bitmask representing what descriptors - are available. It's a single 32-bit cell. Descriptor type information - should be encoded following the SEC's Descriptor Header Dword DESC_TYPE - field documentation, i.e. as follows: - - bit 0 = set if SEC supports the aesu_ctr_nonsnoop desc. type - bit 1 = set if SEC supports the ipsec_esp descriptor type - bit 2 = set if SEC supports the common_nonsnoop desc. type - bit 3 = set if SEC supports the 802.11i AES ccmp desc. type - bit 4 = set if SEC supports the hmac_snoop_no_afeu desc. type - bit 5 = set if SEC supports the srtp descriptor type - bit 6 = set if SEC supports the non_hmac_snoop_no_afeu desc.type - bit 7 = set if SEC supports the pkeu_assemble descriptor type - bit 8 = set if SEC supports the aesu_key_expand_output desc.type - bit 9 = set if SEC supports the pkeu_ptmul descriptor type - bit 10 = set if SEC supports the common_nonsnoop_afeu desc. type - bit 11 = set if SEC supports the pkeu_ptadd_dbl descriptor type - - ..and so on and so forth. - -Optional properties: - -- interrupt-parent : the phandle for the interrupt controller that - services interrupts for this device. - -Example: - - /* MPC8548E */ - crypto@30000 { - compatible = "fsl,sec2.1", "fsl,sec2.0"; - reg = <0x30000 0x10000>; - interrupts = <29 2>; - interrupt-parent = <&mpic>; - fsl,num-channels = <4>; - fsl,channel-fifo-len = <24>; - fsl,exec-units-mask = <0xfe>; - fsl,descriptor-types-mask = <0x12b0ebf>; - }; diff --git a/Documentation/powerpc/dts-bindings/fsl/spi.txt b/Documentation/powerpc/dts-bindings/fsl/spi.txt deleted file mode 100644 index 777abd7399d5..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/spi.txt +++ /dev/null @@ -1,53 +0,0 @@ -* SPI (Serial Peripheral Interface) - -Required properties: -- cell-index : QE SPI subblock index. - 0: QE subblock SPI1 - 1: QE subblock SPI2 -- compatible : should be "fsl,spi". -- mode : the SPI operation mode, it can be "cpu" or "cpu-qe". -- reg : Offset and length of the register set for the device -- interrupts : where a is the interrupt number and b is a - field that represents an encoding of the sense and level - information for the interrupt. This should be encoded based on - the information in section 2) depending on the type of interrupt - controller you have. -- interrupt-parent : the phandle for the interrupt controller that - services interrupts for this device. - -Optional properties: -- gpios : specifies the gpio pins to be used for chipselects. - The gpios will be referred to as reg = in the SPI child nodes. - If unspecified, a single SPI device without a chip select can be used. - -Example: - spi@4c0 { - cell-index = <0>; - compatible = "fsl,spi"; - reg = <4c0 40>; - interrupts = <82 0>; - interrupt-parent = <700>; - mode = "cpu"; - gpios = <&gpio 18 1 // device reg=<0> - &gpio 19 1>; // device reg=<1> - }; - - -* eSPI (Enhanced Serial Peripheral Interface) - -Required properties: -- compatible : should be "fsl,mpc8536-espi". -- reg : Offset and length of the register set for the device. -- interrupts : should contain eSPI interrupt, the device has one interrupt. -- fsl,espi-num-chipselects : the number of the chipselect signals. - -Example: - spi@110000 { - #address-cells = <1>; - #size-cells = <0>; - compatible = "fsl,mpc8536-espi"; - reg = <0x110000 0x1000>; - interrupts = <53 0x2>; - interrupt-parent = <&mpic>; - fsl,espi-num-chipselects = <4>; - }; diff --git a/Documentation/powerpc/dts-bindings/fsl/ssi.txt b/Documentation/powerpc/dts-bindings/fsl/ssi.txt deleted file mode 100644 index 5ff76c9c57d2..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/ssi.txt +++ /dev/null @@ -1,73 +0,0 @@ -Freescale Synchronous Serial Interface - -The SSI is a serial device that communicates with audio codecs. It can -be programmed in AC97, I2S, left-justified, or right-justified modes. - -Required properties: -- compatible: Compatible list, contains "fsl,ssi". -- cell-index: The SSI, <0> = SSI1, <1> = SSI2, and so on. -- reg: Offset and length of the register set for the device. -- interrupts: where a is the interrupt number and b is a - field that represents an encoding of the sense and - level information for the interrupt. This should be - encoded based on the information in section 2) - depending on the type of interrupt controller you - have. -- interrupt-parent: The phandle for the interrupt controller that - services interrupts for this device. -- fsl,mode: The operating mode for the SSI interface. - "i2s-slave" - I2S mode, SSI is clock slave - "i2s-master" - I2S mode, SSI is clock master - "lj-slave" - left-justified mode, SSI is clock slave - "lj-master" - l.j. mode, SSI is clock master - "rj-slave" - right-justified mode, SSI is clock slave - "rj-master" - r.j., SSI is clock master - "ac97-slave" - AC97 mode, SSI is clock slave - "ac97-master" - AC97 mode, SSI is clock master -- fsl,playback-dma: Phandle to a node for the DMA channel to use for - playback of audio. This is typically dictated by SOC - design. See the notes below. -- fsl,capture-dma: Phandle to a node for the DMA channel to use for - capture (recording) of audio. This is typically dictated - by SOC design. See the notes below. -- fsl,fifo-depth: The number of elements in the transmit and receive FIFOs. - This number is the maximum allowed value for SFCSR[TFWM0]. -- fsl,ssi-asynchronous: - If specified, the SSI is to be programmed in asynchronous - mode. In this mode, pins SRCK, STCK, SRFS, and STFS must - all be connected to valid signals. In synchronous mode, - SRCK and SRFS are ignored. Asynchronous mode allows - playback and capture to use different sample sizes and - sample rates. Some drivers may require that SRCK and STCK - be connected together, and SRFS and STFS be connected - together. This would still allow different sample sizes, - but not different sample rates. - -Optional properties: -- codec-handle: Phandle to a 'codec' node that defines an audio - codec connected to this SSI. This node is typically - a child of an I2C or other control node. - -Child 'codec' node required properties: -- compatible: Compatible list, contains the name of the codec - -Child 'codec' node optional properties: -- clock-frequency: The frequency of the input clock, which typically comes - from an on-board dedicated oscillator. - -Notes on fsl,playback-dma and fsl,capture-dma: - -On SOCs that have an SSI, specific DMA channels are hard-wired for playback -and capture. On the MPC8610, for example, SSI1 must use DMA channel 0 for -playback and DMA channel 1 for capture. SSI2 must use DMA channel 2 for -playback and DMA channel 3 for capture. The developer can choose which -DMA controller to use, but the channels themselves are hard-wired. The -purpose of these two properties is to represent this hardware design. - -The device tree nodes for the DMA channels that are referenced by -"fsl,playback-dma" and "fsl,capture-dma" must be marked as compatible with -"fsl,ssi-dma-channel". The SOC-specific compatible string (e.g. -"fsl,mpc8610-dma-channel") can remain. If these nodes are left as -"fsl,elo-dma-channel" or "fsl,eloplus-dma-channel", then the generic Elo DMA -drivers (fsldma) will attempt to use them, and it will conflict with the -sound drivers. diff --git a/Documentation/powerpc/dts-bindings/fsl/tsec.txt b/Documentation/powerpc/dts-bindings/fsl/tsec.txt deleted file mode 100644 index edb7ae19e868..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/tsec.txt +++ /dev/null @@ -1,76 +0,0 @@ -* MDIO IO device - -The MDIO is a bus to which the PHY devices are connected. For each -device that exists on this bus, a child node should be created. See -the definition of the PHY node in booting-without-of.txt for an example -of how to define a PHY. - -Required properties: - - reg : Offset and length of the register set for the device - - compatible : Should define the compatible device type for the - mdio. Currently, this is most likely to be "fsl,gianfar-mdio" - -Example: - - mdio@24520 { - reg = <24520 20>; - compatible = "fsl,gianfar-mdio"; - - ethernet-phy@0 { - ...... - }; - }; - -* TBI Internal MDIO bus - -As of this writing, every tsec is associated with an internal TBI PHY. -This PHY is accessed through the local MDIO bus. These buses are defined -similarly to the mdio buses, except they are compatible with "fsl,gianfar-tbi". -The TBI PHYs underneath them are similar to normal PHYs, but the reg property -is considered instructive, rather than descriptive. The reg property should -be chosen so it doesn't interfere with other PHYs on the bus. - -* Gianfar-compatible ethernet nodes - -Properties: - - - device_type : Should be "network" - - model : Model of the device. Can be "TSEC", "eTSEC", or "FEC" - - compatible : Should be "gianfar" - - reg : Offset and length of the register set for the device - - local-mac-address : List of bytes representing the ethernet address of - this controller - - interrupts : For FEC devices, the first interrupt is the device's - interrupt. For TSEC and eTSEC devices, the first interrupt is - transmit, the second is receive, and the third is error. - - phy-handle : The phandle for the PHY connected to this ethernet - controller. - - fixed-link : where a is emulated phy id - choose any, - but unique to the all specified fixed-links, b is duplex - 0 half, - 1 full, c is link speed - d#10/d#100/d#1000, d is pause - 0 no - pause, 1 pause, e is asym_pause - 0 no asym_pause, 1 asym_pause. - - phy-connection-type : a string naming the controller/PHY interface type, - i.e., "mii" (default), "rmii", "gmii", "rgmii", "rgmii-id", "sgmii", - "tbi", or "rtbi". This property is only really needed if the connection - is of type "rgmii-id", as all other connection types are detected by - hardware. - - fsl,magic-packet : If present, indicates that the hardware supports - waking up via magic packet. - - bd-stash : If present, indicates that the hardware supports stashing - buffer descriptors in the L2. - - rx-stash-len : Denotes the number of bytes of a received buffer to stash - in the L2. - - rx-stash-idx : Denotes the index of the first byte from the received - buffer to stash in the L2. - -Example: - ethernet@24000 { - device_type = "network"; - model = "TSEC"; - compatible = "gianfar"; - reg = <0x24000 0x1000>; - local-mac-address = [ 00 E0 0C 00 73 00 ]; - interrupts = <29 2 30 2 34 2>; - interrupt-parent = <&mpic>; - phy-handle = <&phy0> - }; diff --git a/Documentation/powerpc/dts-bindings/fsl/upm-nand.txt b/Documentation/powerpc/dts-bindings/fsl/upm-nand.txt deleted file mode 100644 index a48b2cadc7f0..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/upm-nand.txt +++ /dev/null @@ -1,63 +0,0 @@ -Freescale Localbus UPM programmed to work with NAND flash - -Required properties: -- compatible : "fsl,upm-nand". -- reg : should specify localbus chip select and size used for the chip. -- fsl,upm-addr-offset : UPM pattern offset for the address latch. -- fsl,upm-cmd-offset : UPM pattern offset for the command latch. - -Optional properties: -- fsl,upm-wait-flags : add chip-dependent short delays after running the - UPM pattern (0x1), after writing a data byte (0x2) or after - writing out a buffer (0x4). -- fsl,upm-addr-line-cs-offsets : address offsets for multi-chip support. - The corresponding address lines are used to select the chip. -- gpios : may specify optional GPIOs connected to the Ready-Not-Busy pins - (R/B#). For multi-chip devices, "n" GPIO definitions are required - according to the number of chips. -- chip-delay : chip dependent delay for transfering data from array to - read registers (tR). Required if property "gpios" is not used - (R/B# pins not connected). - -Examples: - -upm@1,0 { - compatible = "fsl,upm-nand"; - reg = <1 0 1>; - fsl,upm-addr-offset = <16>; - fsl,upm-cmd-offset = <8>; - gpios = <&qe_pio_e 18 0>; - - flash { - #address-cells = <1>; - #size-cells = <1>; - compatible = "..."; - - partition@0 { - ... - }; - }; -}; - -upm@3,0 { - #address-cells = <0>; - #size-cells = <0>; - compatible = "tqc,tqm8548-upm-nand", "fsl,upm-nand"; - reg = <3 0x0 0x800>; - fsl,upm-addr-offset = <0x10>; - fsl,upm-cmd-offset = <0x08>; - /* Multi-chip NAND device */ - fsl,upm-addr-line-cs-offsets = <0x0 0x200>; - fsl,upm-wait-flags = <0x5>; - chip-delay = <25>; // in micro-seconds - - nand@0 { - #address-cells = <1>; - #size-cells = <1>; - - partition@0 { - label = "fs"; - reg = <0x00000000 0x10000000>; - }; - }; -}; diff --git a/Documentation/powerpc/dts-bindings/fsl/usb.txt b/Documentation/powerpc/dts-bindings/fsl/usb.txt deleted file mode 100644 index bd5723f0b67e..000000000000 --- a/Documentation/powerpc/dts-bindings/fsl/usb.txt +++ /dev/null @@ -1,81 +0,0 @@ -Freescale SOC USB controllers - -The device node for a USB controller that is part of a Freescale -SOC is as described in the document "Open Firmware Recommended -Practice : Universal Serial Bus" with the following modifications -and additions : - -Required properties : - - compatible : Should be "fsl-usb2-mph" for multi port host USB - controllers, or "fsl-usb2-dr" for dual role USB controllers - or "fsl,mpc5121-usb2-dr" for dual role USB controllers of MPC5121 - - phy_type : For multi port host USB controllers, should be one of - "ulpi", or "serial". For dual role USB controllers, should be - one of "ulpi", "utmi", "utmi_wide", or "serial". - - reg : Offset and length of the register set for the device - - port0 : boolean; if defined, indicates port0 is connected for - fsl-usb2-mph compatible controllers. Either this property or - "port1" (or both) must be defined for "fsl-usb2-mph" compatible - controllers. - - port1 : boolean; if defined, indicates port1 is connected for - fsl-usb2-mph compatible controllers. Either this property or - "port0" (or both) must be defined for "fsl-usb2-mph" compatible - controllers. - - dr_mode : indicates the working mode for "fsl-usb2-dr" compatible - controllers. Can be "host", "peripheral", or "otg". Default to - "host" if not defined for backward compatibility. - -Recommended properties : - - interrupts : where a is the interrupt number and b is a - field that represents an encoding of the sense and level - information for the interrupt. This should be encoded based on - the information in section 2) depending on the type of interrupt - controller you have. - - interrupt-parent : the phandle for the interrupt controller that - services interrupts for this device. - -Optional properties : - - fsl,invert-drvvbus : boolean; for MPC5121 USB0 only. Indicates the - port power polarity of internal PHY signal DRVVBUS is inverted. - - fsl,invert-pwr-fault : boolean; for MPC5121 USB0 only. Indicates - the PWR_FAULT signal polarity is inverted. - -Example multi port host USB controller device node : - usb@22000 { - compatible = "fsl-usb2-mph"; - reg = <22000 1000>; - #address-cells = <1>; - #size-cells = <0>; - interrupt-parent = <700>; - interrupts = <27 1>; - phy_type = "ulpi"; - port0; - port1; - }; - -Example dual role USB controller device node : - usb@23000 { - compatible = "fsl-usb2-dr"; - reg = <23000 1000>; - #address-cells = <1>; - #size-cells = <0>; - interrupt-parent = <700>; - interrupts = <26 1>; - dr_mode = "otg"; - phy = "ulpi"; - }; - -Example dual role USB controller device node for MPC5121ADS: - - usb@4000 { - compatible = "fsl,mpc5121-usb2-dr"; - reg = <0x4000 0x1000>; - #address-cells = <1>; - #size-cells = <0>; - interrupt-parent = < &ipic >; - interrupts = <44 0x8>; - dr_mode = "otg"; - phy_type = "utmi_wide"; - fsl,invert-drvvbus; - fsl,invert-pwr-fault; - }; diff --git a/Documentation/powerpc/dts-bindings/gpio/gpio.txt b/Documentation/powerpc/dts-bindings/gpio/gpio.txt deleted file mode 100644 index edaa84d288a1..000000000000 --- a/Documentation/powerpc/dts-bindings/gpio/gpio.txt +++ /dev/null @@ -1,50 +0,0 @@ -Specifying GPIO information for devices -============================================ - -1) gpios property ------------------ - -Nodes that makes use of GPIOs should define them using `gpios' property, -format of which is: <&gpio-controller1-phandle gpio1-specifier - &gpio-controller2-phandle gpio2-specifier - 0 /* holes are permitted, means no GPIO 3 */ - &gpio-controller4-phandle gpio4-specifier - ...>; - -Note that gpio-specifier length is controller dependent. - -gpio-specifier may encode: bank, pin position inside the bank, -whether pin is open-drain and whether pin is logically inverted. - -Example of the node using GPIOs: - - node { - gpios = <&qe_pio_e 18 0>; - }; - -In this example gpio-specifier is "18 0" and encodes GPIO pin number, -and empty GPIO flags as accepted by the "qe_pio_e" gpio-controller. - -2) gpio-controller nodes ------------------------- - -Every GPIO controller node must have #gpio-cells property defined, -this information will be used to translate gpio-specifiers. - -Example of two SOC GPIO banks defined as gpio-controller nodes: - - qe_pio_a: gpio-controller@1400 { - #gpio-cells = <2>; - compatible = "fsl,qe-pario-bank-a", "fsl,qe-pario-bank"; - reg = <0x1400 0x18>; - gpio-controller; - }; - - qe_pio_e: gpio-controller@1460 { - #gpio-cells = <2>; - compatible = "fsl,qe-pario-bank-e", "fsl,qe-pario-bank"; - reg = <0x1460 0x18>; - gpio-controller; - }; - - diff --git a/Documentation/powerpc/dts-bindings/gpio/led.txt b/Documentation/powerpc/dts-bindings/gpio/led.txt deleted file mode 100644 index 064db928c3c1..000000000000 --- a/Documentation/powerpc/dts-bindings/gpio/led.txt +++ /dev/null @@ -1,58 +0,0 @@ -LEDs connected to GPIO lines - -Required properties: -- compatible : should be "gpio-leds". - -Each LED is represented as a sub-node of the gpio-leds device. Each -node's name represents the name of the corresponding LED. - -LED sub-node properties: -- gpios : Should specify the LED's GPIO, see "Specifying GPIO information - for devices" in Documentation/powerpc/booting-without-of.txt. Active - low LEDs should be indicated using flags in the GPIO specifier. -- label : (optional) The label for this LED. If omitted, the label is - taken from the node name (excluding the unit address). -- linux,default-trigger : (optional) This parameter, if present, is a - string defining the trigger assigned to the LED. Current triggers are: - "backlight" - LED will act as a back-light, controlled by the framebuffer - system - "default-on" - LED will turn on, but see "default-state" below - "heartbeat" - LED "double" flashes at a load average based rate - "ide-disk" - LED indicates disk activity - "timer" - LED flashes at a fixed, configurable rate -- default-state: (optional) The initial state of the LED. Valid - values are "on", "off", and "keep". If the LED is already on or off - and the default-state property is set the to same value, then no - glitch should be produced where the LED momentarily turns off (or - on). The "keep" setting will keep the LED at whatever its current - state is, without producing a glitch. The default is off if this - property is not present. - -Examples: - -leds { - compatible = "gpio-leds"; - hdd { - label = "IDE Activity"; - gpios = <&mcu_pio 0 1>; /* Active low */ - linux,default-trigger = "ide-disk"; - }; - - fault { - gpios = <&mcu_pio 1 0>; - /* Keep LED on if BIOS detected hardware fault */ - default-state = "keep"; - }; -}; - -run-control { - compatible = "gpio-leds"; - red { - gpios = <&mpc8572 6 0>; - default-state = "off"; - }; - green { - gpios = <&mpc8572 7 0>; - default-state = "on"; - }; -} diff --git a/Documentation/powerpc/dts-bindings/gpio/mdio.txt b/Documentation/powerpc/dts-bindings/gpio/mdio.txt deleted file mode 100644 index bc9549529014..000000000000 --- a/Documentation/powerpc/dts-bindings/gpio/mdio.txt +++ /dev/null @@ -1,19 +0,0 @@ -MDIO on GPIOs - -Currently defined compatibles: -- virtual,gpio-mdio - -MDC and MDIO lines connected to GPIO controllers are listed in the -gpios property as described in section VIII.1 in the following order: - -MDC, MDIO. - -Example: - -mdio { - compatible = "virtual,mdio-gpio"; - #address-cells = <1>; - #size-cells = <0>; - gpios = <&qe_pio_a 11 - &qe_pio_c 6>; -}; diff --git a/Documentation/powerpc/dts-bindings/marvell.txt b/Documentation/powerpc/dts-bindings/marvell.txt deleted file mode 100644 index f1533d91953a..000000000000 --- a/Documentation/powerpc/dts-bindings/marvell.txt +++ /dev/null @@ -1,521 +0,0 @@ -Marvell Discovery mv64[345]6x System Controller chips -=========================================================== - -The Marvell mv64[345]60 series of system controller chips contain -many of the peripherals needed to implement a complete computer -system. In this section, we define device tree nodes to describe -the system controller chip itself and each of the peripherals -which it contains. Compatible string values for each node are -prefixed with the string "marvell,", for Marvell Technology Group Ltd. - -1) The /system-controller node - - This node is used to represent the system-controller and must be - present when the system uses a system controller chip. The top-level - system-controller node contains information that is global to all - devices within the system controller chip. The node name begins - with "system-controller" followed by the unit address, which is - the base address of the memory-mapped register set for the system - controller chip. - - Required properties: - - - ranges : Describes the translation of system controller addresses - for memory mapped registers. - - clock-frequency: Contains the main clock frequency for the system - controller chip. - - reg : This property defines the address and size of the - memory-mapped registers contained within the system controller - chip. The address specified in the "reg" property should match - the unit address of the system-controller node. - - #address-cells : Address representation for system controller - devices. This field represents the number of cells needed to - represent the address of the memory-mapped registers of devices - within the system controller chip. - - #size-cells : Size representation for the memory-mapped - registers within the system controller chip. - - #interrupt-cells : Defines the width of cells used to represent - interrupts. - - Optional properties: - - - model : The specific model of the system controller chip. Such - as, "mv64360", "mv64460", or "mv64560". - - compatible : A string identifying the compatibility identifiers - of the system controller chip. - - The system-controller node contains child nodes for each system - controller device that the platform uses. Nodes should not be created - for devices which exist on the system controller chip but are not used - - Example Marvell Discovery mv64360 system-controller node: - - system-controller@f1000000 { /* Marvell Discovery mv64360 */ - #address-cells = <1>; - #size-cells = <1>; - model = "mv64360"; /* Default */ - compatible = "marvell,mv64360"; - clock-frequency = <133333333>; - reg = <0xf1000000 0x10000>; - virtual-reg = <0xf1000000>; - ranges = <0x88000000 0x88000000 0x1000000 /* PCI 0 I/O Space */ - 0x80000000 0x80000000 0x8000000 /* PCI 0 MEM Space */ - 0xa0000000 0xa0000000 0x4000000 /* User FLASH */ - 0x00000000 0xf1000000 0x0010000 /* Bridge's regs */ - 0xf2000000 0xf2000000 0x0040000>;/* Integrated SRAM */ - - [ child node definitions... ] - } - -2) Child nodes of /system-controller - - a) Marvell Discovery MDIO bus - - The MDIO is a bus to which the PHY devices are connected. For each - device that exists on this bus, a child node should be created. See - the definition of the PHY node below for an example of how to define - a PHY. - - Required properties: - - #address-cells : Should be <1> - - #size-cells : Should be <0> - - device_type : Should be "mdio" - - compatible : Should be "marvell,mv64360-mdio" - - Example: - - mdio { - #address-cells = <1>; - #size-cells = <0>; - device_type = "mdio"; - compatible = "marvell,mv64360-mdio"; - - ethernet-phy@0 { - ...... - }; - }; - - - b) Marvell Discovery ethernet controller - - The Discover ethernet controller is described with two levels - of nodes. The first level describes an ethernet silicon block - and the second level describes up to 3 ethernet nodes within - that block. The reason for the multiple levels is that the - registers for the node are interleaved within a single set - of registers. The "ethernet-block" level describes the - shared register set, and the "ethernet" nodes describe ethernet - port-specific properties. - - Ethernet block node - - Required properties: - - #address-cells : <1> - - #size-cells : <0> - - compatible : "marvell,mv64360-eth-block" - - reg : Offset and length of the register set for this block - - Example Discovery Ethernet block node: - ethernet-block@2000 { - #address-cells = <1>; - #size-cells = <0>; - compatible = "marvell,mv64360-eth-block"; - reg = <0x2000 0x2000>; - ethernet@0 { - ....... - }; - }; - - Ethernet port node - - Required properties: - - device_type : Should be "network". - - compatible : Should be "marvell,mv64360-eth". - - reg : Should be <0>, <1>, or <2>, according to which registers - within the silicon block the device uses. - - interrupts : where a is the interrupt number for the port. - - interrupt-parent : the phandle for the interrupt controller - that services interrupts for this device. - - phy : the phandle for the PHY connected to this ethernet - controller. - - local-mac-address : 6 bytes, MAC address - - Example Discovery Ethernet port node: - ethernet@0 { - device_type = "network"; - compatible = "marvell,mv64360-eth"; - reg = <0>; - interrupts = <32>; - interrupt-parent = <&PIC>; - phy = <&PHY0>; - local-mac-address = [ 00 00 00 00 00 00 ]; - }; - - - - c) Marvell Discovery PHY nodes - - Required properties: - - device_type : Should be "ethernet-phy" - - interrupts : where a is the interrupt number for this phy. - - interrupt-parent : the phandle for the interrupt controller that - services interrupts for this device. - - reg : The ID number for the phy, usually a small integer - - Example Discovery PHY node: - ethernet-phy@1 { - device_type = "ethernet-phy"; - compatible = "broadcom,bcm5421"; - interrupts = <76>; /* GPP 12 */ - interrupt-parent = <&PIC>; - reg = <1>; - }; - - - d) Marvell Discovery SDMA nodes - - Represent DMA hardware associated with the MPSC (multiprotocol - serial controllers). - - Required properties: - - compatible : "marvell,mv64360-sdma" - - reg : Offset and length of the register set for this device - - interrupts : where a is the interrupt number for the DMA - device. - - interrupt-parent : the phandle for the interrupt controller - that services interrupts for this device. - - Example Discovery SDMA node: - sdma@4000 { - compatible = "marvell,mv64360-sdma"; - reg = <0x4000 0xc18>; - virtual-reg = <0xf1004000>; - interrupts = <36>; - interrupt-parent = <&PIC>; - }; - - - e) Marvell Discovery BRG nodes - - Represent baud rate generator hardware associated with the MPSC - (multiprotocol serial controllers). - - Required properties: - - compatible : "marvell,mv64360-brg" - - reg : Offset and length of the register set for this device - - clock-src : A value from 0 to 15 which selects the clock - source for the baud rate generator. This value corresponds - to the CLKS value in the BRGx configuration register. See - the mv64x60 User's Manual. - - clock-frequence : The frequency (in Hz) of the baud rate - generator's input clock. - - current-speed : The current speed setting (presumably by - firmware) of the baud rate generator. - - Example Discovery BRG node: - brg@b200 { - compatible = "marvell,mv64360-brg"; - reg = <0xb200 0x8>; - clock-src = <8>; - clock-frequency = <133333333>; - current-speed = <9600>; - }; - - - f) Marvell Discovery CUNIT nodes - - Represent the Serial Communications Unit device hardware. - - Required properties: - - reg : Offset and length of the register set for this device - - Example Discovery CUNIT node: - cunit@f200 { - reg = <0xf200 0x200>; - }; - - - g) Marvell Discovery MPSCROUTING nodes - - Represent the Discovery's MPSC routing hardware - - Required properties: - - reg : Offset and length of the register set for this device - - Example Discovery CUNIT node: - mpscrouting@b500 { - reg = <0xb400 0xc>; - }; - - - h) Marvell Discovery MPSCINTR nodes - - Represent the Discovery's MPSC DMA interrupt hardware registers - (SDMA cause and mask registers). - - Required properties: - - reg : Offset and length of the register set for this device - - Example Discovery MPSCINTR node: - mpsintr@b800 { - reg = <0xb800 0x100>; - }; - - - i) Marvell Discovery MPSC nodes - - Represent the Discovery's MPSC (Multiprotocol Serial Controller) - serial port. - - Required properties: - - device_type : "serial" - - compatible : "marvell,mv64360-mpsc" - - reg : Offset and length of the register set for this device - - sdma : the phandle for the SDMA node used by this port - - brg : the phandle for the BRG node used by this port - - cunit : the phandle for the CUNIT node used by this port - - mpscrouting : the phandle for the MPSCROUTING node used by this port - - mpscintr : the phandle for the MPSCINTR node used by this port - - cell-index : the hardware index of this cell in the MPSC core - - max_idle : value needed for MPSC CHR3 (Maximum Frame Length) - register - - interrupts : where a is the interrupt number for the MPSC. - - interrupt-parent : the phandle for the interrupt controller - that services interrupts for this device. - - Example Discovery MPSCINTR node: - mpsc@8000 { - device_type = "serial"; - compatible = "marvell,mv64360-mpsc"; - reg = <0x8000 0x38>; - virtual-reg = <0xf1008000>; - sdma = <&SDMA0>; - brg = <&BRG0>; - cunit = <&CUNIT>; - mpscrouting = <&MPSCROUTING>; - mpscintr = <&MPSCINTR>; - cell-index = <0>; - max_idle = <40>; - interrupts = <40>; - interrupt-parent = <&PIC>; - }; - - - j) Marvell Discovery Watch Dog Timer nodes - - Represent the Discovery's watchdog timer hardware - - Required properties: - - compatible : "marvell,mv64360-wdt" - - reg : Offset and length of the register set for this device - - Example Discovery Watch Dog Timer node: - wdt@b410 { - compatible = "marvell,mv64360-wdt"; - reg = <0xb410 0x8>; - }; - - - k) Marvell Discovery I2C nodes - - Represent the Discovery's I2C hardware - - Required properties: - - device_type : "i2c" - - compatible : "marvell,mv64360-i2c" - - reg : Offset and length of the register set for this device - - interrupts : where a is the interrupt number for the I2C. - - interrupt-parent : the phandle for the interrupt controller - that services interrupts for this device. - - Example Discovery I2C node: - compatible = "marvell,mv64360-i2c"; - reg = <0xc000 0x20>; - virtual-reg = <0xf100c000>; - interrupts = <37>; - interrupt-parent = <&PIC>; - }; - - - l) Marvell Discovery PIC (Programmable Interrupt Controller) nodes - - Represent the Discovery's PIC hardware - - Required properties: - - #interrupt-cells : <1> - - #address-cells : <0> - - compatible : "marvell,mv64360-pic" - - reg : Offset and length of the register set for this device - - interrupt-controller - - Example Discovery PIC node: - pic { - #interrupt-cells = <1>; - #address-cells = <0>; - compatible = "marvell,mv64360-pic"; - reg = <0x0 0x88>; - interrupt-controller; - }; - - - m) Marvell Discovery MPP (Multipurpose Pins) multiplexing nodes - - Represent the Discovery's MPP hardware - - Required properties: - - compatible : "marvell,mv64360-mpp" - - reg : Offset and length of the register set for this device - - Example Discovery MPP node: - mpp@f000 { - compatible = "marvell,mv64360-mpp"; - reg = <0xf000 0x10>; - }; - - - n) Marvell Discovery GPP (General Purpose Pins) nodes - - Represent the Discovery's GPP hardware - - Required properties: - - compatible : "marvell,mv64360-gpp" - - reg : Offset and length of the register set for this device - - Example Discovery GPP node: - gpp@f000 { - compatible = "marvell,mv64360-gpp"; - reg = <0xf100 0x20>; - }; - - - o) Marvell Discovery PCI host bridge node - - Represents the Discovery's PCI host bridge device. The properties - for this node conform to Rev 2.1 of the PCI Bus Binding to IEEE - 1275-1994. A typical value for the compatible property is - "marvell,mv64360-pci". - - Example Discovery PCI host bridge node - pci@80000000 { - #address-cells = <3>; - #size-cells = <2>; - #interrupt-cells = <1>; - device_type = "pci"; - compatible = "marvell,mv64360-pci"; - reg = <0xcf8 0x8>; - ranges = <0x01000000 0x0 0x0 - 0x88000000 0x0 0x01000000 - 0x02000000 0x0 0x80000000 - 0x80000000 0x0 0x08000000>; - bus-range = <0 255>; - clock-frequency = <66000000>; - interrupt-parent = <&PIC>; - interrupt-map-mask = <0xf800 0x0 0x0 0x7>; - interrupt-map = < - /* IDSEL 0x0a */ - 0x5000 0 0 1 &PIC 80 - 0x5000 0 0 2 &PIC 81 - 0x5000 0 0 3 &PIC 91 - 0x5000 0 0 4 &PIC 93 - - /* IDSEL 0x0b */ - 0x5800 0 0 1 &PIC 91 - 0x5800 0 0 2 &PIC 93 - 0x5800 0 0 3 &PIC 80 - 0x5800 0 0 4 &PIC 81 - - /* IDSEL 0x0c */ - 0x6000 0 0 1 &PIC 91 - 0x6000 0 0 2 &PIC 93 - 0x6000 0 0 3 &PIC 80 - 0x6000 0 0 4 &PIC 81 - - /* IDSEL 0x0d */ - 0x6800 0 0 1 &PIC 93 - 0x6800 0 0 2 &PIC 80 - 0x6800 0 0 3 &PIC 81 - 0x6800 0 0 4 &PIC 91 - >; - }; - - - p) Marvell Discovery CPU Error nodes - - Represent the Discovery's CPU error handler device. - - Required properties: - - compatible : "marvell,mv64360-cpu-error" - - reg : Offset and length of the register set for this device - - interrupts : the interrupt number for this device - - interrupt-parent : the phandle for the interrupt controller - that services interrupts for this device. - - Example Discovery CPU Error node: - cpu-error@0070 { - compatible = "marvell,mv64360-cpu-error"; - reg = <0x70 0x10 0x128 0x28>; - interrupts = <3>; - interrupt-parent = <&PIC>; - }; - - - q) Marvell Discovery SRAM Controller nodes - - Represent the Discovery's SRAM controller device. - - Required properties: - - compatible : "marvell,mv64360-sram-ctrl" - - reg : Offset and length of the register set for this device - - interrupts : the interrupt number for this device - - interrupt-parent : the phandle for the interrupt controller - that services interrupts for this device. - - Example Discovery SRAM Controller node: - sram-ctrl@0380 { - compatible = "marvell,mv64360-sram-ctrl"; - reg = <0x380 0x80>; - interrupts = <13>; - interrupt-parent = <&PIC>; - }; - - - r) Marvell Discovery PCI Error Handler nodes - - Represent the Discovery's PCI error handler device. - - Required properties: - - compatible : "marvell,mv64360-pci-error" - - reg : Offset and length of the register set for this device - - interrupts : the interrupt number for this device - - interrupt-parent : the phandle for the interrupt controller - that services interrupts for this device. - - Example Discovery PCI Error Handler node: - pci-error@1d40 { - compatible = "marvell,mv64360-pci-error"; - reg = <0x1d40 0x40 0xc28 0x4>; - interrupts = <12>; - interrupt-parent = <&PIC>; - }; - - - s) Marvell Discovery Memory Controller nodes - - Represent the Discovery's memory controller device. - - Required properties: - - compatible : "marvell,mv64360-mem-ctrl" - - reg : Offset and length of the register set for this device - - interrupts : the interrupt number for this device - - interrupt-parent : the phandle for the interrupt controller - that services interrupts for this device. - - Example Discovery Memory Controller node: - mem-ctrl@1400 { - compatible = "marvell,mv64360-mem-ctrl"; - reg = <0x1400 0x60>; - interrupts = <17>; - interrupt-parent = <&PIC>; - }; - - diff --git a/Documentation/powerpc/dts-bindings/mmc-spi-slot.txt b/Documentation/powerpc/dts-bindings/mmc-spi-slot.txt deleted file mode 100644 index c39ac2891951..000000000000 --- a/Documentation/powerpc/dts-bindings/mmc-spi-slot.txt +++ /dev/null @@ -1,23 +0,0 @@ -MMC/SD/SDIO slot directly connected to a SPI bus - -Required properties: -- compatible : should be "mmc-spi-slot". -- reg : should specify SPI address (chip-select number). -- spi-max-frequency : maximum frequency for this device (Hz). -- voltage-ranges : two cells are required, first cell specifies minimum - slot voltage (mV), second cell specifies maximum slot voltage (mV). - Several ranges could be specified. -- gpios : (optional) may specify GPIOs in this order: Card-Detect GPIO, - Write-Protect GPIO. - -Example: - - mmc-slot@0 { - compatible = "fsl,mpc8323rdb-mmc-slot", - "mmc-spi-slot"; - reg = <0>; - gpios = <&qe_pio_d 14 1 - &qe_pio_d 15 0>; - voltage-ranges = <3300 3300>; - spi-max-frequency = <50000000>; - }; diff --git a/Documentation/powerpc/dts-bindings/mtd-physmap.txt b/Documentation/powerpc/dts-bindings/mtd-physmap.txt deleted file mode 100644 index 80152cb567d9..000000000000 --- a/Documentation/powerpc/dts-bindings/mtd-physmap.txt +++ /dev/null @@ -1,90 +0,0 @@ -CFI or JEDEC memory-mapped NOR flash, MTD-RAM (NVRAM...) - -Flash chips (Memory Technology Devices) are often used for solid state -file systems on embedded devices. - - - compatible : should contain the specific model of mtd chip(s) - used, if known, followed by either "cfi-flash", "jedec-flash" - or "mtd-ram". - - reg : Address range(s) of the mtd chip(s) - It's possible to (optionally) define multiple "reg" tuples so that - non-identical chips can be described in one node. - - bank-width : Width (in bytes) of the bank. Equal to the - device width times the number of interleaved chips. - - device-width : (optional) Width of a single mtd chip. If - omitted, assumed to be equal to 'bank-width'. - - #address-cells, #size-cells : Must be present if the device has - sub-nodes representing partitions (see below). In this case - both #address-cells and #size-cells must be equal to 1. - -For JEDEC compatible devices, the following additional properties -are defined: - - - vendor-id : Contains the flash chip's vendor id (1 byte). - - device-id : Contains the flash chip's device id (1 byte). - -In addition to the information on the mtd bank itself, the -device tree may optionally contain additional information -describing partitions of the address space. This can be -used on platforms which have strong conventions about which -portions of a flash are used for what purposes, but which don't -use an on-flash partition table such as RedBoot. - -Each partition is represented as a sub-node of the mtd device. -Each node's name represents the name of the corresponding -partition of the mtd device. - -Flash partitions - - reg : The partition's offset and size within the mtd bank. - - label : (optional) The label / name for this partition. - If omitted, the label is taken from the node name (excluding - the unit address). - - read-only : (optional) This parameter, if present, is a hint to - Linux that this partition should only be mounted - read-only. This is usually used for flash partitions - containing early-boot firmware images or data which should not - be clobbered. - -Example: - - flash@ff000000 { - compatible = "amd,am29lv128ml", "cfi-flash"; - reg = ; - bank-width = <4>; - device-width = <1>; - #address-cells = <1>; - #size-cells = <1>; - fs@0 { - label = "fs"; - reg = <0 f80000>; - }; - firmware@f80000 { - label ="firmware"; - reg = ; - read-only; - }; - }; - -Here an example with multiple "reg" tuples: - - flash@f0000000,0 { - #address-cells = <1>; - #size-cells = <1>; - compatible = "intel,PC48F4400P0VB", "cfi-flash"; - reg = <0 0x00000000 0x02000000 - 0 0x02000000 0x02000000>; - bank-width = <2>; - partition@0 { - label = "test-part1"; - reg = <0 0x04000000>; - }; - }; - -An example using SRAM: - - sram@2,0 { - compatible = "samsung,k6f1616u6a", "mtd-ram"; - reg = <2 0 0x00200000>; - bank-width = <2>; - }; - diff --git a/Documentation/powerpc/dts-bindings/nintendo/gamecube.txt b/Documentation/powerpc/dts-bindings/nintendo/gamecube.txt deleted file mode 100644 index b558585b1aaf..000000000000 --- a/Documentation/powerpc/dts-bindings/nintendo/gamecube.txt +++ /dev/null @@ -1,109 +0,0 @@ - -Nintendo GameCube device tree -============================= - -1) The "flipper" node - - This node represents the multi-function "Flipper" chip, which packages - many of the devices found in the Nintendo GameCube. - - Required properties: - - - compatible : Should be "nintendo,flipper" - -1.a) The Video Interface (VI) node - - Represents the interface between the graphics processor and a external - video encoder. - - Required properties: - - - compatible : should be "nintendo,flipper-vi" - - reg : should contain the VI registers location and length - - interrupts : should contain the VI interrupt - -1.b) The Processor Interface (PI) node - - Represents the data and control interface between the main processor - and graphics and audio processor. - - Required properties: - - - compatible : should be "nintendo,flipper-pi" - - reg : should contain the PI registers location and length - -1.b.i) The "Flipper" interrupt controller node - - Represents the interrupt controller within the "Flipper" chip. - The node for the "Flipper" interrupt controller must be placed under - the PI node. - - Required properties: - - - compatible : should be "nintendo,flipper-pic" - -1.c) The Digital Signal Procesor (DSP) node - - Represents the digital signal processor interface, designed to offload - audio related tasks. - - Required properties: - - - compatible : should be "nintendo,flipper-dsp" - - reg : should contain the DSP registers location and length - - interrupts : should contain the DSP interrupt - -1.c.i) The Auxiliary RAM (ARAM) node - - Represents the non cpu-addressable ram designed mainly to store audio - related information. - The ARAM node must be placed under the DSP node. - - Required properties: - - - compatible : should be "nintendo,flipper-aram" - - reg : should contain the ARAM start (zero-based) and length - -1.d) The Disk Interface (DI) node - - Represents the interface used to communicate with mass storage devices. - - Required properties: - - - compatible : should be "nintendo,flipper-di" - - reg : should contain the DI registers location and length - - interrupts : should contain the DI interrupt - -1.e) The Audio Interface (AI) node - - Represents the interface to the external 16-bit stereo digital-to-analog - converter. - - Required properties: - - - compatible : should be "nintendo,flipper-ai" - - reg : should contain the AI registers location and length - - interrupts : should contain the AI interrupt - -1.f) The Serial Interface (SI) node - - Represents the interface to the four single bit serial interfaces. - The SI is a proprietary serial interface used normally to control gamepads. - It's NOT a RS232-type interface. - - Required properties: - - - compatible : should be "nintendo,flipper-si" - - reg : should contain the SI registers location and length - - interrupts : should contain the SI interrupt - -1.g) The External Interface (EXI) node - - Represents the multi-channel SPI-like interface. - - Required properties: - - - compatible : should be "nintendo,flipper-exi" - - reg : should contain the EXI registers location and length - - interrupts : should contain the EXI interrupt - diff --git a/Documentation/powerpc/dts-bindings/nintendo/wii.txt b/Documentation/powerpc/dts-bindings/nintendo/wii.txt deleted file mode 100644 index a7e155a023b8..000000000000 --- a/Documentation/powerpc/dts-bindings/nintendo/wii.txt +++ /dev/null @@ -1,184 +0,0 @@ - -Nintendo Wii device tree -======================== - -0) The root node - - This node represents the Nintendo Wii video game console. - - Required properties: - - - model : Should be "nintendo,wii" - - compatible : Should be "nintendo,wii" - -1) The "hollywood" node - - This node represents the multi-function "Hollywood" chip, which packages - many of the devices found in the Nintendo Wii. - - Required properties: - - - compatible : Should be "nintendo,hollywood" - -1.a) The Video Interface (VI) node - - Represents the interface between the graphics processor and a external - video encoder. - - Required properties: - - - compatible : should be "nintendo,hollywood-vi","nintendo,flipper-vi" - - reg : should contain the VI registers location and length - - interrupts : should contain the VI interrupt - -1.b) The Processor Interface (PI) node - - Represents the data and control interface between the main processor - and graphics and audio processor. - - Required properties: - - - compatible : should be "nintendo,hollywood-pi","nintendo,flipper-pi" - - reg : should contain the PI registers location and length - -1.b.i) The "Flipper" interrupt controller node - - Represents the "Flipper" interrupt controller within the "Hollywood" chip. - The node for the "Flipper" interrupt controller must be placed under - the PI node. - - Required properties: - - - #interrupt-cells : <1> - - compatible : should be "nintendo,flipper-pic" - - interrupt-controller - -1.c) The Digital Signal Procesor (DSP) node - - Represents the digital signal processor interface, designed to offload - audio related tasks. - - Required properties: - - - compatible : should be "nintendo,hollywood-dsp","nintendo,flipper-dsp" - - reg : should contain the DSP registers location and length - - interrupts : should contain the DSP interrupt - -1.d) The Serial Interface (SI) node - - Represents the interface to the four single bit serial interfaces. - The SI is a proprietary serial interface used normally to control gamepads. - It's NOT a RS232-type interface. - - Required properties: - - - compatible : should be "nintendo,hollywood-si","nintendo,flipper-si" - - reg : should contain the SI registers location and length - - interrupts : should contain the SI interrupt - -1.e) The Audio Interface (AI) node - - Represents the interface to the external 16-bit stereo digital-to-analog - converter. - - Required properties: - - - compatible : should be "nintendo,hollywood-ai","nintendo,flipper-ai" - - reg : should contain the AI registers location and length - - interrupts : should contain the AI interrupt - -1.f) The External Interface (EXI) node - - Represents the multi-channel SPI-like interface. - - Required properties: - - - compatible : should be "nintendo,hollywood-exi","nintendo,flipper-exi" - - reg : should contain the EXI registers location and length - - interrupts : should contain the EXI interrupt - -1.g) The Open Host Controller Interface (OHCI) nodes - - Represent the USB 1.x Open Host Controller Interfaces. - - Required properties: - - - compatible : should be "nintendo,hollywood-usb-ohci","usb-ohci" - - reg : should contain the OHCI registers location and length - - interrupts : should contain the OHCI interrupt - -1.h) The Enhanced Host Controller Interface (EHCI) node - - Represents the USB 2.0 Enhanced Host Controller Interface. - - Required properties: - - - compatible : should be "nintendo,hollywood-usb-ehci","usb-ehci" - - reg : should contain the EHCI registers location and length - - interrupts : should contain the EHCI interrupt - -1.i) The Secure Digital Host Controller Interface (SDHCI) nodes - - Represent the Secure Digital Host Controller Interfaces. - - Required properties: - - - compatible : should be "nintendo,hollywood-sdhci","sdhci" - - reg : should contain the SDHCI registers location and length - - interrupts : should contain the SDHCI interrupt - -1.j) The Inter-Processsor Communication (IPC) node - - Represent the Inter-Processor Communication interface. This interface - enables communications between the Broadway and the Starlet processors. - - - compatible : should be "nintendo,hollywood-ipc" - - reg : should contain the IPC registers location and length - - interrupts : should contain the IPC interrupt - -1.k) The "Hollywood" interrupt controller node - - Represents the "Hollywood" interrupt controller within the - "Hollywood" chip. - - Required properties: - - - #interrupt-cells : <1> - - compatible : should be "nintendo,hollywood-pic" - - reg : should contain the controller registers location and length - - interrupt-controller - - interrupts : should contain the cascade interrupt of the "flipper" pic - - interrupt-parent: should contain the phandle of the "flipper" pic - -1.l) The General Purpose I/O (GPIO) controller node - - Represents the dual access 32 GPIO controller interface. - - Required properties: - - - #gpio-cells : <2> - - compatible : should be "nintendo,hollywood-gpio" - - reg : should contain the IPC registers location and length - - gpio-controller - -1.m) The control node - - Represents the control interface used to setup several miscellaneous - settings of the "Hollywood" chip like boot memory mappings, resets, - disk interface mode, etc. - - Required properties: - - - compatible : should be "nintendo,hollywood-control" - - reg : should contain the control registers location and length - -1.n) The Disk Interface (DI) node - - Represents the interface used to communicate with mass storage devices. - - Required properties: - - - compatible : should be "nintendo,hollywood-di" - - reg : should contain the DI registers location and length - - interrupts : should contain the DI interrupt - diff --git a/Documentation/powerpc/dts-bindings/phy.txt b/Documentation/powerpc/dts-bindings/phy.txt deleted file mode 100644 index bb8c742eb8c5..000000000000 --- a/Documentation/powerpc/dts-bindings/phy.txt +++ /dev/null @@ -1,25 +0,0 @@ -PHY nodes - -Required properties: - - - device_type : Should be "ethernet-phy" - - interrupts : where a is the interrupt number and b is a - field that represents an encoding of the sense and level - information for the interrupt. This should be encoded based on - the information in section 2) depending on the type of interrupt - controller you have. - - interrupt-parent : the phandle for the interrupt controller that - services interrupts for this device. - - reg : The ID number for the phy, usually a small integer - - linux,phandle : phandle for this node; likely referenced by an - ethernet controller node. - -Example: - -ethernet-phy@0 { - linux,phandle = <2452000> - interrupt-parent = <40000>; - interrupts = <35 1>; - reg = <0>; - device_type = "ethernet-phy"; -}; diff --git a/Documentation/powerpc/dts-bindings/spi-bus.txt b/Documentation/powerpc/dts-bindings/spi-bus.txt deleted file mode 100644 index e782add2e457..000000000000 --- a/Documentation/powerpc/dts-bindings/spi-bus.txt +++ /dev/null @@ -1,57 +0,0 @@ -SPI (Serial Peripheral Interface) busses - -SPI busses can be described with a node for the SPI master device -and a set of child nodes for each SPI slave on the bus. For this -discussion, it is assumed that the system's SPI controller is in -SPI master mode. This binding does not describe SPI controllers -in slave mode. - -The SPI master node requires the following properties: -- #address-cells - number of cells required to define a chip select - address on the SPI bus. -- #size-cells - should be zero. -- compatible - name of SPI bus controller following generic names - recommended practice. -No other properties are required in the SPI bus node. It is assumed -that a driver for an SPI bus device will understand that it is an SPI bus. -However, the binding does not attempt to define the specific method for -assigning chip select numbers. Since SPI chip select configuration is -flexible and non-standardized, it is left out of this binding with the -assumption that board specific platform code will be used to manage -chip selects. Individual drivers can define additional properties to -support describing the chip select layout. - -SPI slave nodes must be children of the SPI master node and can -contain the following properties. -- reg - (required) chip select address of device. -- compatible - (required) name of SPI device following generic names - recommended practice -- spi-max-frequency - (required) Maximum SPI clocking speed of device in Hz -- spi-cpol - (optional) Empty property indicating device requires - inverse clock polarity (CPOL) mode -- spi-cpha - (optional) Empty property indicating device requires - shifted clock phase (CPHA) mode -- spi-cs-high - (optional) Empty property indicating device requires - chip select active high - -SPI example for an MPC5200 SPI bus: - spi@f00 { - #address-cells = <1>; - #size-cells = <0>; - compatible = "fsl,mpc5200b-spi","fsl,mpc5200-spi"; - reg = <0xf00 0x20>; - interrupts = <2 13 0 2 14 0>; - interrupt-parent = <&mpc5200_pic>; - - ethernet-switch@0 { - compatible = "micrel,ks8995m"; - spi-max-frequency = <1000000>; - reg = <0>; - }; - - codec@1 { - compatible = "ti,tlv320aic26"; - spi-max-frequency = <100000>; - reg = <1>; - }; - }; diff --git a/Documentation/powerpc/dts-bindings/usb-ehci.txt b/Documentation/powerpc/dts-bindings/usb-ehci.txt deleted file mode 100644 index fa18612f757b..000000000000 --- a/Documentation/powerpc/dts-bindings/usb-ehci.txt +++ /dev/null @@ -1,25 +0,0 @@ -USB EHCI controllers - -Required properties: - - compatible : should be "usb-ehci". - - reg : should contain at least address and length of the standard EHCI - register set for the device. Optional platform-dependent registers - (debug-port or other) can be also specified here, but only after - definition of standard EHCI registers. - - interrupts : one EHCI interrupt should be described here. -If device registers are implemented in big endian mode, the device -node should have "big-endian-regs" property. -If controller implementation operates with big endian descriptors, -"big-endian-desc" property should be specified. -If both big endian registers and descriptors are used by the controller -implementation, "big-endian" property can be specified instead of having -both "big-endian-regs" and "big-endian-desc". - -Example (Sequoia 440EPx): - ehci@e0000300 { - compatible = "ibm,usb-ehci-440epx", "usb-ehci"; - interrupt-parent = <&UIC0>; - interrupts = <1a 4>; - reg = <0 e0000300 90 0 e0000390 70>; - big-endian; - }; diff --git a/Documentation/powerpc/dts-bindings/xilinx.txt b/Documentation/powerpc/dts-bindings/xilinx.txt deleted file mode 100644 index 299d0923537b..000000000000 --- a/Documentation/powerpc/dts-bindings/xilinx.txt +++ /dev/null @@ -1,306 +0,0 @@ - d) Xilinx IP cores - - The Xilinx EDK toolchain ships with a set of IP cores (devices) for use - in Xilinx Spartan and Virtex FPGAs. The devices cover the whole range - of standard device types (network, serial, etc.) and miscellaneous - devices (gpio, LCD, spi, etc). Also, since these devices are - implemented within the fpga fabric every instance of the device can be - synthesised with different options that change the behaviour. - - Each IP-core has a set of parameters which the FPGA designer can use to - control how the core is synthesized. Historically, the EDK tool would - extract the device parameters relevant to device drivers and copy them - into an 'xparameters.h' in the form of #define symbols. This tells the - device drivers how the IP cores are configured, but it requires the kernel - to be recompiled every time the FPGA bitstream is resynthesized. - - The new approach is to export the parameters into the device tree and - generate a new device tree each time the FPGA bitstream changes. The - parameters which used to be exported as #defines will now become - properties of the device node. In general, device nodes for IP-cores - will take the following form: - - (name): (generic-name)@(base-address) { - compatible = "xlnx,(ip-core-name)-(HW_VER)" - [, (list of compatible devices), ...]; - reg = <(baseaddr) (size)>; - interrupt-parent = <&interrupt-controller-phandle>; - interrupts = < ... >; - xlnx,(parameter1) = "(string-value)"; - xlnx,(parameter2) = <(int-value)>; - }; - - (generic-name): an open firmware-style name that describes the - generic class of device. Preferably, this is one word, such - as 'serial' or 'ethernet'. - (ip-core-name): the name of the ip block (given after the BEGIN - directive in system.mhs). Should be in lowercase - and all underscores '_' converted to dashes '-'. - (name): is derived from the "PARAMETER INSTANCE" value. - (parameter#): C_* parameters from system.mhs. The C_ prefix is - dropped from the parameter name, the name is converted - to lowercase and all underscore '_' characters are - converted to dashes '-'. - (baseaddr): the baseaddr parameter value (often named C_BASEADDR). - (HW_VER): from the HW_VER parameter. - (size): the address range size (often C_HIGHADDR - C_BASEADDR + 1). - - Typically, the compatible list will include the exact IP core version - followed by an older IP core version which implements the same - interface or any other device with the same interface. - - 'reg', 'interrupt-parent' and 'interrupts' are all optional properties. - - For example, the following block from system.mhs: - - BEGIN opb_uartlite - PARAMETER INSTANCE = opb_uartlite_0 - PARAMETER HW_VER = 1.00.b - PARAMETER C_BAUDRATE = 115200 - PARAMETER C_DATA_BITS = 8 - PARAMETER C_ODD_PARITY = 0 - PARAMETER C_USE_PARITY = 0 - PARAMETER C_CLK_FREQ = 50000000 - PARAMETER C_BASEADDR = 0xEC100000 - PARAMETER C_HIGHADDR = 0xEC10FFFF - BUS_INTERFACE SOPB = opb_7 - PORT OPB_Clk = CLK_50MHz - PORT Interrupt = opb_uartlite_0_Interrupt - PORT RX = opb_uartlite_0_RX - PORT TX = opb_uartlite_0_TX - PORT OPB_Rst = sys_bus_reset_0 - END - - becomes the following device tree node: - - opb_uartlite_0: serial@ec100000 { - device_type = "serial"; - compatible = "xlnx,opb-uartlite-1.00.b"; - reg = ; - interrupt-parent = <&opb_intc_0>; - interrupts = <1 0>; // got this from the opb_intc parameters - current-speed = ; // standard serial device prop - clock-frequency = ; // standard serial device prop - xlnx,data-bits = <8>; - xlnx,odd-parity = <0>; - xlnx,use-parity = <0>; - }; - - Some IP cores actually implement 2 or more logical devices. In - this case, the device should still describe the whole IP core with - a single node and add a child node for each logical device. The - ranges property can be used to translate from parent IP-core to the - registers of each device. In addition, the parent node should be - compatible with the bus type 'xlnx,compound', and should contain - #address-cells and #size-cells, as with any other bus. (Note: this - makes the assumption that both logical devices have the same bus - binding. If this is not true, then separate nodes should be used - for each logical device). The 'cell-index' property can be used to - enumerate logical devices within an IP core. For example, the - following is the system.mhs entry for the dual ps2 controller found - on the ml403 reference design. - - BEGIN opb_ps2_dual_ref - PARAMETER INSTANCE = opb_ps2_dual_ref_0 - PARAMETER HW_VER = 1.00.a - PARAMETER C_BASEADDR = 0xA9000000 - PARAMETER C_HIGHADDR = 0xA9001FFF - BUS_INTERFACE SOPB = opb_v20_0 - PORT Sys_Intr1 = ps2_1_intr - PORT Sys_Intr2 = ps2_2_intr - PORT Clkin1 = ps2_clk_rx_1 - PORT Clkin2 = ps2_clk_rx_2 - PORT Clkpd1 = ps2_clk_tx_1 - PORT Clkpd2 = ps2_clk_tx_2 - PORT Rx1 = ps2_d_rx_1 - PORT Rx2 = ps2_d_rx_2 - PORT Txpd1 = ps2_d_tx_1 - PORT Txpd2 = ps2_d_tx_2 - END - - It would result in the following device tree nodes: - - opb_ps2_dual_ref_0: opb-ps2-dual-ref@a9000000 { - #address-cells = <1>; - #size-cells = <1>; - compatible = "xlnx,compound"; - ranges = <0 a9000000 2000>; - // If this device had extra parameters, then they would - // go here. - ps2@0 { - compatible = "xlnx,opb-ps2-dual-ref-1.00.a"; - reg = <0 40>; - interrupt-parent = <&opb_intc_0>; - interrupts = <3 0>; - cell-index = <0>; - }; - ps2@1000 { - compatible = "xlnx,opb-ps2-dual-ref-1.00.a"; - reg = <1000 40>; - interrupt-parent = <&opb_intc_0>; - interrupts = <3 0>; - cell-index = <0>; - }; - }; - - Also, the system.mhs file defines bus attachments from the processor - to the devices. The device tree structure should reflect the bus - attachments. Again an example; this system.mhs fragment: - - BEGIN ppc405_virtex4 - PARAMETER INSTANCE = ppc405_0 - PARAMETER HW_VER = 1.01.a - BUS_INTERFACE DPLB = plb_v34_0 - BUS_INTERFACE IPLB = plb_v34_0 - END - - BEGIN opb_intc - PARAMETER INSTANCE = opb_intc_0 - PARAMETER HW_VER = 1.00.c - PARAMETER C_BASEADDR = 0xD1000FC0 - PARAMETER C_HIGHADDR = 0xD1000FDF - BUS_INTERFACE SOPB = opb_v20_0 - END - - BEGIN opb_uart16550 - PARAMETER INSTANCE = opb_uart16550_0 - PARAMETER HW_VER = 1.00.d - PARAMETER C_BASEADDR = 0xa0000000 - PARAMETER C_HIGHADDR = 0xa0001FFF - BUS_INTERFACE SOPB = opb_v20_0 - END - - BEGIN plb_v34 - PARAMETER INSTANCE = plb_v34_0 - PARAMETER HW_VER = 1.02.a - END - - BEGIN plb_bram_if_cntlr - PARAMETER INSTANCE = plb_bram_if_cntlr_0 - PARAMETER HW_VER = 1.00.b - PARAMETER C_BASEADDR = 0xFFFF0000 - PARAMETER C_HIGHADDR = 0xFFFFFFFF - BUS_INTERFACE SPLB = plb_v34_0 - END - - BEGIN plb2opb_bridge - PARAMETER INSTANCE = plb2opb_bridge_0 - PARAMETER HW_VER = 1.01.a - PARAMETER C_RNG0_BASEADDR = 0x20000000 - PARAMETER C_RNG0_HIGHADDR = 0x3FFFFFFF - PARAMETER C_RNG1_BASEADDR = 0x60000000 - PARAMETER C_RNG1_HIGHADDR = 0x7FFFFFFF - PARAMETER C_RNG2_BASEADDR = 0x80000000 - PARAMETER C_RNG2_HIGHADDR = 0xBFFFFFFF - PARAMETER C_RNG3_BASEADDR = 0xC0000000 - PARAMETER C_RNG3_HIGHADDR = 0xDFFFFFFF - BUS_INTERFACE SPLB = plb_v34_0 - BUS_INTERFACE MOPB = opb_v20_0 - END - - Gives this device tree (some properties removed for clarity): - - plb@0 { - #address-cells = <1>; - #size-cells = <1>; - compatible = "xlnx,plb-v34-1.02.a"; - device_type = "ibm,plb"; - ranges; // 1:1 translation - - plb_bram_if_cntrl_0: bram@ffff0000 { - reg = ; - } - - opb@20000000 { - #address-cells = <1>; - #size-cells = <1>; - ranges = <20000000 20000000 20000000 - 60000000 60000000 20000000 - 80000000 80000000 40000000 - c0000000 c0000000 20000000>; - - opb_uart16550_0: serial@a0000000 { - reg = ; - }; - - opb_intc_0: interrupt-controller@d1000fc0 { - reg = ; - }; - }; - }; - - That covers the general approach to binding xilinx IP cores into the - device tree. The following are bindings for specific devices: - - i) Xilinx ML300 Framebuffer - - Simple framebuffer device from the ML300 reference design (also on the - ML403 reference design as well as others). - - Optional properties: - - resolution = : pixel resolution of framebuffer. Some - implementations use a different resolution. - Default is - - virt-resolution = : Size of framebuffer in memory. - Default is . - - rotate-display (empty) : rotate display 180 degrees. - - ii) Xilinx SystemACE - - The Xilinx SystemACE device is used to program FPGAs from an FPGA - bitstream stored on a CF card. It can also be used as a generic CF - interface device. - - Optional properties: - - 8-bit (empty) : Set this property for SystemACE in 8 bit mode - - iii) Xilinx EMAC and Xilinx TEMAC - - Xilinx Ethernet devices. In addition to general xilinx properties - listed above, nodes for these devices should include a phy-handle - property, and may include other common network device properties - like local-mac-address. - - iv) Xilinx Uartlite - - Xilinx uartlite devices are simple fixed speed serial ports. - - Required properties: - - current-speed : Baud rate of uartlite - - v) Xilinx hwicap - - Xilinx hwicap devices provide access to the configuration logic - of the FPGA through the Internal Configuration Access Port - (ICAP). The ICAP enables partial reconfiguration of the FPGA, - readback of the configuration information, and some control over - 'warm boots' of the FPGA fabric. - - Required properties: - - xlnx,family : The family of the FPGA, necessary since the - capabilities of the underlying ICAP hardware - differ between different families. May be - 'virtex2p', 'virtex4', or 'virtex5'. - - vi) Xilinx Uart 16550 - - Xilinx UART 16550 devices are very similar to the NS16550 but with - different register spacing and an offset from the base address. - - Required properties: - - clock-frequency : Frequency of the clock input - - reg-offset : A value of 3 is required - - reg-shift : A value of 2 is required - - vii) Xilinx USB Host controller - - The Xilinx USB host controller is EHCI compatible but with a different - base address for the EHCI registers, and it is always a big-endian - USB Host controller. The hardware can be configured as high speed only, - or high speed/full speed hybrid. - - Required properties: - - xlnx,support-usb-fs: A value 0 means the core is built as high speed - only. A value 1 means the core also supports - full speed devices. - -- cgit v1.2.2 From cf4e5c6e8d2b87ae8e61168a7dc860d68c578745 Mon Sep 17 00:00:00 2001 From: Grant Likely Date: Mon, 31 Jan 2011 00:12:26 -0700 Subject: dt: Remove obsolete description of powerpc boot interface 32 and 64 bit powerpc support has been merged for a while now, but the booting-without-of.txt document still describes 32 bit as not supporting multiplatform, which is no longer true. This patch fixes the documentation. Also remove references to powerpc-specific details outside of section I in preparation to add details for other architectures. v3: cleaned up a lot more powerpc-isms and updated text to reflect current usage conventions. Signed-off-by: Grant Likely --- Documentation/devicetree/booting-without-of.txt | 165 ++++++++---------------- 1 file changed, 54 insertions(+), 111 deletions(-) (limited to 'Documentation') diff --git a/Documentation/devicetree/booting-without-of.txt b/Documentation/devicetree/booting-without-of.txt index 7400d7555dc3..28b1c9d3d351 100644 --- a/Documentation/devicetree/booting-without-of.txt +++ b/Documentation/devicetree/booting-without-of.txt @@ -13,7 +13,6 @@ Table of Contents I - Introduction 1) Entry point for arch/powerpc - 2) Board support II - The DT block format 1) Header @@ -41,13 +40,6 @@ Table of Contents VI - System-on-a-chip devices and nodes 1) Defining child nodes of an SOC 2) Representing devices without a current OF specification - a) PHY nodes - b) Interrupt controllers - c) 4xx/Axon EMAC ethernet nodes - d) Xilinx IP cores - e) USB EHCI controllers - f) MDIO on GPIOs - g) SPI busses VII - Specifying interrupt information for devices 1) interrupts property @@ -123,7 +115,7 @@ Revision Information I - Introduction ================ -During the recent development of the Linux/ppc64 kernel, and more +During the development of the Linux/ppc64 kernel, and more specifically, the addition of new platform types outside of the old IBM pSeries/iSeries pair, it was decided to enforce some strict rules regarding the kernel entry and bootloader <-> kernel interfaces, in @@ -146,7 +138,7 @@ section III, but, for example, the kernel does not require you to create a node for every PCI device in the system. It is a requirement to have a node for PCI host bridges in order to provide interrupt routing informations and memory/IO ranges, among others. It is also -recommended to define nodes for on chip devices and other busses that +recommended to define nodes for on chip devices and other buses that don't specifically fit in an existing OF specification. This creates a great flexibility in the way the kernel can then probe those and match drivers to device, without having to hard code all sorts of tables. It @@ -158,7 +150,7 @@ it with special cases. 1) Entry point for arch/powerpc ------------------------------- - There is one and one single entry point to the kernel, at the start + There is one single entry point to the kernel, at the start of the kernel image. That entry point supports two calling conventions: @@ -210,12 +202,6 @@ it with special cases. with all CPUs. The way to do that with method b) will be described in a later revision of this document. - -2) Board support ----------------- - -64-bit kernels: - Board supports (platforms) are not exclusive config options. An arbitrary set of board supports can be built in a single kernel image. The kernel will "know" what set of functions to use for a @@ -234,48 +220,11 @@ it with special cases. containing the various callbacks that the generic code will use to get to your platform specific code - c) Add a reference to your "ppc_md" structure in the - "machines" table in arch/powerpc/kernel/setup_64.c if you are - a 64-bit platform. - - d) request and get assigned a platform number (see PLATFORM_* - constants in arch/powerpc/include/asm/processor.h - -32-bit embedded kernels: - - Currently, board support is essentially an exclusive config option. - The kernel is configured for a single platform. Part of the reason - for this is to keep kernels on embedded systems small and efficient; - part of this is due to the fact the code is already that way. In the - future, a kernel may support multiple platforms, but only if the + A kernel image may support multiple platforms, but only if the platforms feature the same core architecture. A single kernel build cannot support both configurations with Book E and configurations with classic Powerpc architectures. - 32-bit embedded platforms that are moved into arch/powerpc using a - flattened device tree should adopt the merged tree practice of - setting ppc_md up dynamically, even though the kernel is currently - built with support for only a single platform at a time. This allows - unification of the setup code, and will make it easier to go to a - multiple-platform-support model in the future. - -NOTE: I believe the above will be true once Ben's done with the merge -of the boot sequences.... someone speak up if this is wrong! - - To add a 32-bit embedded platform support, follow the instructions - for 64-bit platforms above, with the exception that the Kconfig - option should be set up such that the kernel builds exclusively for - the platform selected. The processor type for the platform should - enable another config option to select the specific board - supported. - -NOTE: If Ben doesn't merge the setup files, may need to change this to -point to setup_32.c - - - I will describe later the boot process and various callbacks that - your platform should implement. - II - The DT block format ======================== @@ -300,8 +249,8 @@ the block to RAM before passing it to the kernel. 1) Header --------- - The kernel is entered with r3 pointing to an area of memory that is - roughly described in arch/powerpc/include/asm/prom.h by the structure + The kernel is passed the physical address pointing to an area of memory + that is roughly described in include/linux/of_fdt.h by the structure boot_param_header: struct boot_param_header { @@ -339,7 +288,7 @@ struct boot_param_header { All values in this header are in big endian format, the various fields in this header are defined more precisely below. All "offset" values are in bytes from the start of the header; that is - from the value of r3. + from the physical base address of the device tree block. - magic @@ -437,7 +386,7 @@ struct boot_param_header { ------------------------------ - r3 -> | struct boot_param_header | + base -> | struct boot_param_header | ------------------------------ | (alignment gap) (*) | ------------------------------ @@ -457,7 +406,7 @@ struct boot_param_header { -----> ------------------------------ | | - --- (r3 + totalsize) + --- (base + totalsize) (*) The alignment gaps are not necessarily present; their presence and size are dependent on the various alignment requirements of @@ -500,7 +449,7 @@ the device-tree structure. It is typically used to represent "path" in the device-tree. More details about the actual format of these will be below. -The kernel powerpc generic code does not make any formal use of the +The kernel generic code does not make any formal use of the unit address (though some board support code may do) so the only real requirement here for the unit address is to ensure uniqueness of the node unit name at a given level of the tree. Nodes with no notion @@ -518,20 +467,21 @@ path to the root node is "/". Every node which actually represents an actual device (that is, a node which isn't only a virtual "container" for more nodes, like "/cpus" -is) is also required to have a "device_type" property indicating the -type of node . +is) is also required to have a "compatible" property indicating the +specific hardware and an optional list of devices it is fully +backwards compatible with. Finally, every node that can be referenced from a property in another -node is required to have a "linux,phandle" property. Real open -firmware implementations provide a unique "phandle" value for every -node that the "prom_init()" trampoline code turns into -"linux,phandle" properties. However, this is made optional if the -flattened device tree is used directly. An example of a node +node is required to have either a "phandle" or a "linux,phandle" +property. Real Open Firmware implementations provide a unique +"phandle" value for every node that the "prom_init()" trampoline code +turns into "linux,phandle" properties. However, this is made optional +if the flattened device tree is used directly. An example of a node referencing another node via "phandle" is when laying out the interrupt tree which will be described in a further version of this document. -This "linux, phandle" property is a 32-bit value that uniquely +The "phandle" property is a 32-bit value that uniquely identifies a node. You are free to use whatever values or system of values, internal pointers, or whatever to generate these, the only requirement is that every node for which you provide that property has @@ -694,7 +644,7 @@ made of 3 cells, the bottom two containing the actual address itself while the top cell contains address space indication, flags, and pci bus & device numbers. -For busses that support dynamic allocation, it's the accepted practice +For buses that support dynamic allocation, it's the accepted practice to then not provide the address in "reg" (keep it 0) though while providing a flag indicating the address is dynamically allocated, and then, to provide a separate "assigned-addresses" property that @@ -711,7 +661,7 @@ prom_parse.c file of the recent kernels for your bus type. The "reg" property only defines addresses and sizes (if #size-cells is non-0) within a given bus. In order to translate addresses upward (that is into parent bus addresses, and possibly into CPU physical -addresses), all busses must contain a "ranges" property. If the +addresses), all buses must contain a "ranges" property. If the "ranges" property is missing at a given level, it's assumed that translation isn't possible, i.e., the registers are not visible on the parent bus. The format of the "ranges" property for a bus is a list @@ -727,9 +677,9 @@ example, for a PCI host controller, that would be a CPU address. For a PCI<->ISA bridge, that would be a PCI address. It defines the base address in the parent bus where the beginning of that range is mapped. -For a new 64-bit powerpc board, I recommend either the 2/2 format or +For new 64-bit board support, I recommend either the 2/2 format or Apple's 2/1 format which is slightly more compact since sizes usually -fit in a single 32-bit word. New 32-bit powerpc boards should use a +fit in a single 32-bit word. New 32-bit board support should use a 1/1 format, unless the processor supports physical addresses greater than 32-bits, in which case a 2/1 format is recommended. @@ -754,7 +704,7 @@ of their actual names. While earlier users of Open Firmware like OldWorld macintoshes tended to use the actual device name for the "name" property, it's nowadays considered a good practice to use a name that is closer to the device -class (often equal to device_type). For example, nowadays, ethernet +class (often equal to device_type). For example, nowadays, Ethernet controllers are named "ethernet", an additional "model" property defining precisely the chip type/model, and "compatible" property defining the family in case a single driver can driver more than one @@ -772,7 +722,7 @@ is present). 4) Note about node and property names and character set ------------------------------------------------------- -While open firmware provides more flexible usage of 8859-1, this +While Open Firmware provides more flexible usage of 8859-1, this specification enforces more strict rules. Nodes and properties should be comprised only of ASCII characters 'a' to 'z', '0' to '9', ',', '.', '_', '+', '#', '?', and '-'. Node names additionally @@ -792,7 +742,7 @@ address which can extend beyond that limit. -------------------------------- These are all that are currently required. However, it is strongly recommended that you expose PCI host bridges as documented in the - PCI binding to open firmware, and your interrupt tree as documented + PCI binding to Open Firmware, and your interrupt tree as documented in OF interrupt tree specification. a) The root node @@ -802,20 +752,12 @@ address which can extend beyond that limit. - model : this is your board name/model - #address-cells : address representation for "root" devices - #size-cells: the size representation for "root" devices - - device_type : This property shouldn't be necessary. However, if - you decide to create a device_type for your root node, make sure it - is _not_ "chrp" unless your platform is a pSeries or PAPR compliant - one for 64-bit, or a CHRP-type machine for 32-bit as this will - matched by the kernel this way. - - Additionally, some recommended properties are: - - compatible : the board "family" generally finds its way here, for example, if you have 2 board models with a similar layout, that typically get driven by the same platform code in the - kernel, you would use a different "model" property but put a - value in "compatible". The kernel doesn't directly use that - value but it is generally useful. + kernel, you would specify the exact board model in the + compatible property followed by an entry that represents the SoC + model. The root node is also generally where you add additional properties specific to your board like the serial number if any, that sort of @@ -841,8 +783,11 @@ address which can extend beyond that limit. So under /cpus, you are supposed to create a node for every CPU on the machine. There is no specific restriction on the name of the - CPU, though It's common practice to call it PowerPC,. For + CPU, though it's common to call it ,. For example, Apple uses PowerPC,G5 while IBM uses PowerPC,970FX. + However, the Generic Names convention suggests that it would be + better to simply use 'cpu' for each cpu node and use the compatible + property to identify the specific cpu core. Required properties: @@ -923,7 +868,7 @@ compatibility. e) The /chosen node - This node is a bit "special". Normally, that's where open firmware + This node is a bit "special". Normally, that's where Open Firmware puts some variable environment information, like the arguments, or the default input/output devices. @@ -940,11 +885,7 @@ compatibility. console device if any. Typically, if you have serial devices on your board, you may want to put the full path to the one set as the default console in the firmware here, for the kernel to pick - it up as its own default console. If you look at the function - set_preferred_console() in arch/ppc64/kernel/setup.c, you'll see - that the kernel tries to find out the default console and has - knowledge of various types like 8250 serial ports. You may want - to extend this function to add your own. + it up as its own default console. Note that u-boot creates and fills in the chosen node for platforms that use it. @@ -955,23 +896,23 @@ compatibility. f) the /soc node - This node is used to represent a system-on-a-chip (SOC) and must be - present if the processor is a SOC. The top-level soc node contains - information that is global to all devices on the SOC. The node name - should contain a unit address for the SOC, which is the base address - of the memory-mapped register set for the SOC. The name of an soc + This node is used to represent a system-on-a-chip (SoC) and must be + present if the processor is a SoC. The top-level soc node contains + information that is global to all devices on the SoC. The node name + should contain a unit address for the SoC, which is the base address + of the memory-mapped register set for the SoC. The name of an SoC node should start with "soc", and the remainder of the name should represent the part number for the soc. For example, the MPC8540's soc node would be called "soc8540". Required properties: - - device_type : Should be "soc" - ranges : Should be defined as specified in 1) to describe the - translation of SOC addresses for memory mapped SOC registers. - - bus-frequency: Contains the bus frequency for the SOC node. + translation of SoC addresses for memory mapped SoC registers. + - bus-frequency: Contains the bus frequency for the SoC node. Typically, the value of this field is filled in by the boot loader. + - compatible : Exact model of the SoC Recommended properties: @@ -1155,12 +1096,13 @@ while all this has been defined and implemented. - An example of code for iterating nodes & retrieving properties directly from the flattened tree format can be found in the kernel - file arch/ppc64/kernel/prom.c, look at scan_flat_dt() function, + file drivers/of/fdt.c. Look at the of_scan_flat_dt() function, its usage in early_init_devtree(), and the corresponding various early_init_dt_scan_*() callbacks. That code can be re-used in a GPL bootloader, and as the author of that code, I would be happy to discuss possible free licensing to any vendor who wishes to integrate all or part of this code into a non-GPL bootloader. + (reference needed; who is 'I' here? ---gcl Jan 31, 2011) @@ -1203,18 +1145,19 @@ MPC8540. 2) Representing devices without a current OF specification ---------------------------------------------------------- -Currently, there are many devices on SOCs that do not have a standard -representation pre-defined as part of the open firmware -specifications, mainly because the boards that contain these SOCs are -not currently booted using open firmware. This section contains -descriptions for the SOC devices for which new nodes have been -defined; this list will expand as more and more SOC-containing -platforms are moved over to use the flattened-device-tree model. +Currently, there are many devices on SoCs that do not have a standard +representation defined as part of the Open Firmware specifications, +mainly because the boards that contain these SoCs are not currently +booted using Open Firmware. Binding documentation for new devices +should be added to the Documentation/devicetree/bindings directory. +That directory will expand as device tree support is added to more and +more SoCs. + VII - Specifying interrupt information for devices =================================================== -The device tree represents the busses and devices of a hardware +The device tree represents the buses and devices of a hardware system in a form similar to the physical bus topology of the hardware. -- cgit v1.2.2 From 9830fcd6f6a4781d8b46d2b35c13b39f30915c63 Mon Sep 17 00:00:00 2001 From: Grant Likely Date: Mon, 31 Jan 2011 00:09:58 -0700 Subject: dt: add documentation of ARM dt boot interface v3: added details to Documentation/arm/Booting Signed-off-by: Grant Likely --- Documentation/arm/Booting | 33 +++++++++++++++++--- Documentation/devicetree/booting-without-of.txt | 40 +++++++++++++++++++++++++ 2 files changed, 69 insertions(+), 4 deletions(-) (limited to 'Documentation') diff --git a/Documentation/arm/Booting b/Documentation/arm/Booting index 76850295af8f..4e686a2ed91e 100644 --- a/Documentation/arm/Booting +++ b/Documentation/arm/Booting @@ -65,13 +65,19 @@ looks at the connected hardware is beyond the scope of this document. The boot loader must ultimately be able to provide a MACH_TYPE_xxx value to the kernel. (see linux/arch/arm/tools/mach-types). - -4. Setup the kernel tagged list -------------------------------- +4. Setup boot data +------------------ Existing boot loaders: OPTIONAL, HIGHLY RECOMMENDED New boot loaders: MANDATORY +The boot loader must provide either a tagged list or a dtb image for +passing configuration data to the kernel. The physical address of the +boot data is passed to the kernel in register r2. + +4a. Setup the kernel tagged list +-------------------------------- + The boot loader must create and initialise the kernel tagged list. A valid tagged list starts with ATAG_CORE and ends with ATAG_NONE. The ATAG_CORE tag may or may not be empty. An empty ATAG_CORE tag @@ -101,6 +107,24 @@ The tagged list must be placed in a region of memory where neither the kernel decompressor nor initrd 'bootp' program will overwrite it. The recommended placement is in the first 16KiB of RAM. +4b. Setup the device tree +------------------------- + +The boot loader must load a device tree image (dtb) into system ram +at a 64bit aligned address and initialize it with the boot data. The +dtb format is documented in Documentation/devicetree/booting-without-of.txt. +The kernel will look for the dtb magic value of 0xd00dfeed at the dtb +physical address to determine if a dtb has been passed instead of a +tagged list. + +The boot loader must pass at a minimum the size and location of the +system memory, and the root filesystem location. The dtb must be +placed in a region of memory where the kernel decompressor will not +overwrite it. The recommended placement is in the first 16KiB of RAM +with the caveat that it may not be located at physical address 0 since +the kernel interprets a value of 0 in r2 to mean neither a tagged list +nor a dtb were passed. + 5. Calling the kernel image --------------------------- @@ -125,7 +149,8 @@ In either case, the following conditions must be met: - CPU register settings r0 = 0, r1 = machine type number discovered in (3) above. - r2 = physical address of tagged list in system RAM. + r2 = physical address of tagged list in system RAM, or + physical address of device tree block (dtb) in system RAM - CPU mode All forms of interrupts must be disabled (IRQs and FIQs) diff --git a/Documentation/devicetree/booting-without-of.txt b/Documentation/devicetree/booting-without-of.txt index 28b1c9d3d351..9381a1481027 100644 --- a/Documentation/devicetree/booting-without-of.txt +++ b/Documentation/devicetree/booting-without-of.txt @@ -13,6 +13,7 @@ Table of Contents I - Introduction 1) Entry point for arch/powerpc + 2) Entry point for arch/arm II - The DT block format 1) Header @@ -225,6 +226,45 @@ it with special cases. cannot support both configurations with Book E and configurations with classic Powerpc architectures. +2) Entry point for arch/arm +--------------------------- + + There is one single entry point to the kernel, at the start + of the kernel image. That entry point supports two calling + conventions. A summary of the interface is described here. A full + description of the boot requirements is documented in + Documentation/arm/Booting + + a) ATAGS interface. Minimal information is passed from firmware + to the kernel with a tagged list of predefined parameters. + + r0 : 0 + + r1 : Machine type number + + r2 : Physical address of tagged list in system RAM + + b) Entry with a flattened device-tree block. Firmware loads the + physical address of the flattened device tree block (dtb) into r2, + r1 is not used, but it is considered good practise to use a valid + machine number as described in Documentation/arm/Booting. + + r0 : 0 + + r1 : Valid machine type number. When using a device tree, + a single machine type number will often be assigned to + represent a class or family of SoCs. + + r2 : physical pointer to the device-tree block + (defined in chapter II) in RAM. Device tree can be located + anywhere in system RAM, but it should be aligned on a 32 bit + boundary. + + The kernel will differentiate between ATAGS and device tree booting by + reading the memory pointed to by r1 and looking for either the flattened + device tree block magic value (0xd00dfeed) or the ATAG_CORE value at + offset 0x4 from r2 (0x54410001). + II - The DT block format ======================== -- cgit v1.2.2