From 23deb06821442506615f34bd92ccd6a2422629d7 Mon Sep 17 00:00:00 2001 From: "H. Peter Anvin" Date: Fri, 30 May 2008 17:19:03 -0700 Subject: x86: move x86-specific documentation into Documentation/x86 The current organization of the x86 documentation makes it appear as if the "i386" documentation doesn't apply to x86-64, which is does. Thus, move that documentation into Documentation/x86, and move the x86-64-specific stuff into Documentation/x86/x86_64 with the eventual goal to move stuff that isn't actually 64-bit specific back into Documentation/x86. Signed-off-by: H. Peter Anvin --- Documentation/x86/i386/IO-APIC.txt | 119 ++++ Documentation/x86/i386/boot.txt | 900 +++++++++++++++++++++++++ Documentation/x86/i386/usb-legacy-support.txt | 44 ++ Documentation/x86/i386/zero-page.txt | 31 + Documentation/x86/x86_64/00-INDEX | 16 + Documentation/x86/x86_64/boot-options.txt | 314 +++++++++ Documentation/x86/x86_64/cpu-hotplug-spec | 21 + Documentation/x86/x86_64/fake-numa-for-cpusets | 66 ++ Documentation/x86/x86_64/kernel-stacks | 99 +++ Documentation/x86/x86_64/machinecheck | 77 +++ Documentation/x86/x86_64/mm.txt | 29 + Documentation/x86/x86_64/uefi.txt | 38 ++ 12 files changed, 1754 insertions(+) create mode 100644 Documentation/x86/i386/IO-APIC.txt create mode 100644 Documentation/x86/i386/boot.txt create mode 100644 Documentation/x86/i386/usb-legacy-support.txt create mode 100644 Documentation/x86/i386/zero-page.txt create mode 100644 Documentation/x86/x86_64/00-INDEX create mode 100644 Documentation/x86/x86_64/boot-options.txt create mode 100644 Documentation/x86/x86_64/cpu-hotplug-spec create mode 100644 Documentation/x86/x86_64/fake-numa-for-cpusets create mode 100644 Documentation/x86/x86_64/kernel-stacks create mode 100644 Documentation/x86/x86_64/machinecheck create mode 100644 Documentation/x86/x86_64/mm.txt create mode 100644 Documentation/x86/x86_64/uefi.txt (limited to 'Documentation/x86') diff --git a/Documentation/x86/i386/IO-APIC.txt b/Documentation/x86/i386/IO-APIC.txt new file mode 100644 index 000000000000..30b4c714fbe1 --- /dev/null +++ b/Documentation/x86/i386/IO-APIC.txt @@ -0,0 +1,119 @@ +Most (all) Intel-MP compliant SMP boards have the so-called 'IO-APIC', +which is an enhanced interrupt controller. It enables us to route +hardware interrupts to multiple CPUs, or to CPU groups. Without an +IO-APIC, interrupts from hardware will be delivered only to the +CPU which boots the operating system (usually CPU#0). + +Linux supports all variants of compliant SMP boards, including ones with +multiple IO-APICs. Multiple IO-APICs are used in high-end servers to +distribute IRQ load further. + +There are (a few) known breakages in certain older boards, such bugs are +usually worked around by the kernel. If your MP-compliant SMP board does +not boot Linux, then consult the linux-smp mailing list archives first. + +If your box boots fine with enabled IO-APIC IRQs, then your +/proc/interrupts will look like this one: + + ----------------------------> + hell:~> cat /proc/interrupts + CPU0 + 0: 1360293 IO-APIC-edge timer + 1: 4 IO-APIC-edge keyboard + 2: 0 XT-PIC cascade + 13: 1 XT-PIC fpu + 14: 1448 IO-APIC-edge ide0 + 16: 28232 IO-APIC-level Intel EtherExpress Pro 10/100 Ethernet + 17: 51304 IO-APIC-level eth0 + NMI: 0 + ERR: 0 + hell:~> + <---------------------------- + +Some interrupts are still listed as 'XT PIC', but this is not a problem; +none of those IRQ sources is performance-critical. + + +In the unlikely case that your board does not create a working mp-table, +you can use the pirq= boot parameter to 'hand-construct' IRQ entries. This +is non-trivial though and cannot be automated. One sample /etc/lilo.conf +entry: + + append="pirq=15,11,10" + +The actual numbers depend on your system, on your PCI cards and on their +PCI slot position. Usually PCI slots are 'daisy chained' before they are +connected to the PCI chipset IRQ routing facility (the incoming PIRQ1-4 +lines): + + ,-. ,-. ,-. ,-. ,-. + PIRQ4 ----| |-. ,-| |-. ,-| |-. ,-| |--------| | + |S| \ / |S| \ / |S| \ / |S| |S| + PIRQ3 ----|l|-. `/---|l|-. `/---|l|-. `/---|l|--------|l| + |o| \/ |o| \/ |o| \/ |o| |o| + PIRQ2 ----|t|-./`----|t|-./`----|t|-./`----|t|--------|t| + |1| /\ |2| /\ |3| /\ |4| |5| + PIRQ1 ----| |- `----| |- `----| |- `----| |--------| | + `-' `-' `-' `-' `-' + +Every PCI card emits a PCI IRQ, which can be INTA, INTB, INTC or INTD: + + ,-. + INTD--| | + |S| + INTC--|l| + |o| + INTB--|t| + |x| + INTA--| | + `-' + +These INTA-D PCI IRQs are always 'local to the card', their real meaning +depends on which slot they are in. If you look at the daisy chaining diagram, +a card in slot4, issuing INTA IRQ, it will end up as a signal on PIRQ4 of +the PCI chipset. Most cards issue INTA, this creates optimal distribution +between the PIRQ lines. (distributing IRQ sources properly is not a +necessity, PCI IRQs can be shared at will, but it's a good for performance +to have non shared interrupts). Slot5 should be used for videocards, they +do not use interrupts normally, thus they are not daisy chained either. + +so if you have your SCSI card (IRQ11) in Slot1, Tulip card (IRQ9) in +Slot2, then you'll have to specify this pirq= line: + + append="pirq=11,9" + +the following script tries to figure out such a default pirq= line from +your PCI configuration: + + echo -n pirq=; echo `scanpci | grep T_L | cut -c56-` | sed 's/ /,/g' + +note that this script wont work if you have skipped a few slots or if your +board does not do default daisy-chaining. (or the IO-APIC has the PIRQ pins +connected in some strange way). E.g. if in the above case you have your SCSI +card (IRQ11) in Slot3, and have Slot1 empty: + + append="pirq=0,9,11" + +[value '0' is a generic 'placeholder', reserved for empty (or non-IRQ emitting) +slots.] + +Generally, it's always possible to find out the correct pirq= settings, just +permute all IRQ numbers properly ... it will take some time though. An +'incorrect' pirq line will cause the booting process to hang, or a device +won't function properly (e.g. if it's inserted as a module). + +If you have 2 PCI buses, then you can use up to 8 pirq values, although such +boards tend to have a good configuration. + +Be prepared that it might happen that you need some strange pirq line: + + append="pirq=0,0,0,0,0,0,9,11" + +Use smart trial-and-error techniques to find out the correct pirq line ... + +Good luck and mail to linux-smp@vger.kernel.org or +linux-kernel@vger.kernel.org if you have any problems that are not covered +by this document. + +-- mingo + diff --git a/Documentation/x86/i386/boot.txt b/Documentation/x86/i386/boot.txt new file mode 100644 index 000000000000..147bfe511cdd --- /dev/null +++ b/Documentation/x86/i386/boot.txt @@ -0,0 +1,900 @@ + THE LINUX/x86 BOOT PROTOCOL + --------------------------- + +On the x86 platform, the Linux kernel uses a rather complicated boot +convention. This has evolved partially due to historical aspects, as +well as the desire in the early days to have the kernel itself be a +bootable image, the complicated PC memory model and due to changed +expectations in the PC industry caused by the effective demise of +real-mode DOS as a mainstream operating system. + +Currently, the following versions of the Linux/x86 boot protocol exist. + +Old kernels: zImage/Image support only. Some very early kernels + may not even support a command line. + +Protocol 2.00: (Kernel 1.3.73) Added bzImage and initrd support, as + well as a formalized way to communicate between the + boot loader and the kernel. setup.S made relocatable, + although the traditional setup area still assumed + writable. + +Protocol 2.01: (Kernel 1.3.76) Added a heap overrun warning. + +Protocol 2.02: (Kernel 2.4.0-test3-pre3) New command line protocol. + Lower the conventional memory ceiling. No overwrite + of the traditional setup area, thus making booting + safe for systems which use the EBDA from SMM or 32-bit + BIOS entry points. zImage deprecated but still + supported. + +Protocol 2.03: (Kernel 2.4.18-pre1) Explicitly makes the highest possible + initrd address available to the bootloader. + +Protocol 2.04: (Kernel 2.6.14) Extend the syssize field to four bytes. + +Protocol 2.05: (Kernel 2.6.20) Make protected mode kernel relocatable. + Introduce relocatable_kernel and kernel_alignment fields. + +Protocol 2.06: (Kernel 2.6.22) Added a field that contains the size of + the boot command line. + +Protocol 2.07: (Kernel 2.6.24) Added paravirtualised boot protocol. + Introduced hardware_subarch and hardware_subarch_data + and KEEP_SEGMENTS flag in load_flags. + +Protocol 2.08: (Kernel 2.6.26) Added crc32 checksum and ELF format + payload. Introduced payload_offset and payload length + fields to aid in locating the payload. + +Protocol 2.09: (Kernel 2.6.26) Added a field of 64-bit physical + pointer to single linked list of struct setup_data. + +**** MEMORY LAYOUT + +The traditional memory map for the kernel loader, used for Image or +zImage kernels, typically looks like: + + | | +0A0000 +------------------------+ + | Reserved for BIOS | Do not use. Reserved for BIOS EBDA. +09A000 +------------------------+ + | Command line | + | Stack/heap | For use by the kernel real-mode code. +098000 +------------------------+ + | Kernel setup | The kernel real-mode code. +090200 +------------------------+ + | Kernel boot sector | The kernel legacy boot sector. +090000 +------------------------+ + | Protected-mode kernel | The bulk of the kernel image. +010000 +------------------------+ + | Boot loader | <- Boot sector entry point 0000:7C00 +001000 +------------------------+ + | Reserved for MBR/BIOS | +000800 +------------------------+ + | Typically used by MBR | +000600 +------------------------+ + | BIOS use only | +000000 +------------------------+ + + +When using bzImage, the protected-mode kernel was relocated to +0x100000 ("high memory"), and the kernel real-mode block (boot sector, +setup, and stack/heap) was made relocatable to any address between +0x10000 and end of low memory. Unfortunately, in protocols 2.00 and +2.01 the 0x90000+ memory range is still used internally by the kernel; +the 2.02 protocol resolves that problem. + +It is desirable to keep the "memory ceiling" -- the highest point in +low memory touched by the boot loader -- as low as possible, since +some newer BIOSes have begun to allocate some rather large amounts of +memory, called the Extended BIOS Data Area, near the top of low +memory. The boot loader should use the "INT 12h" BIOS call to verify +how much low memory is available. + +Unfortunately, if INT 12h reports that the amount of memory is too +low, there is usually nothing the boot loader can do but to report an +error to the user. The boot loader should therefore be designed to +take up as little space in low memory as it reasonably can. For +zImage or old bzImage kernels, which need data written into the +0x90000 segment, the boot loader should make sure not to use memory +above the 0x9A000 point; too many BIOSes will break above that point. + +For a modern bzImage kernel with boot protocol version >= 2.02, a +memory layout like the following is suggested: + + ~ ~ + | Protected-mode kernel | +100000 +------------------------+ + | I/O memory hole | +0A0000 +------------------------+ + | Reserved for BIOS | Leave as much as possible unused + ~ ~ + | Command line | (Can also be below the X+10000 mark) +X+10000 +------------------------+ + | Stack/heap | For use by the kernel real-mode code. +X+08000 +------------------------+ + | Kernel setup | The kernel real-mode code. + | Kernel boot sector | The kernel legacy boot sector. +X +------------------------+ + | Boot loader | <- Boot sector entry point 0000:7C00 +001000 +------------------------+ + | Reserved for MBR/BIOS | +000800 +------------------------+ + | Typically used by MBR | +000600 +------------------------+ + | BIOS use only | +000000 +------------------------+ + +... where the address X is as low as the design of the boot loader +permits. + + +**** THE REAL-MODE KERNEL HEADER + +In the following text, and anywhere in the kernel boot sequence, "a +sector" refers to 512 bytes. It is independent of the actual sector +size of the underlying medium. + +The first step in loading a Linux kernel should be to load the +real-mode code (boot sector and setup code) and then examine the +following header at offset 0x01f1. The real-mode code can total up to +32K, although the boot loader may choose to load only the first two +sectors (1K) and then examine the bootup sector size. + +The header looks like: + +Offset Proto Name Meaning +/Size + +01F1/1 ALL(1 setup_sects The size of the setup in sectors +01F2/2 ALL root_flags If set, the root is mounted readonly +01F4/4 2.04+(2 syssize The size of the 32-bit code in 16-byte paras +01F8/2 ALL ram_size DO NOT USE - for bootsect.S use only +01FA/2 ALL vid_mode Video mode control +01FC/2 ALL root_dev Default root device number +01FE/2 ALL boot_flag 0xAA55 magic number +0200/2 2.00+ jump Jump instruction +0202/4 2.00+ header Magic signature "HdrS" +0206/2 2.00+ version Boot protocol version supported +0208/4 2.00+ realmode_swtch Boot loader hook (see below) +020C/2 2.00+ start_sys The load-low segment (0x1000) (obsolete) +020E/2 2.00+ kernel_version Pointer to kernel version string +0210/1 2.00+ type_of_loader Boot loader identifier +0211/1 2.00+ loadflags Boot protocol option flags +0212/2 2.00+ setup_move_size Move to high memory size (used with hooks) +0214/4 2.00+ code32_start Boot loader hook (see below) +0218/4 2.00+ ramdisk_image initrd load address (set by boot loader) +021C/4 2.00+ ramdisk_size initrd size (set by boot loader) +0220/4 2.00+ bootsect_kludge DO NOT USE - for bootsect.S use only +0224/2 2.01+ heap_end_ptr Free memory after setup end +0226/2 N/A pad1 Unused +0228/4 2.02+ cmd_line_ptr 32-bit pointer to the kernel command line +022C/4 2.03+ initrd_addr_max Highest legal initrd address +0230/4 2.05+ kernel_alignment Physical addr alignment required for kernel +0234/1 2.05+ relocatable_kernel Whether kernel is relocatable or not +0235/3 N/A pad2 Unused +0238/4 2.06+ cmdline_size Maximum size of the kernel command line +023C/4 2.07+ hardware_subarch Hardware subarchitecture +0240/8 2.07+ hardware_subarch_data Subarchitecture-specific data +0248/4 2.08+ payload_offset Offset of kernel payload +024C/4 2.08+ payload_length Length of kernel payload +0250/8 2.09+ setup_data 64-bit physical pointer to linked list + of struct setup_data + +(1) For backwards compatibility, if the setup_sects field contains 0, the + real value is 4. + +(2) For boot protocol prior to 2.04, the upper two bytes of the syssize + field are unusable, which means the size of a bzImage kernel + cannot be determined. + +If the "HdrS" (0x53726448) magic number is not found at offset 0x202, +the boot protocol version is "old". Loading an old kernel, the +following parameters should be assumed: + + Image type = zImage + initrd not supported + Real-mode kernel must be located at 0x90000. + +Otherwise, the "version" field contains the protocol version, +e.g. protocol version 2.01 will contain 0x0201 in this field. When +setting fields in the header, you must make sure only to set fields +supported by the protocol version in use. + + +**** DETAILS OF HEADER FIELDS + +For each field, some are information from the kernel to the bootloader +("read"), some are expected to be filled out by the bootloader +("write"), and some are expected to be read and modified by the +bootloader ("modify"). + +All general purpose boot loaders should write the fields marked +(obligatory). Boot loaders who want to load the kernel at a +nonstandard address should fill in the fields marked (reloc); other +boot loaders can ignore those fields. + +The byte order of all fields is littleendian (this is x86, after all.) + +Field name: setup_sects +Type: read +Offset/size: 0x1f1/1 +Protocol: ALL + + The size of the setup code in 512-byte sectors. If this field is + 0, the real value is 4. The real-mode code consists of the boot + sector (always one 512-byte sector) plus the setup code. + +Field name: root_flags +Type: modify (optional) +Offset/size: 0x1f2/2 +Protocol: ALL + + If this field is nonzero, the root defaults to readonly. The use of + this field is deprecated; use the "ro" or "rw" options on the + command line instead. + +Field name: syssize +Type: read +Offset/size: 0x1f4/4 (protocol 2.04+) 0x1f4/2 (protocol ALL) +Protocol: 2.04+ + + The size of the protected-mode code in units of 16-byte paragraphs. + For protocol versions older than 2.04 this field is only two bytes + wide, and therefore cannot be trusted for the size of a kernel if + the LOAD_HIGH flag is set. + +Field name: ram_size +Type: kernel internal +Offset/size: 0x1f8/2 +Protocol: ALL + + This field is obsolete. + +Field name: vid_mode +Type: modify (obligatory) +Offset/size: 0x1fa/2 + + Please see the section on SPECIAL COMMAND LINE OPTIONS. + +Field name: root_dev +Type: modify (optional) +Offset/size: 0x1fc/2 +Protocol: ALL + + The default root device device number. The use of this field is + deprecated, use the "root=" option on the command line instead. + +Field name: boot_flag +Type: read +Offset/size: 0x1fe/2 +Protocol: ALL + + Contains 0xAA55. This is the closest thing old Linux kernels have + to a magic number. + +Field name: jump +Type: read +Offset/size: 0x200/2 +Protocol: 2.00+ + + Contains an x86 jump instruction, 0xEB followed by a signed offset + relative to byte 0x202. This can be used to determine the size of + the header. + +Field name: header +Type: read +Offset/size: 0x202/4 +Protocol: 2.00+ + + Contains the magic number "HdrS" (0x53726448). + +Field name: version +Type: read +Offset/size: 0x206/2 +Protocol: 2.00+ + + Contains the boot protocol version, in (major << 8)+minor format, + e.g. 0x0204 for version 2.04, and 0x0a11 for a hypothetical version + 10.17. + +Field name: readmode_swtch +Type: modify (optional) +Offset/size: 0x208/4 +Protocol: 2.00+ + + Boot loader hook (see ADVANCED BOOT LOADER HOOKS below.) + +Field name: start_sys +Type: read +Offset/size: 0x20c/4 +Protocol: 2.00+ + + The load low segment (0x1000). Obsolete. + +Field name: kernel_version +Type: read +Offset/size: 0x20e/2 +Protocol: 2.00+ + + If set to a nonzero value, contains a pointer to a NUL-terminated + human-readable kernel version number string, less 0x200. This can + be used to display the kernel version to the user. This value + should be less than (0x200*setup_sects). + + For example, if this value is set to 0x1c00, the kernel version + number string can be found at offset 0x1e00 in the kernel file. + This is a valid value if and only if the "setup_sects" field + contains the value 15 or higher, as: + + 0x1c00 < 15*0x200 (= 0x1e00) but + 0x1c00 >= 14*0x200 (= 0x1c00) + + 0x1c00 >> 9 = 14, so the minimum value for setup_secs is 15. + +Field name: type_of_loader +Type: write (obligatory) +Offset/size: 0x210/1 +Protocol: 2.00+ + + If your boot loader has an assigned id (see table below), enter + 0xTV here, where T is an identifier for the boot loader and V is + a version number. Otherwise, enter 0xFF here. + + Assigned boot loader ids: + 0 LILO (0x00 reserved for pre-2.00 bootloader) + 1 Loadlin + 2 bootsect-loader (0x20, all other values reserved) + 3 SYSLINUX + 4 EtherBoot + 5 ELILO + 7 GRuB + 8 U-BOOT + 9 Xen + A Gujin + B Qemu + + Please contact if you need a bootloader ID + value assigned. + +Field name: loadflags +Type: modify (obligatory) +Offset/size: 0x211/1 +Protocol: 2.00+ + + This field is a bitmask. + + Bit 0 (read): LOADED_HIGH + - If 0, the protected-mode code is loaded at 0x10000. + - If 1, the protected-mode code is loaded at 0x100000. + + Bit 5 (write): QUIET_FLAG + - If 0, print early messages. + - If 1, suppress early messages. + This requests to the kernel (decompressor and early + kernel) to not write early messages that require + accessing the display hardware directly. + + Bit 6 (write): KEEP_SEGMENTS + Protocol: 2.07+ + - If 0, reload the segment registers in the 32bit entry point. + - If 1, do not reload the segment registers in the 32bit entry point. + Assume that %cs %ds %ss %es are all set to flat segments with + a base of 0 (or the equivalent for their environment). + + Bit 7 (write): CAN_USE_HEAP + Set this bit to 1 to indicate that the value entered in the + heap_end_ptr is valid. If this field is clear, some setup code + functionality will be disabled. + +Field name: setup_move_size +Type: modify (obligatory) +Offset/size: 0x212/2 +Protocol: 2.00-2.01 + + When using protocol 2.00 or 2.01, if the real mode kernel is not + loaded at 0x90000, it gets moved there later in the loading + sequence. Fill in this field if you want additional data (such as + the kernel command line) moved in addition to the real-mode kernel + itself. + + The unit is bytes starting with the beginning of the boot sector. + + This field is can be ignored when the protocol is 2.02 or higher, or + if the real-mode code is loaded at 0x90000. + +Field name: code32_start +Type: modify (optional, reloc) +Offset/size: 0x214/4 +Protocol: 2.00+ + + The address to jump to in protected mode. This defaults to the load + address of the kernel, and can be used by the boot loader to + determine the proper load address. + + This field can be modified for two purposes: + + 1. as a boot loader hook (see ADVANCED BOOT LOADER HOOKS below.) + + 2. if a bootloader which does not install a hook loads a + relocatable kernel at a nonstandard address it will have to modify + this field to point to the load address. + +Field name: ramdisk_image +Type: write (obligatory) +Offset/size: 0x218/4 +Protocol: 2.00+ + + The 32-bit linear address of the initial ramdisk or ramfs. Leave at + zero if there is no initial ramdisk/ramfs. + +Field name: ramdisk_size +Type: write (obligatory) +Offset/size: 0x21c/4 +Protocol: 2.00+ + + Size of the initial ramdisk or ramfs. Leave at zero if there is no + initial ramdisk/ramfs. + +Field name: bootsect_kludge +Type: kernel internal +Offset/size: 0x220/4 +Protocol: 2.00+ + + This field is obsolete. + +Field name: heap_end_ptr +Type: write (obligatory) +Offset/size: 0x224/2 +Protocol: 2.01+ + + Set this field to the offset (from the beginning of the real-mode + code) of the end of the setup stack/heap, minus 0x0200. + +Field name: cmd_line_ptr +Type: write (obligatory) +Offset/size: 0x228/4 +Protocol: 2.02+ + + Set this field to the linear address of the kernel command line. + The kernel command line can be located anywhere between the end of + the setup heap and 0xA0000; it does not have to be located in the + same 64K segment as the real-mode code itself. + + Fill in this field even if your boot loader does not support a + command line, in which case you can point this to an empty string + (or better yet, to the string "auto".) If this field is left at + zero, the kernel will assume that your boot loader does not support + the 2.02+ protocol. + +Field name: initrd_addr_max +Type: read +Offset/size: 0x22c/4 +Protocol: 2.03+ + + The maximum address that may be occupied by the initial + ramdisk/ramfs contents. For boot protocols 2.02 or earlier, this + field is not present, and the maximum address is 0x37FFFFFF. (This + address is defined as the address of the highest safe byte, so if + your ramdisk is exactly 131072 bytes long and this field is + 0x37FFFFFF, you can start your ramdisk at 0x37FE0000.) + +Field name: kernel_alignment +Type: read (reloc) +Offset/size: 0x230/4 +Protocol: 2.05+ + + Alignment unit required by the kernel (if relocatable_kernel is true.) + +Field name: relocatable_kernel +Type: read (reloc) +Offset/size: 0x234/1 +Protocol: 2.05+ + + If this field is nonzero, the protected-mode part of the kernel can + be loaded at any address that satisfies the kernel_alignment field. + After loading, the boot loader must set the code32_start field to + point to the loaded code, or to a boot loader hook. + +Field name: cmdline_size +Type: read +Offset/size: 0x238/4 +Protocol: 2.06+ + + The maximum size of the command line without the terminating + zero. This means that the command line can contain at most + cmdline_size characters. With protocol version 2.05 and earlier, the + maximum size was 255. + +Field name: hardware_subarch +Type: write (optional, defaults to x86/PC) +Offset/size: 0x23c/4 +Protocol: 2.07+ + + In a paravirtualized environment the hardware low level architectural + pieces such as interrupt handling, page table handling, and + accessing process control registers needs to be done differently. + + This field allows the bootloader to inform the kernel we are in one + one of those environments. + + 0x00000000 The default x86/PC environment + 0x00000001 lguest + 0x00000002 Xen + +Field name: hardware_subarch_data +Type: write (subarch-dependent) +Offset/size: 0x240/8 +Protocol: 2.07+ + + A pointer to data that is specific to hardware subarch + This field is currently unused for the default x86/PC environment, + do not modify. + +Field name: payload_offset +Type: read +Offset/size: 0x248/4 +Protocol: 2.08+ + + If non-zero then this field contains the offset from the end of the + real-mode code to the payload. + + The payload may be compressed. The format of both the compressed and + uncompressed data should be determined using the standard magic + numbers. Currently only gzip compressed ELF is used. + +Field name: payload_length +Type: read +Offset/size: 0x24c/4 +Protocol: 2.08+ + + The length of the payload. + +Field name: setup_data +Type: write (special) +Offset/size: 0x250/8 +Protocol: 2.09+ + + The 64-bit physical pointer to NULL terminated single linked list of + struct setup_data. This is used to define a more extensible boot + parameters passing mechanism. The definition of struct setup_data is + as follow: + + struct setup_data { + u64 next; + u32 type; + u32 len; + u8 data[0]; + }; + + Where, the next is a 64-bit physical pointer to the next node of + linked list, the next field of the last node is 0; the type is used + to identify the contents of data; the len is the length of data + field; the data holds the real payload. + + This list may be modified at a number of points during the bootup + process. Therefore, when modifying this list one should always make + sure to consider the case where the linked list already contains + entries. + + +**** THE IMAGE CHECKSUM + +From boot protocol version 2.08 onwards the CRC-32 is calculated over +the entire file using the characteristic polynomial 0x04C11DB7 and an +initial remainder of 0xffffffff. The checksum is appended to the +file; therefore the CRC of the file up to the limit specified in the +syssize field of the header is always 0. + + +**** THE KERNEL COMMAND LINE + +The kernel command line has become an important way for the boot +loader to communicate with the kernel. Some of its options are also +relevant to the boot loader itself, see "special command line options" +below. + +The kernel command line is a null-terminated string. The maximum +length can be retrieved from the field cmdline_size. Before protocol +version 2.06, the maximum was 255 characters. A string that is too +long will be automatically truncated by the kernel. + +If the boot protocol version is 2.02 or later, the address of the +kernel command line is given by the header field cmd_line_ptr (see +above.) This address can be anywhere between the end of the setup +heap and 0xA0000. + +If the protocol version is *not* 2.02 or higher, the kernel +command line is entered using the following protocol: + + At offset 0x0020 (word), "cmd_line_magic", enter the magic + number 0xA33F. + + At offset 0x0022 (word), "cmd_line_offset", enter the offset + of the kernel command line (relative to the start of the + real-mode kernel). + + The kernel command line *must* be within the memory region + covered by setup_move_size, so you may need to adjust this + field. + + +**** MEMORY LAYOUT OF THE REAL-MODE CODE + +The real-mode code requires a stack/heap to be set up, as well as +memory allocated for the kernel command line. This needs to be done +in the real-mode accessible memory in bottom megabyte. + +It should be noted that modern machines often have a sizable Extended +BIOS Data Area (EBDA). As a result, it is advisable to use as little +of the low megabyte as possible. + +Unfortunately, under the following circumstances the 0x90000 memory +segment has to be used: + + - When loading a zImage kernel ((loadflags & 0x01) == 0). + - When loading a 2.01 or earlier boot protocol kernel. + + -> For the 2.00 and 2.01 boot protocols, the real-mode code + can be loaded at another address, but it is internally + relocated to 0x90000. For the "old" protocol, the + real-mode code must be loaded at 0x90000. + +When loading at 0x90000, avoid using memory above 0x9a000. + +For boot protocol 2.02 or higher, the command line does not have to be +located in the same 64K segment as the real-mode setup code; it is +thus permitted to give the stack/heap the full 64K segment and locate +the command line above it. + +The kernel command line should not be located below the real-mode +code, nor should it be located in high memory. + + +**** SAMPLE BOOT CONFIGURATION + +As a sample configuration, assume the following layout of the real +mode segment: + + When loading below 0x90000, use the entire segment: + + 0x0000-0x7fff Real mode kernel + 0x8000-0xdfff Stack and heap + 0xe000-0xffff Kernel command line + + When loading at 0x90000 OR the protocol version is 2.01 or earlier: + + 0x0000-0x7fff Real mode kernel + 0x8000-0x97ff Stack and heap + 0x9800-0x9fff Kernel command line + +Such a boot loader should enter the following fields in the header: + + unsigned long base_ptr; /* base address for real-mode segment */ + + if ( setup_sects == 0 ) { + setup_sects = 4; + } + + if ( protocol >= 0x0200 ) { + type_of_loader = ; + if ( loading_initrd ) { + ramdisk_image = ; + ramdisk_size = ; + } + + if ( protocol >= 0x0202 && loadflags & 0x01 ) + heap_end = 0xe000; + else + heap_end = 0x9800; + + if ( protocol >= 0x0201 ) { + heap_end_ptr = heap_end - 0x200; + loadflags |= 0x80; /* CAN_USE_HEAP */ + } + + if ( protocol >= 0x0202 ) { + cmd_line_ptr = base_ptr + heap_end; + strcpy(cmd_line_ptr, cmdline); + } else { + cmd_line_magic = 0xA33F; + cmd_line_offset = heap_end; + setup_move_size = heap_end + strlen(cmdline)+1; + strcpy(base_ptr+cmd_line_offset, cmdline); + } + } else { + /* Very old kernel */ + + heap_end = 0x9800; + + cmd_line_magic = 0xA33F; + cmd_line_offset = heap_end; + + /* A very old kernel MUST have its real-mode code + loaded at 0x90000 */ + + if ( base_ptr != 0x90000 ) { + /* Copy the real-mode kernel */ + memcpy(0x90000, base_ptr, (setup_sects+1)*512); + base_ptr = 0x90000; /* Relocated */ + } + + strcpy(0x90000+cmd_line_offset, cmdline); + + /* It is recommended to clear memory up to the 32K mark */ + memset(0x90000 + (setup_sects+1)*512, 0, + (64-(setup_sects+1))*512); + } + + +**** LOADING THE REST OF THE KERNEL + +The 32-bit (non-real-mode) kernel starts at offset (setup_sects+1)*512 +in the kernel file (again, if setup_sects == 0 the real value is 4.) +It should be loaded at address 0x10000 for Image/zImage kernels and +0x100000 for bzImage kernels. + +The kernel is a bzImage kernel if the protocol >= 2.00 and the 0x01 +bit (LOAD_HIGH) in the loadflags field is set: + + is_bzImage = (protocol >= 0x0200) && (loadflags & 0x01); + load_address = is_bzImage ? 0x100000 : 0x10000; + +Note that Image/zImage kernels can be up to 512K in size, and thus use +the entire 0x10000-0x90000 range of memory. This means it is pretty +much a requirement for these kernels to load the real-mode part at +0x90000. bzImage kernels allow much more flexibility. + + +**** SPECIAL COMMAND LINE OPTIONS + +If the command line provided by the boot loader is entered by the +user, the user may expect the following command line options to work. +They should normally not be deleted from the kernel command line even +though not all of them are actually meaningful to the kernel. Boot +loader authors who need additional command line options for the boot +loader itself should get them registered in +Documentation/kernel-parameters.txt to make sure they will not +conflict with actual kernel options now or in the future. + + vga= + here is either an integer (in C notation, either + decimal, octal, or hexadecimal) or one of the strings + "normal" (meaning 0xFFFF), "ext" (meaning 0xFFFE) or "ask" + (meaning 0xFFFD). This value should be entered into the + vid_mode field, as it is used by the kernel before the command + line is parsed. + + mem= + is an integer in C notation optionally followed by + (case insensitive) K, M, G, T, P or E (meaning << 10, << 20, + << 30, << 40, << 50 or << 60). This specifies the end of + memory to the kernel. This affects the possible placement of + an initrd, since an initrd should be placed near end of + memory. Note that this is an option to *both* the kernel and + the bootloader! + + initrd= + An initrd should be loaded. The meaning of is + obviously bootloader-dependent, and some boot loaders + (e.g. LILO) do not have such a command. + +In addition, some boot loaders add the following options to the +user-specified command line: + + BOOT_IMAGE= + The boot image which was loaded. Again, the meaning of + is obviously bootloader-dependent. + + auto + The kernel was booted without explicit user intervention. + +If these options are added by the boot loader, it is highly +recommended that they are located *first*, before the user-specified +or configuration-specified command line. Otherwise, "init=/bin/sh" +gets confused by the "auto" option. + + +**** RUNNING THE KERNEL + +The kernel is started by jumping to the kernel entry point, which is +located at *segment* offset 0x20 from the start of the real mode +kernel. This means that if you loaded your real-mode kernel code at +0x90000, the kernel entry point is 9020:0000. + +At entry, ds = es = ss should point to the start of the real-mode +kernel code (0x9000 if the code is loaded at 0x90000), sp should be +set up properly, normally pointing to the top of the heap, and +interrupts should be disabled. Furthermore, to guard against bugs in +the kernel, it is recommended that the boot loader sets fs = gs = ds = +es = ss. + +In our example from above, we would do: + + /* Note: in the case of the "old" kernel protocol, base_ptr must + be == 0x90000 at this point; see the previous sample code */ + + seg = base_ptr >> 4; + + cli(); /* Enter with interrupts disabled! */ + + /* Set up the real-mode kernel stack */ + _SS = seg; + _SP = heap_end; + + _DS = _ES = _FS = _GS = seg; + jmp_far(seg+0x20, 0); /* Run the kernel */ + +If your boot sector accesses a floppy drive, it is recommended to +switch off the floppy motor before running the kernel, since the +kernel boot leaves interrupts off and thus the motor will not be +switched off, especially if the loaded kernel has the floppy driver as +a demand-loaded module! + + +**** ADVANCED BOOT LOADER HOOKS + +If the boot loader runs in a particularly hostile environment (such as +LOADLIN, which runs under DOS) it may be impossible to follow the +standard memory location requirements. Such a boot loader may use the +following hooks that, if set, are invoked by the kernel at the +appropriate time. The use of these hooks should probably be +considered an absolutely last resort! + +IMPORTANT: All the hooks are required to preserve %esp, %ebp, %esi and +%edi across invocation. + + realmode_swtch: + A 16-bit real mode far subroutine invoked immediately before + entering protected mode. The default routine disables NMI, so + your routine should probably do so, too. + + code32_start: + A 32-bit flat-mode routine *jumped* to immediately after the + transition to protected mode, but before the kernel is + uncompressed. No segments, except CS, are guaranteed to be + set up (current kernels do, but older ones do not); you should + set them up to BOOT_DS (0x18) yourself. + + After completing your hook, you should jump to the address + that was in this field before your boot loader overwrote it + (relocated, if appropriate.) + + +**** 32-bit BOOT PROTOCOL + +For machine with some new BIOS other than legacy BIOS, such as EFI, +LinuxBIOS, etc, and kexec, the 16-bit real mode setup code in kernel +based on legacy BIOS can not be used, so a 32-bit boot protocol needs +to be defined. + +In 32-bit boot protocol, the first step in loading a Linux kernel +should be to setup the boot parameters (struct boot_params, +traditionally known as "zero page"). The memory for struct boot_params +should be allocated and initialized to all zero. Then the setup header +from offset 0x01f1 of kernel image on should be loaded into struct +boot_params and examined. The end of setup header can be calculated as +follow: + + 0x0202 + byte value at offset 0x0201 + +In addition to read/modify/write the setup header of the struct +boot_params as that of 16-bit boot protocol, the boot loader should +also fill the additional fields of the struct boot_params as that +described in zero-page.txt. + +After setupping the struct boot_params, the boot loader can load the +32/64-bit kernel in the same way as that of 16-bit boot protocol. + +In 32-bit boot protocol, the kernel is started by jumping to the +32-bit kernel entry point, which is the start address of loaded +32/64-bit kernel. + +At entry, the CPU must be in 32-bit protected mode with paging +disabled; a GDT must be loaded with the descriptors for selectors +__BOOT_CS(0x10) and __BOOT_DS(0x18); both descriptors must be 4G flat +segment; __BOOS_CS must have execute/read permission, and __BOOT_DS +must have read/write permission; CS must be __BOOT_CS and DS, ES, SS +must be __BOOT_DS; interrupt must be disabled; %esi must hold the base +address of the struct boot_params; %ebp, %edi and %ebx must be zero. diff --git a/Documentation/x86/i386/usb-legacy-support.txt b/Documentation/x86/i386/usb-legacy-support.txt new file mode 100644 index 000000000000..1894cdfc69d9 --- /dev/null +++ b/Documentation/x86/i386/usb-legacy-support.txt @@ -0,0 +1,44 @@ +USB Legacy support +~~~~~~~~~~~~~~~~~~ + +Vojtech Pavlik , January 2004 + + +Also known as "USB Keyboard" or "USB Mouse support" in the BIOS Setup is a +feature that allows one to use the USB mouse and keyboard as if they were +their classic PS/2 counterparts. This means one can use an USB keyboard to +type in LILO for example. + +It has several drawbacks, though: + +1) On some machines, the emulated PS/2 mouse takes over even when no USB + mouse is present and a real PS/2 mouse is present. In that case the extra + features (wheel, extra buttons, touchpad mode) of the real PS/2 mouse may + not be available. + +2) If CONFIG_HIGHMEM64G is enabled, the PS/2 mouse emulation can cause + system crashes, because the SMM BIOS is not expecting to be in PAE mode. + The Intel E7505 is a typical machine where this happens. + +3) If AMD64 64-bit mode is enabled, again system crashes often happen, + because the SMM BIOS isn't expecting the CPU to be in 64-bit mode. The + BIOS manufacturers only test with Windows, and Windows doesn't do 64-bit + yet. + +Solutions: + +Problem 1) can be solved by loading the USB drivers prior to loading the +PS/2 mouse driver. Since the PS/2 mouse driver is in 2.6 compiled into +the kernel unconditionally, this means the USB drivers need to be +compiled-in, too. + +Problem 2) can currently only be solved by either disabling HIGHMEM64G +in the kernel config or USB Legacy support in the BIOS. A BIOS update +could help, but so far no such update exists. + +Problem 3) is usually fixed by a BIOS update. Check the board +manufacturers web site. If an update is not available, disable USB +Legacy support in the BIOS. If this alone doesn't help, try also adding +idle=poll on the kernel command line. The BIOS may be entering the SMM +on the HLT instruction as well. + diff --git a/Documentation/x86/i386/zero-page.txt b/Documentation/x86/i386/zero-page.txt new file mode 100644 index 000000000000..169ad423a3d1 --- /dev/null +++ b/Documentation/x86/i386/zero-page.txt @@ -0,0 +1,31 @@ +The additional fields in struct boot_params as a part of 32-bit boot +protocol of kernel. These should be filled by bootloader or 16-bit +real-mode setup code of the kernel. References/settings to it mainly +are in: + + include/asm-x86/bootparam.h + + +Offset Proto Name Meaning +/Size + +000/040 ALL screen_info Text mode or frame buffer information + (struct screen_info) +040/014 ALL apm_bios_info APM BIOS information (struct apm_bios_info) +060/010 ALL ist_info Intel SpeedStep (IST) BIOS support information + (struct ist_info) +080/010 ALL hd0_info hd0 disk parameter, OBSOLETE!! +090/010 ALL hd1_info hd1 disk parameter, OBSOLETE!! +0A0/010 ALL sys_desc_table System description table (struct sys_desc_table) +140/080 ALL edid_info Video mode setup (struct edid_info) +1C0/020 ALL efi_info EFI 32 information (struct efi_info) +1E0/004 ALL alk_mem_k Alternative mem check, in KB +1E4/004 ALL scratch Scratch field for the kernel setup code +1E8/001 ALL e820_entries Number of entries in e820_map (below) +1E9/001 ALL eddbuf_entries Number of entries in eddbuf (below) +1EA/001 ALL edd_mbr_sig_buf_entries Number of entries in edd_mbr_sig_buffer + (below) +290/040 ALL edd_mbr_sig_buffer EDD MBR signatures +2D0/A00 ALL e820_map E820 memory map table + (array of struct e820entry) +D00/1EC ALL eddbuf EDD data (array of struct edd_info) diff --git a/Documentation/x86/x86_64/00-INDEX b/Documentation/x86/x86_64/00-INDEX new file mode 100644 index 000000000000..92fc20ab5f0e --- /dev/null +++ b/Documentation/x86/x86_64/00-INDEX @@ -0,0 +1,16 @@ +00-INDEX + - This file +boot-options.txt + - AMD64-specific boot options. +cpu-hotplug-spec + - Firmware support for CPU hotplug under Linux/x86-64 +fake-numa-for-cpusets + - Using numa=fake and CPUSets for Resource Management +kernel-stacks + - Context-specific per-processor interrupt stacks. +machinecheck + - Configurable sysfs parameters for the x86-64 machine check code. +mm.txt + - Memory layout of x86-64 (4 level page tables, 46 bits physical). +uefi.txt + - Booting Linux via Unified Extensible Firmware Interface. diff --git a/Documentation/x86/x86_64/boot-options.txt b/Documentation/x86/x86_64/boot-options.txt new file mode 100644 index 000000000000..b0c7b6c4abda --- /dev/null +++ b/Documentation/x86/x86_64/boot-options.txt @@ -0,0 +1,314 @@ +AMD64 specific boot options + +There are many others (usually documented in driver documentation), but +only the AMD64 specific ones are listed here. + +Machine check + + mce=off disable machine check + mce=bootlog Enable logging of machine checks left over from booting. + Disabled by default on AMD because some BIOS leave bogus ones. + If your BIOS doesn't do that it's a good idea to enable though + to make sure you log even machine check events that result + in a reboot. On Intel systems it is enabled by default. + mce=nobootlog + Disable boot machine check logging. + mce=tolerancelevel (number) + 0: always panic on uncorrected errors, log corrected errors + 1: panic or SIGBUS on uncorrected errors, log corrected errors + 2: SIGBUS or log uncorrected errors, log corrected errors + 3: never panic or SIGBUS, log all errors (for testing only) + Default is 1 + Can be also set using sysfs which is preferable. + + nomce (for compatibility with i386): same as mce=off + + Everything else is in sysfs now. + +APICs + + apic Use IO-APIC. Default + + noapic Don't use the IO-APIC. + + disableapic Don't use the local APIC + + nolapic Don't use the local APIC (alias for i386 compatibility) + + pirq=... See Documentation/i386/IO-APIC.txt + + noapictimer Don't set up the APIC timer + + no_timer_check Don't check the IO-APIC timer. This can work around + problems with incorrect timer initialization on some boards. + + apicmaintimer Run time keeping from the local APIC timer instead + of using the PIT/HPET interrupt for this. This is useful + when the PIT/HPET interrupts are unreliable. + + noapicmaintimer Don't do time keeping using the APIC timer. + Useful when this option was auto selected, but doesn't work. + + apicpmtimer + Do APIC timer calibration using the pmtimer. Implies + apicmaintimer. Useful when your PIT timer is totally + broken. + + disable_8254_timer / enable_8254_timer + Enable interrupt 0 timer routing over the 8254 in addition to over + the IO-APIC. The kernel tries to set a sensible default. + +Early Console + + syntax: earlyprintk=vga + earlyprintk=serial[,ttySn[,baudrate]] + + The early console is useful when the kernel crashes before the + normal console is initialized. It is not enabled by + default because it has some cosmetic problems. + Append ,keep to not disable it when the real console takes over. + Only vga or serial at a time, not both. + Currently only ttyS0 and ttyS1 are supported. + Interaction with the standard serial driver is not very good. + The VGA output is eventually overwritten by the real console. + +Timing + + notsc + Don't use the CPU time stamp counter to read the wall time. + This can be used to work around timing problems on multiprocessor systems + with not properly synchronized CPUs. + + report_lost_ticks + Report when timer interrupts are lost because some code turned off + interrupts for too long. + + nmi_watchdog=NUMBER[,panic] + NUMBER can be: + 0 don't use an NMI watchdog + 1 use the IO-APIC timer for the NMI watchdog + 2 use the local APIC for the NMI watchdog using a performance counter. Note + This will use one performance counter and the local APIC's performance + vector. + When panic is specified panic when an NMI watchdog timeout occurs. + This is useful when you use a panic=... timeout and need the box + quickly up again. + + nohpet + Don't use the HPET timer. + +Idle loop + + idle=poll + Don't do power saving in the idle loop using HLT, but poll for rescheduling + event. This will make the CPUs eat a lot more power, but may be useful + to get slightly better performance in multiprocessor benchmarks. It also + makes some profiling using performance counters more accurate. + Please note that on systems with MONITOR/MWAIT support (like Intel EM64T + CPUs) this option has no performance advantage over the normal idle loop. + It may also interact badly with hyperthreading. + +Rebooting + + reboot=b[ios] | t[riple] | k[bd] | a[cpi] | e[fi] [, [w]arm | [c]old] + bios Use the CPU reboot vector for warm reset + warm Don't set the cold reboot flag + cold Set the cold reboot flag + triple Force a triple fault (init) + kbd Use the keyboard controller. cold reset (default) + acpi Use the ACPI RESET_REG in the FADT. If ACPI is not configured or the + ACPI reset does not work, the reboot path attempts the reset using + the keyboard controller. + efi Use efi reset_system runtime service. If EFI is not configured or the + EFI reset does not work, the reboot path attempts the reset using + the keyboard controller. + + Using warm reset will be much faster especially on big memory + systems because the BIOS will not go through the memory check. + Disadvantage is that not all hardware will be completely reinitialized + on reboot so there may be boot problems on some systems. + + reboot=force + + Don't stop other CPUs on reboot. This can make reboot more reliable + in some cases. + +Non Executable Mappings + + noexec=on|off + + on Enable(default) + off Disable + +SMP + + additional_cpus=NUM Allow NUM more CPUs for hotplug + (defaults are specified by the BIOS, see Documentation/x86_64/cpu-hotplug-spec) + +NUMA + + numa=off Only set up a single NUMA node spanning all memory. + + numa=noacpi Don't parse the SRAT table for NUMA setup + + numa=fake=CMDLINE + If a number, fakes CMDLINE nodes and ignores NUMA setup of the + actual machine. Otherwise, system memory is configured + depending on the sizes and coefficients listed. For example: + numa=fake=2*512,1024,4*256,*128 + gives two 512M nodes, a 1024M node, four 256M nodes, and the + rest split into 128M chunks. If the last character of CMDLINE + is a *, the remaining memory is divided up equally among its + coefficient: + numa=fake=2*512,2* + gives two 512M nodes and the rest split into two nodes. + Otherwise, the remaining system RAM is allocated to an + additional node. + + numa=hotadd=percent + Only allow hotadd memory to preallocate page structures upto + percent of already available memory. + numa=hotadd=0 will disable hotadd memory. + +ACPI + + acpi=off Don't enable ACPI + acpi=ht Use ACPI boot table parsing, but don't enable ACPI + interpreter + acpi=force Force ACPI on (currently not needed) + + acpi=strict Disable out of spec ACPI workarounds. + + acpi_sci={edge,level,high,low} Set up ACPI SCI interrupt. + + acpi=noirq Don't route interrupts + +PCI + + pci=off Don't use PCI + pci=conf1 Use conf1 access. + pci=conf2 Use conf2 access. + pci=rom Assign ROMs. + pci=assign-busses Assign busses + pci=irqmask=MASK Set PCI interrupt mask to MASK + pci=lastbus=NUMBER Scan upto NUMBER busses, no matter what the mptable says. + pci=noacpi Don't use ACPI to set up PCI interrupt routing. + +IOMMU (input/output memory management unit) + + Currently four x86-64 PCI-DMA mapping implementations exist: + + 1. : use no hardware/software IOMMU at all + (e.g. because you have < 3 GB memory). + Kernel boot message: "PCI-DMA: Disabling IOMMU" + + 2. : AMD GART based hardware IOMMU. + Kernel boot message: "PCI-DMA: using GART IOMMU" + + 3. : Software IOMMU implementation. Used + e.g. if there is no hardware IOMMU in the system and it is need because + you have >3GB memory or told the kernel to us it (iommu=soft)) + Kernel boot message: "PCI-DMA: Using software bounce buffering + for IO (SWIOTLB)" + + 4. : IBM Calgary hardware IOMMU. Used in IBM + pSeries and xSeries servers. This hardware IOMMU supports DMA address + mapping with memory protection, etc. + Kernel boot message: "PCI-DMA: Using Calgary IOMMU" + + iommu=[][,noagp][,off][,force][,noforce][,leak[=] + [,memaper[=]][,merge][,forcesac][,fullflush][,nomerge] + [,noaperture][,calgary] + + General iommu options: + off Don't initialize and use any kind of IOMMU. + noforce Don't force hardware IOMMU usage when it is not needed. + (default). + force Force the use of the hardware IOMMU even when it is + not actually needed (e.g. because < 3 GB memory). + soft Use software bounce buffering (SWIOTLB) (default for + Intel machines). This can be used to prevent the usage + of an available hardware IOMMU. + + iommu options only relevant to the AMD GART hardware IOMMU: + Set the size of the remapping area in bytes. + allowed Overwrite iommu off workarounds for specific chipsets. + fullflush Flush IOMMU on each allocation (default). + nofullflush Don't use IOMMU fullflush. + leak Turn on simple iommu leak tracing (only when + CONFIG_IOMMU_LEAK is on). Default number of leak pages + is 20. + memaper[=] Allocate an own aperture over RAM with size 32MB<4GB. + DAC is used with 32-bit PCI to push a 64-bit address in + two cycles. When off all DMA over >4GB is forced through + an IOMMU or software bounce buffering. + nodac Forbid DAC mode, i.e. DMA >4GB. + panic Always panic when IOMMU overflows. + calgary Use the Calgary IOMMU if it is available + + iommu options only relevant to the software bounce buffering (SWIOTLB) IOMMU + implementation: + swiotlb=[,force] + Prereserve that many 128K pages for the software IO + bounce buffering. + force Force all IO through the software TLB. + + Settings for the IBM Calgary hardware IOMMU currently found in IBM + pSeries and xSeries machines: + + calgary=[64k,128k,256k,512k,1M,2M,4M,8M] + calgary=[translate_empty_slots] + calgary=[disable=] + panic Always panic when IOMMU overflows + + 64k,...,8M - Set the size of each PCI slot's translation table + when using the Calgary IOMMU. This is the size of the translation + table itself in main memory. The smallest table, 64k, covers an IO + space of 32MB; the largest, 8MB table, can cover an IO space of + 4GB. Normally the kernel will make the right choice by itself. + + translate_empty_slots - Enable translation even on slots that have + no devices attached to them, in case a device will be hotplugged + in the future. + + disable= - Disable translation on a given PHB. For + example, the built-in graphics adapter resides on the first bridge + (PCI bus number 0); if translation (isolation) is enabled on this + bridge, X servers that access the hardware directly from user + space might stop working. Use this option if you have devices that + are accessed from userspace directly on some PCI host bridge. + +Debugging + + oops=panic Always panic on oopses. Default is to just kill the process, + but there is a small probability of deadlocking the machine. + This will also cause panics on machine check exceptions. + Useful together with panic=30 to trigger a reboot. + + kstack=N Print N words from the kernel stack in oops dumps. + + pagefaulttrace Dump all page faults. Only useful for extreme debugging + and will create a lot of output. + + call_trace=[old|both|newfallback|new] + old: use old inexact backtracer + new: use new exact dwarf2 unwinder + both: print entries from both + newfallback: use new unwinder but fall back to old if it gets + stuck (default) + +Miscellaneous + + nogbpages + Do not use GB pages for kernel direct mappings. + gbpages + Use GB pages for kernel direct mappings. diff --git a/Documentation/x86/x86_64/cpu-hotplug-spec b/Documentation/x86/x86_64/cpu-hotplug-spec new file mode 100644 index 000000000000..3c23e0587db3 --- /dev/null +++ b/Documentation/x86/x86_64/cpu-hotplug-spec @@ -0,0 +1,21 @@ +Firmware support for CPU hotplug under Linux/x86-64 +--------------------------------------------------- + +Linux/x86-64 supports CPU hotplug now. For various reasons Linux wants to +know in advance of boot time the maximum number of CPUs that could be plugged +into the system. ACPI 3.0 currently has no official way to supply +this information from the firmware to the operating system. + +In ACPI each CPU needs an LAPIC object in the MADT table (5.2.11.5 in the +ACPI 3.0 specification). ACPI already has the concept of disabled LAPIC +objects by setting the Enabled bit in the LAPIC object to zero. + +For CPU hotplug Linux/x86-64 expects now that any possible future hotpluggable +CPU is already available in the MADT. If the CPU is not available yet +it should have its LAPIC Enabled bit set to 0. Linux will use the number +of disabled LAPICs to compute the maximum number of future CPUs. + +In the worst case the user can overwrite this choice using a command line +option (additional_cpus=...), but it is recommended to supply the correct +number (or a reasonable approximation of it, with erring towards more not less) +in the MADT to avoid manual configuration. diff --git a/Documentation/x86/x86_64/fake-numa-for-cpusets b/Documentation/x86/x86_64/fake-numa-for-cpusets new file mode 100644 index 000000000000..d1a985c5b00a --- /dev/null +++ b/Documentation/x86/x86_64/fake-numa-for-cpusets @@ -0,0 +1,66 @@ +Using numa=fake and CPUSets for Resource Management +Written by David Rientjes + +This document describes how the numa=fake x86_64 command-line option can be used +in conjunction with cpusets for coarse memory management. Using this feature, +you can create fake NUMA nodes that represent contiguous chunks of memory and +assign them to cpusets and their attached tasks. This is a way of limiting the +amount of system memory that are available to a certain class of tasks. + +For more information on the features of cpusets, see Documentation/cpusets.txt. +There are a number of different configurations you can use for your needs. For +more information on the numa=fake command line option and its various ways of +configuring fake nodes, see Documentation/x86_64/boot-options.txt. + +For the purposes of this introduction, we'll assume a very primitive NUMA +emulation setup of "numa=fake=4*512,". This will split our system memory into +four equal chunks of 512M each that we can now use to assign to cpusets. As +you become more familiar with using this combination for resource control, +you'll determine a better setup to minimize the number of nodes you have to deal +with. + +A machine may be split as follows with "numa=fake=4*512," as reported by dmesg: + + Faking node 0 at 0000000000000000-0000000020000000 (512MB) + Faking node 1 at 0000000020000000-0000000040000000 (512MB) + Faking node 2 at 0000000040000000-0000000060000000 (512MB) + Faking node 3 at 0000000060000000-0000000080000000 (512MB) + ... + On node 0 totalpages: 130975 + On node 1 totalpages: 131072 + On node 2 totalpages: 131072 + On node 3 totalpages: 131072 + +Now following the instructions for mounting the cpusets filesystem from +Documentation/cpusets.txt, you can assign fake nodes (i.e. contiguous memory +address spaces) to individual cpusets: + + [root@xroads /]# mkdir exampleset + [root@xroads /]# mount -t cpuset none exampleset + [root@xroads /]# mkdir exampleset/ddset + [root@xroads /]# cd exampleset/ddset + [root@xroads /exampleset/ddset]# echo 0-1 > cpus + [root@xroads /exampleset/ddset]# echo 0-1 > mems + +Now this cpuset, 'ddset', will only allowed access to fake nodes 0 and 1 for +memory allocations (1G). + +You can now assign tasks to these cpusets to limit the memory resources +available to them according to the fake nodes assigned as mems: + + [root@xroads /exampleset/ddset]# echo $$ > tasks + [root@xroads /exampleset/ddset]# dd if=/dev/zero of=tmp bs=1024 count=1G + [1] 13425 + +Notice the difference between the system memory usage as reported by +/proc/meminfo between the restricted cpuset case above and the unrestricted +case (i.e. running the same 'dd' command without assigning it to a fake NUMA +cpuset): + Unrestricted Restricted + MemTotal: 3091900 kB 3091900 kB + MemFree: 42113 kB 1513236 kB + +This allows for coarse memory management for the tasks you assign to particular +cpusets. Since cpusets can form a hierarchy, you can create some pretty +interesting combinations of use-cases for various classes of tasks for your +memory management needs. diff --git a/Documentation/x86/x86_64/kernel-stacks b/Documentation/x86/x86_64/kernel-stacks new file mode 100644 index 000000000000..5ad65d51fb95 --- /dev/null +++ b/Documentation/x86/x86_64/kernel-stacks @@ -0,0 +1,99 @@ +Most of the text from Keith Owens, hacked by AK + +x86_64 page size (PAGE_SIZE) is 4K. + +Like all other architectures, x86_64 has a kernel stack for every +active thread. These thread stacks are THREAD_SIZE (2*PAGE_SIZE) big. +These stacks contain useful data as long as a thread is alive or a +zombie. While the thread is in user space the kernel stack is empty +except for the thread_info structure at the bottom. + +In addition to the per thread stacks, there are specialized stacks +associated with each CPU. These stacks are only used while the kernel +is in control on that CPU; when a CPU returns to user space the +specialized stacks contain no useful data. The main CPU stacks are: + +* Interrupt stack. IRQSTACKSIZE + + Used for external hardware interrupts. If this is the first external + hardware interrupt (i.e. not a nested hardware interrupt) then the + kernel switches from the current task to the interrupt stack. Like + the split thread and interrupt stacks on i386 (with CONFIG_4KSTACKS), + this gives more room for kernel interrupt processing without having + to increase the size of every per thread stack. + + The interrupt stack is also used when processing a softirq. + +Switching to the kernel interrupt stack is done by software based on a +per CPU interrupt nest counter. This is needed because x86-64 "IST" +hardware stacks cannot nest without races. + +x86_64 also has a feature which is not available on i386, the ability +to automatically switch to a new stack for designated events such as +double fault or NMI, which makes it easier to handle these unusual +events on x86_64. This feature is called the Interrupt Stack Table +(IST). There can be up to 7 IST entries per CPU. The IST code is an +index into the Task State Segment (TSS). The IST entries in the TSS +point to dedicated stacks; each stack can be a different size. + +An IST is selected by a non-zero value in the IST field of an +interrupt-gate descriptor. When an interrupt occurs and the hardware +loads such a descriptor, the hardware automatically sets the new stack +pointer based on the IST value, then invokes the interrupt handler. If +software wants to allow nested IST interrupts then the handler must +adjust the IST values on entry to and exit from the interrupt handler. +(This is occasionally done, e.g. for debug exceptions.) + +Events with different IST codes (i.e. with different stacks) can be +nested. For example, a debug interrupt can safely be interrupted by an +NMI. arch/x86_64/kernel/entry.S::paranoidentry adjusts the stack +pointers on entry to and exit from all IST events, in theory allowing +IST events with the same code to be nested. However in most cases, the +stack size allocated to an IST assumes no nesting for the same code. +If that assumption is ever broken then the stacks will become corrupt. + +The currently assigned IST stacks are :- + +* STACKFAULT_STACK. EXCEPTION_STKSZ (PAGE_SIZE). + + Used for interrupt 12 - Stack Fault Exception (#SS). + + This allows the CPU to recover from invalid stack segments. Rarely + happens. + +* DOUBLEFAULT_STACK. EXCEPTION_STKSZ (PAGE_SIZE). + + Used for interrupt 8 - Double Fault Exception (#DF). + + Invoked when handling one exception causes another exception. Happens + when the kernel is very confused (e.g. kernel stack pointer corrupt). + Using a separate stack allows the kernel to recover from it well enough + in many cases to still output an oops. + +* NMI_STACK. EXCEPTION_STKSZ (PAGE_SIZE). + + Used for non-maskable interrupts (NMI). + + NMI can be delivered at any time, including when the kernel is in the + middle of switching stacks. Using IST for NMI events avoids making + assumptions about the previous state of the kernel stack. + +* DEBUG_STACK. DEBUG_STKSZ + + Used for hardware debug interrupts (interrupt 1) and for software + debug interrupts (INT3). + + When debugging a kernel, debug interrupts (both hardware and + software) can occur at any time. Using IST for these interrupts + avoids making assumptions about the previous state of the kernel + stack. + +* MCE_STACK. EXCEPTION_STKSZ (PAGE_SIZE). + + Used for interrupt 18 - Machine Check Exception (#MC). + + MCE can be delivered at any time, including when the kernel is in the + middle of switching stacks. Using IST for MCE events avoids making + assumptions about the previous state of the kernel stack. + +For more details see the Intel IA32 or AMD AMD64 architecture manuals. diff --git a/Documentation/x86/x86_64/machinecheck b/Documentation/x86/x86_64/machinecheck new file mode 100644 index 000000000000..a05e58e7b159 --- /dev/null +++ b/Documentation/x86/x86_64/machinecheck @@ -0,0 +1,77 @@ + +Configurable sysfs parameters for the x86-64 machine check code. + +Machine checks report internal hardware error conditions detected +by the CPU. Uncorrected errors typically cause a machine check +(often with panic), corrected ones cause a machine check log entry. + +Machine checks are organized in banks (normally associated with +a hardware subsystem) and subevents in a bank. The exact meaning +of the banks and subevent is CPU specific. + +mcelog knows how to decode them. + +When you see the "Machine check errors logged" message in the system +log then mcelog should run to collect and decode machine check entries +from /dev/mcelog. Normally mcelog should be run regularly from a cronjob. + +Each CPU has a directory in /sys/devices/system/machinecheck/machinecheckN +(N = CPU number) + +The directory contains some configurable entries: + +Entries: + +bankNctl +(N bank number) + 64bit Hex bitmask enabling/disabling specific subevents for bank N + When a bit in the bitmask is zero then the respective + subevent will not be reported. + By default all events are enabled. + Note that BIOS maintain another mask to disable specific events + per bank. This is not visible here + +The following entries appear for each CPU, but they are truly shared +between all CPUs. + +check_interval + How often to poll for corrected machine check errors, in seconds + (Note output is hexademical). Default 5 minutes. When the poller + finds MCEs it triggers an exponential speedup (poll more often) on + the polling interval. When the poller stops finding MCEs, it + triggers an exponential backoff (poll less often) on the polling + interval. The check_interval variable is both the initial and + maximum polling interval. + +tolerant + Tolerance level. When a machine check exception occurs for a non + corrected machine check the kernel can take different actions. + Since machine check exceptions can happen any time it is sometimes + risky for the kernel to kill a process because it defies + normal kernel locking rules. The tolerance level configures + how hard the kernel tries to recover even at some risk of + deadlock. Higher tolerant values trade potentially better uptime + with the risk of a crash or even corruption (for tolerant >= 3). + + 0: always panic on uncorrected errors, log corrected errors + 1: panic or SIGBUS on uncorrected errors, log corrected errors + 2: SIGBUS or log uncorrected errors, log corrected errors + 3: never panic or SIGBUS, log all errors (for testing only) + + Default: 1 + + Note this only makes a difference if the CPU allows recovery + from a machine check exception. Current x86 CPUs generally do not. + +trigger + Program to run when a machine check event is detected. + This is an alternative to running mcelog regularly from cron + and allows to detect events faster. + +TBD document entries for AMD threshold interrupt configuration + +For more details about the x86 machine check architecture +see the Intel and AMD architecture manuals from their developer websites. + +For more details about the architecture see +see http://one.firstfloor.org/~andi/mce.pdf diff --git a/Documentation/x86/x86_64/mm.txt b/Documentation/x86/x86_64/mm.txt new file mode 100644 index 000000000000..b89b6d2bebfa --- /dev/null +++ b/Documentation/x86/x86_64/mm.txt @@ -0,0 +1,29 @@ + + + +Virtual memory map with 4 level page tables: + +0000000000000000 - 00007fffffffffff (=47 bits) user space, different per mm +hole caused by [48:63] sign extension +ffff800000000000 - ffff80ffffffffff (=40 bits) guard hole +ffff810000000000 - ffffc0ffffffffff (=46 bits) direct mapping of all phys. memory +ffffc10000000000 - ffffc1ffffffffff (=40 bits) hole +ffffc20000000000 - ffffe1ffffffffff (=45 bits) vmalloc/ioremap space +ffffe20000000000 - ffffe2ffffffffff (=40 bits) virtual memory map (1TB) +... unused hole ... +ffffffff80000000 - ffffffff82800000 (=40 MB) kernel text mapping, from phys 0 +... unused hole ... +ffffffff88000000 - fffffffffff00000 (=1919 MB) module mapping space + +The direct mapping covers all memory in the system up to the highest +memory address (this means in some cases it can also include PCI memory +holes). + +vmalloc space is lazily synchronized into the different PML4 pages of +the processes using the page fault handler, with init_level4_pgt as +reference. + +Current X86-64 implementations only support 40 bits of address space, +but we support up to 46 bits. This expands into MBZ space in the page tables. + +-Andi Kleen, Jul 2004 diff --git a/Documentation/x86/x86_64/uefi.txt b/Documentation/x86/x86_64/uefi.txt new file mode 100644 index 000000000000..7d77120a5184 --- /dev/null +++ b/Documentation/x86/x86_64/uefi.txt @@ -0,0 +1,38 @@ +General note on [U]EFI x86_64 support +------------------------------------- + +The nomenclature EFI and UEFI are used interchangeably in this document. + +Although the tools below are _not_ needed for building the kernel, +the needed bootloader support and associated tools for x86_64 platforms +with EFI firmware and specifications are listed below. + +1. UEFI specification: http://www.uefi.org + +2. Booting Linux kernel on UEFI x86_64 platform requires bootloader + support. Elilo with x86_64 support can be used. + +3. x86_64 platform with EFI/UEFI firmware. + +Mechanics: +--------- +- Build the kernel with the following configuration. + CONFIG_FB_EFI=y + CONFIG_FRAMEBUFFER_CONSOLE=y + If EFI runtime services are expected, the following configuration should + be selected. + CONFIG_EFI=y + CONFIG_EFI_VARS=y or m # optional +- Create a VFAT partition on the disk +- Copy the following to the VFAT partition: + elilo bootloader with x86_64 support, elilo configuration file, + kernel image built in first step and corresponding + initrd. Instructions on building elilo and its dependencies + can be found in the elilo sourceforge project. +- Boot to EFI shell and invoke elilo choosing the kernel image built + in first step. +- If some or all EFI runtime services don't work, you can try following + kernel command line parameters to turn off some or all EFI runtime + services. + noefi turn off all EFI runtime services + reboot_type=k turn off EFI reboot runtime service -- cgit v1.2.2 From 200001eb140ea33477965f2050bea0dac801974b Mon Sep 17 00:00:00 2001 From: Paul Jackson Date: Wed, 25 Jun 2008 05:44:46 -0700 Subject: x86 boot: only pick up additional EFI memmap if add_efi_memmap flag Applies on top of the previous patch: x86 boot: add code to add BIOS provided EFI memory entries to kernel Instead of always adding EFI memory map entries (if present) to the memory map after initially finding either E820 BIOS memory map entries and/or kernel command line memmap entries, -instead- only add such additional EFI memory map entries if the kernel boot option: add_efi_memmap is specified. Requiring this 'add_efi_memmap' option is backward compatible with kernels that didn't load such additional EFI memory map entries in the first place, and it doesn't override a configuration that tries to replace all E820 or EFI BIOS memory map entries with ones given entirely on the kernel command line. Signed-off-by: Paul Jackson Cc: "Yinghai Lu" Cc: "Jack Steiner" Cc: "Mike Travis" Cc: "Huang Cc: Ying" Cc: "Andi Kleen" Cc: "Andrew Morton" Cc: Paul Jackson Signed-off-by: Ingo Molnar --- Documentation/x86/x86_64/uefi.txt | 4 ++++ 1 file changed, 4 insertions(+) (limited to 'Documentation/x86') diff --git a/Documentation/x86/x86_64/uefi.txt b/Documentation/x86/x86_64/uefi.txt index 7d77120a5184..a5e2b4fdb170 100644 --- a/Documentation/x86/x86_64/uefi.txt +++ b/Documentation/x86/x86_64/uefi.txt @@ -36,3 +36,7 @@ Mechanics: services. noefi turn off all EFI runtime services reboot_type=k turn off EFI reboot runtime service +- If the EFI memory map has additional entries not in the E820 map, + you can include those entries in the kernels memory map of available + physical RAM by using the following kernel command line parameter. + add_efi_memmap include EFI memory map of available physical RAM -- cgit v1.2.2