aboutsummaryrefslogtreecommitdiffstats
path: root/net/ipv4/tcp_input.c
Commit message (Collapse)AuthorAge
* tcp: add some mibs to track collapsingIlpo Järvinen2008-11-25
| | | | | Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
* tcp: Make shifting not clear the hintsIlpo Järvinen2008-11-25
| | | | | | | | | | | The earlier version was just very basic one which is "playing safe" by always clearing the hints. However, clearing of a hint is extremely costly operation with large windows, so it must be avoided at all cost whenever possible, there is a way with shifting too achieve not-clearing. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
* tcp: Try to restore large SKBs while SACK processingIlpo Järvinen2008-11-25
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
* tcp: make tcp_sacktag_one able to handle partial skb tooIlpo Järvinen2008-11-25
| | | | | | | | | | This is preparatory work for SACK combiner patch which may have to count TCP state changes for only a part of the skb because it will intentionally avoids splitting skb to SACKed and not sacked parts. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
* tcp: Make SACK code to split only at mss boundariesIlpo Järvinen2008-11-25
| | | | | | | | Sadly enough, this adds possible divide though we try to avoid it by checking one mss as common case. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
* tcp: more aggressive skippingIlpo Järvinen2008-11-25
| | | | | | | | | | | | I knew already when rewriting the sacktag that this condition was too conservative, change it now since it prevent lot of useless work (especially in the sack shifter decision code that is being added by a later patch). This shouldn't change anything really, just save some processing regardless of the shifter. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
* tcp: move tcp_simple_retransmit to tcp_inputIlpo Järvinen2008-11-25
| | | | | Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: replace NIPQUAD() in net/ipv4/ net/ipv6/Harvey Harrison2008-10-31
| | | | | | | | Using NIPQUAD() with NIPQUAD_FMT, %d.%d.%d.%d or %u.%u.%u.%u can be replaced with %pI4 Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: replace %p6 with %pI6Harvey Harrison2008-10-29
| | | | | Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: replace uses of NIP6_FMT with %p6Harvey Harrison2008-10-29
| | | | | Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* Merge branch 'master' of ↵David S. Miller2008-10-08
|\ | | | | | | | | | | | | | | | | master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6 Conflicts: drivers/net/e1000e/ich8lan.c drivers/net/e1000e/netdev.c
| * tcp: Fix possible double-ack w/ user dmaAli Saidi2008-10-07
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | From: Ali Saidi <saidi@engin.umich.edu> When TCP receive copy offload is enabled it's possible that tcp_rcv_established() will cause two acks to be sent for a single packet. In the case that a tcp_dma_early_copy() is successful, copied_early is set to true which causes tcp_cleanup_rbuf() to be called early which can send an ack. Further along in tcp_rcv_established(), __tcp_ack_snd_check() is called and will schedule a delayed ACK. If no packets are processed before the delayed ack timer expires the packet will be acked twice. Signed-off-by: David S. Miller <davem@davemloft.net>
* | tcp: cleanup messy initializerIlpo Järvinen2008-10-07
| | | | | | | | | | | | | | | | | | I'm quite sure that if I give this function in its old format for you to inspect, you start to wonder what is the type of demanded or if it's a global variable. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
* | tcp: kill pointless urg_modeIlpo Järvinen2008-10-07
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It all started from me noticing that this urgent check in tcp_clean_rtx_queue is unnecessarily inside the loop. Then I took a longer look to it and found out that the users of urg_mode can trivially do without, well almost, there was one gotcha. Bonus: those funny people who use urg with >= 2^31 write_seq - snd_una could now rejoice too (that's the only purpose for the between being there, otherwise a simple compare would have done the thing). Not that I assume that the rest of the tcp code happily lives with such mind-boggling numbers :-). Alas, it turned out to be impossible to set wmem to such numbers anyway, yes I really tried a big sendfile after setting some wmem but nothing happened :-). ...Tcp_wmem is int and so is sk_sndbuf... So I hacked a bit variable to long and found out that it seems to work... :-) Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
* | tcp: Fix queue traversal in tcp_use_frto().David S. Miller2008-09-23
| | | | | | | | | | | | We must check tcp_skb_is_last() before doing a tcp_write_queue_next(). Signed-off-by: David S. Miller <davem@davemloft.net>
* | net: Remove __skb_insert() calls outside of skbuff internals.David S. Miller2008-09-22
| | | | | | | | | | | | | | This minor cleanup simplifies later changes which will convert struct sk_buff and friends over to using struct list_head. Signed-off-by: David S. Miller <davem@davemloft.net>
* | tcp: don't clear lost_skb_hint when not necessaryIlpo Järvinen2008-09-21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Most importantly avoid doing it with cumulative ACK. However, since we have lost_cnt_hint in the picture as well needing adjustments, it's not as trivial as dealing with retransmit_skb_hint (and cannot be done in the all place we could trivially leave retransmit_skb_hint untouched). With the previous patch, this should mostly remove O(n^2) behavior while cumulative ACKs start flowing once rexmit after a lossy round-trip made it through. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
* | tcp: don't clear retransmit_skb_hint when not necessaryIlpo Järvinen2008-09-21
| | | | | | | | | | | | | | | | | | Most importantly avoid doing it with cumulative ACK. Not clearing means that we no longer need n^2 processing in resolution of each fast recovery. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
* | tcp: No need to clear retransmit_skb_hint when SACKingIlpo Järvinen2008-09-21
| | | | | | | | | | | | | | | | | | | | Because lost counter no longer requires tuning, this is trivial to remove (the tuning wouldn't have been too hard either) because no "new" retransmittable skb appeared below retransmit_skb_hint when SACKing for sure. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
* | tcp: Kill precaution that's very likely obsoleteIlpo Järvinen2008-09-21
| | | | | | | | | | | | | | | | | | | | | | | | | | I suspect it might have been related to the changed amount of lost skbs, which was counted by retransmit_cnt_hint that got changed. The place for this clearing was very illogical anyway, it should have been after the LOST-bit clearing loop to make any sense. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
* | tcp: convert retransmit_cnt_hint to seqnoIlpo Järvinen2008-09-21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Main benefit in this is that we can then freely point the retransmit_skb_hint to anywhere we want to because there's no longer need to know what would be the count changes involve, and since this is really used only as a terminator, unnecessary work is one time walk at most, and if some retransmissions are necessary after that point later on, the walk is not full waste of time anyway. Since retransmit_high must be kept valid, all lost markers must ensure that. Now I also have learned how those "holes" in the rexmittable skbs can appear, mtu probe does them. So I removed the misleading comment as well. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
* | tcp: add helper for lost bit togglingIlpo Järvinen2008-09-21
| | | | | | | | | | | | | | | | This useful because we'd need to verifying soon in many places which makes things slightly more complex than it used to be. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
* | tcp: move tcp_verify_retransmit_hintIlpo Järvinen2008-09-21
| | | | | | | | | | Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
* | tcp: Partial hint clearing has again become meaninglessIlpo Järvinen2008-09-21
| | | | | | | | | | | | | | | | | | Ie., the difference between partial and all clearing doesn't exists anymore since the SACK optimizations got dropped by an sacktag rewrite. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
* | This reverts "Merge branch 'dccp' of git://eden-feed.erg.abdn.ac.uk/dccp_exp"Gerrit Renker2008-09-09
| | | | | | | | | | | | as it accentally contained the wrong set of patches. These will be submitted separately. Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
* | Merge branch 'dccp' of git://eden-feed.erg.abdn.ac.uk/dccp_expDavid S. Miller2008-09-08
|\ \ | | | | | | | | | | | | | | | | | | Conflicts: net/dccp/input.c net/dccp/options.c
| * | tcp/dccp: Consolidate common code for RFC 3390 conversionGerrit Renker2008-09-04
| |/ | | | | | | | | | | | | | | This patch consolidates the code common to TCP and CCID-2: * TCP uses RFC 3390 in a packet-oriented manner (tcp_input.c) and * CCID-2 uses RFC 3390 in packet-oriented manner (RFC 4341). Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
* | tcp: Add tcp_parse_aligned_timestampIlpo Järvinen2008-08-23
| | | | | | | | | | | | | | | | Some duplicated code lying around. Located with my suffix tree tool. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
* | tcp: Add tcp_collapse_one to eliminate duplicated codeIlpo Järvinen2008-08-23
| | | | | | | | | | Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
* | tcp: Add tcp_validate_incoming & put duplicated code thereIlpo Järvinen2008-08-23
|/ | | | | | | | | | | Large block of code duplication removed. Sadly, the return value thing is a bit tricky here but it seems the most sensible way to return positive from validator on success rather than negative. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: convert BUG_TRAP to generic WARN_ONIlpo Järvinen2008-07-26
| | | | | | | | | | | | | | Removes legacy reinvent-the-wheel type thing. The generic machinery integrates much better to automated debugging aids such as kerneloops.org (and others), and is unambiguous due to better naming. Non-intuively BUG_TRAP() is actually equal to WARN_ON() rather than BUG_ON() though some might actually be promoted to BUG_ON() but I left that to future. I could make at least one BUILD_BUG_ON conversion. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
* tcp: Clear probes_out more aggressively in tcp_ack().David S. Miller2008-07-23
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This is based upon an excellent bug report from Eric Dumazet. tcp_ack() should clear ->icsk_probes_out even if there are packets outstanding. Otherwise if we get a sequence of ACKs while we do have packets outstanding over and over again, we'll never clear the probes_out value and eventually think the connection is too sick and we'll reset it. This appears to be some "optimization" added to tcp_ack() in the 2.4.x timeframe. In 2.2.x, probes_out is pretty much always cleared by tcp_ack(). Here is Eric's original report: ---------------------------------------- Apparently, we can in some situations reset TCP connections in a couple of seconds when some frames are lost. In order to reproduce the problem, please try the following program on linux-2.6.25.* Setup some iptables rules to allow two frames per second sent on loopback interface to tcp destination port 12000 iptables -N SLOWLO iptables -A SLOWLO -m hashlimit --hashlimit 2 --hashlimit-burst 1 --hashlimit-mode dstip --hashlimit-name slow2 -j ACCEPT iptables -A SLOWLO -j DROP iptables -A OUTPUT -o lo -p tcp --dport 12000 -j SLOWLO Then run the attached program and see the output : # ./loop State Recv-Q Send-Q Local Address:Port Peer Address:Port ESTAB 0 40 127.0.0.1:54455 127.0.0.1:12000 timer:(persist,200ms,1) State Recv-Q Send-Q Local Address:Port Peer Address:Port ESTAB 0 40 127.0.0.1:54455 127.0.0.1:12000 timer:(persist,200ms,3) State Recv-Q Send-Q Local Address:Port Peer Address:Port ESTAB 0 40 127.0.0.1:54455 127.0.0.1:12000 timer:(persist,200ms,5) State Recv-Q Send-Q Local Address:Port Peer Address:Port ESTAB 0 40 127.0.0.1:54455 127.0.0.1:12000 timer:(persist,200ms,7) State Recv-Q Send-Q Local Address:Port Peer Address:Port ESTAB 0 40 127.0.0.1:54455 127.0.0.1:12000 timer:(persist,200ms,9) State Recv-Q Send-Q Local Address:Port Peer Address:Port ESTAB 0 40 127.0.0.1:54455 127.0.0.1:12000 timer:(persist,200ms,11) State Recv-Q Send-Q Local Address:Port Peer Address:Port ESTAB 0 40 127.0.0.1:54455 127.0.0.1:12000 timer:(persist,201ms,13) State Recv-Q Send-Q Local Address:Port Peer Address:Port ESTAB 0 40 127.0.0.1:54455 127.0.0.1:12000 timer:(persist,188ms,15) write(): Connection timed out wrote 890 bytes but was interrupted after 9 seconds ESTAB 0 0 127.0.0.1:12000 127.0.0.1:54455 Exiting read() because no data available (4000 ms timeout). read 860 bytes While this tcp session makes progress (sending frames with 50 bytes of payload, every 500ms), linux tcp stack decides to reset it, when tcp_retries 2 is reached (default value : 15) tcpdump : 15:30:28.856695 IP 127.0.0.1.56554 > 127.0.0.1.12000: S 33788768:33788768(0) win 32792 <mss 16396,nop,nop,sackOK,nop,wscale 7> 15:30:28.856711 IP 127.0.0.1.12000 > 127.0.0.1.56554: S 33899253:33899253(0) ack 33788769 win 32792 <mss 16396,nop,nop,sackOK,nop,wscale 7> 15:30:29.356947 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 1:61(60) ack 1 win 257 15:30:29.356966 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 61 win 257 15:30:29.866415 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 61:111(50) ack 1 win 257 15:30:29.866427 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 111 win 257 15:30:30.366516 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 111:161(50) ack 1 win 257 15:30:30.366527 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 161 win 257 15:30:30.876196 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 161:211(50) ack 1 win 257 15:30:30.876207 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 211 win 257 15:30:31.376282 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 211:261(50) ack 1 win 257 15:30:31.376290 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 261 win 257 15:30:31.885619 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 261:311(50) ack 1 win 257 15:30:31.885631 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 311 win 257 15:30:32.385705 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 311:361(50) ack 1 win 257 15:30:32.385715 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 361 win 257 15:30:32.895249 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 361:411(50) ack 1 win 257 15:30:32.895266 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 411 win 257 15:30:33.395341 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 411:461(50) ack 1 win 257 15:30:33.395351 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 461 win 257 15:30:33.918085 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 461:511(50) ack 1 win 257 15:30:33.918096 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 511 win 257 15:30:34.418163 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 511:561(50) ack 1 win 257 15:30:34.418172 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 561 win 257 15:30:34.927685 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 561:611(50) ack 1 win 257 15:30:34.927698 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 611 win 257 15:30:35.427757 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 611:661(50) ack 1 win 257 15:30:35.427766 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 661 win 257 15:30:35.937359 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 661:711(50) ack 1 win 257 15:30:35.937376 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 711 win 257 15:30:36.437451 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 711:761(50) ack 1 win 257 15:30:36.437464 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 761 win 257 15:30:36.947022 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 761:811(50) ack 1 win 257 15:30:36.947039 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 811 win 257 15:30:37.447135 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 811:861(50) ack 1 win 257 15:30:37.447203 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 861 win 257 15:30:41.448171 IP 127.0.0.1.12000 > 127.0.0.1.56554: F 1:1(0) ack 861 win 257 15:30:41.448189 IP 127.0.0.1.56554 > 127.0.0.1.12000: R 33789629:33789629(0) win 0 Source of program : /* * small producer/consumer program. * setup a listener on 127.0.0.1:12000 * Forks a child * child connect to 127.0.0.1, and sends 10 bytes on this tcp socket every 100 ms * Father accepts connection, and read all data */ #include <sys/types.h> #include <sys/socket.h> #include <netinet/in.h> #include <unistd.h> #include <stdio.h> #include <time.h> #include <sys/poll.h> int port = 12000; char buffer[4096]; int main(int argc, char *argv[]) { int lfd = socket(AF_INET, SOCK_STREAM, 0); struct sockaddr_in socket_address; time_t t0, t1; int on = 1, sfd, res; unsigned long total = 0; socklen_t alen = sizeof(socket_address); pid_t pid; time(&t0); socket_address.sin_family = AF_INET; socket_address.sin_port = htons(port); socket_address.sin_addr.s_addr = htonl(INADDR_LOOPBACK); if (lfd == -1) { perror("socket()"); return 1; } setsockopt(lfd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(int)); if (bind(lfd, (struct sockaddr *)&socket_address, sizeof(socket_address)) == -1) { perror("bind"); close(lfd); return 1; } if (listen(lfd, 1) == -1) { perror("listen()"); close(lfd); return 1; } pid = fork(); if (pid == 0) { int i, cfd = socket(AF_INET, SOCK_STREAM, 0); close(lfd); if (connect(cfd, (struct sockaddr *)&socket_address, sizeof(socket_address)) == -1) { perror("connect()"); return 1; } for (i = 0 ; ;) { res = write(cfd, "blablabla\n", 10); if (res > 0) total += res; else if (res == -1) { perror("write()"); break; } else break; usleep(100000); if (++i == 10) { system("ss -on dst 127.0.0.1:12000"); i = 0; } } time(&t1); fprintf(stderr, "wrote %lu bytes but was interrupted after %g seconds\n", total, difftime(t1, t0)); system("ss -on | grep 127.0.0.1:12000"); close(cfd); return 0; } sfd = accept(lfd, (struct sockaddr *)&socket_address, &alen); if (sfd == -1) { perror("accept"); return 1; } close(lfd); while (1) { struct pollfd pfd[1]; pfd[0].fd = sfd; pfd[0].events = POLLIN; if (poll(pfd, 1, 4000) == 0) { fprintf(stderr, "Exiting read() because no data available (4000 ms timeout).\n"); break; } res = read(sfd, buffer, sizeof(buffer)); if (res > 0) total += res; else if (res == 0) break; else perror("read()"); } fprintf(stderr, "read %lu bytes\n", total); close(sfd); return 0; } ---------------------------------------- Signed-off-by: David S. Miller <davem@davemloft.net>
* tcp: Remove redundant checks when setting eff_sacksAdam Langley2008-07-19
| | | | | | | | | Remove redundant checks when setting eff_sacks and make the number of SACKs a compile time constant. Now that the options code knows how many SACK blocks can fit in the header, we don't need to have the SACK code guessing at it. Signed-off-by: Adam Langley <agl@imperialviolet.org> Signed-off-by: David S. Miller <davem@davemloft.net>
* tcp: RTT metrics scalingStephen Hemminger2008-07-19
| | | | | | | | | | | | | | Some of the metrics (RTT, RTTVAR and RTAX_RTO_MIN) are stored in kernel units (jiffies) and this leaks out through the netlink API to user space where the units for jiffies are unknown. This patches changes the kernel to convert to/from milliseconds. This changes the ABI, but milliseconds seemed like the most natural unit for these parameters. Values available via syscall in /proc/net/rt_cache and netlink will be in milliseconds. Signed-off-by: Stephen Hemminger <shemminger@vyatta.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* mib: add net to NET_INC_STATS_BHPavel Emelyanov2008-07-16
| | | | | Signed-off-by: Pavel Emelyanov <xemul@openvz.org> Signed-off-by: David S. Miller <davem@davemloft.net>
* tcp: replace tcp_sock argument with sock in some placesPavel Emelyanov2008-07-16
| | | | | | | | | These places have a tcp_sock, but we'd prefer the sock itself to get net from it. Fortunately, tcp_sk macro is just a type cast, so this replace is really cheap. Signed-off-by: Pavel Emelyanov <xemul@openvz.org> Signed-off-by: David S. Miller <davem@davemloft.net>
* mib: add net to TCP_INC_STATS_BHPavel Emelyanov2008-07-16
| | | | | | | | | Same as before - the sock is always there to get the net from, but there are also some places with the net already saved on the stack. Signed-off-by: Pavel Emelyanov <xemul@openvz.org> Signed-off-by: David S. Miller <davem@davemloft.net>
* tcp: de-bloat a bit with factoring NET_INC_STATS_BH outPavel Emelyanov2008-07-03
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There are some places in TCP that select one MIB index to bump snmp statistics like this: if (<something>) NET_INC_STATS_BH(<some_id>); else if (<something_else>) NET_INC_STATS_BH(<some_other_id>); ... else NET_INC_STATS_BH(<default_id>); or in a more tricky but still similar way. On the other hand, this NET_INC_STATS_BH is a camouflaged increment of percpu variable, which is not that small. Factoring those cases out de-bloats 235 bytes on non-preemptible i386 config and drives parts of the code into 80 columns. add/remove: 0/0 grow/shrink: 0/7 up/down: 0/-235 (-235) function old new delta tcp_fastretrans_alert 1437 1424 -13 tcp_dsack_set 137 124 -13 tcp_xmit_retransmit_queue 690 676 -14 tcp_try_undo_recovery 283 265 -18 tcp_sacktag_write_queue 1550 1515 -35 tcp_update_reordering 162 106 -56 tcp_retransmit_timer 990 904 -86 Signed-off-by: Pavel Emelyanov <xemul@openvz.org> Signed-off-by: David S. Miller <davem@davemloft.net>
* Merge branch 'master' of ↵David S. Miller2008-06-13
|\ | | | | | | | | | | | | | | master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6 Conflicts: drivers/net/smc911x.c
| * tcp: Revert 'process defer accept as established' changes.David S. Miller2008-06-12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This reverts two changesets, ec3c0982a2dd1e671bad8e9d26c28dcba0039d87 ("[TCP]: TCP_DEFER_ACCEPT updates - process as established") and the follow-on bug fix 9ae27e0adbf471c7a6b80102e38e1d5a346b3b38 ("tcp: Fix slab corruption with ipv6 and tcp6fuzz"). This change causes several problems, first reported by Ingo Molnar as a distcc-over-loopback regression where connections were getting stuck. Ilpo Järvinen first spotted the locking problems. The new function added by this code, tcp_defer_accept_check(), only has the child socket locked, yet it is modifying state of the parent listening socket. Fixing that is non-trivial at best, because we can't simply just grab the parent listening socket lock at this point, because it would create an ABBA deadlock. The normal ordering is parent listening socket --> child socket, but this code path would require the reverse lock ordering. Next is a problem noticed by Vitaliy Gusev, he noted: ---------------------------------------- >--- a/net/ipv4/tcp_timer.c >+++ b/net/ipv4/tcp_timer.c >@@ -481,6 +481,11 @@ static void tcp_keepalive_timer (unsigned long data) > goto death; > } > >+ if (tp->defer_tcp_accept.request && sk->sk_state == TCP_ESTABLISHED) { >+ tcp_send_active_reset(sk, GFP_ATOMIC); >+ goto death; Here socket sk is not attached to listening socket's request queue. tcp_done() will not call inet_csk_destroy_sock() (and tcp_v4_destroy_sock() which should release this sk) as socket is not DEAD. Therefore socket sk will be lost for freeing. ---------------------------------------- Finally, Alexey Kuznetsov argues that there might not even be any real value or advantage to these new semantics even if we fix all of the bugs: ---------------------------------------- Hiding from accept() sockets with only out-of-order data only is the only thing which is impossible with old approach. Is this really so valuable? My opinion: no, this is nothing but a new loophole to consume memory without control. ---------------------------------------- So revert this thing for now. Signed-off-by: David S. Miller <davem@davemloft.net>
* | Merge branch 'net-next-2.6-misc-20080612a' of ↵David S. Miller2008-06-12
|\ \ | | | | | | | | | git://git.linux-ipv6.org/gitroot/yoshfuji/linux-2.6-next
| * | tcp md5sig: Share MD5 Signature option parser between IPv4 and IPv6.YOSHIFUJI Hideaki2008-06-11
| |/ | | | | | | Signed-off-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
* / net: remove CVS keywordsAdrian Bunk2008-06-12
|/ | | | | | | | This patch removes CVS keywords that weren't updated for a long time from comments. Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
* tcp: fix skb vs fack_count out-of-sync conditionIlpo Järvinen2008-06-04
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This bug is able to corrupt fackets_out in very rare cases. In order for this to cause corruption: 1) DSACK in the middle of previous SACK block must be generated. 2) In order to take that particular branch, part or all of the DSACKed segment must already be SACKed so that we have that in cache in the first place. 3) The new info must be top enough so that fackets_out will be updated on this iteration. ...then fack_count is updated while skb wasn't, then we walk again that particular segment thus updating fack_count twice for a single skb and finally that value is assigned to fackets_out by tcp_sacktag_one. It is safe to call tcp_sacktag_one just once for a segment (at DSACK), no need to call again for plain SACK. Potential problem of the miscount are limited to premature entry to recovery and to inflated reordering metric (which could even cancel each other out in the most the luckiest scenarios :-)). Both are quite insignificant in worst case too and there exists also code to reset them (fackets_out once sacked_out becomes zero and reordering metric on RTO). This has been reported by a number of people, because it occurred quite rarely, it has been very evasive. Andy Furniss was able to get it to occur couple of times so that a bit more info was collected about the problem using a debug patch, though it still required lot of checking around. Thanks also to others who have tried to help here. This is listed as Bugzilla #10346. The bug was introduced by me in commit 68f8353b48 ([TCP]: Rewrite SACK block processing & sack_recv_cache use), I probably thought back then that there's need to scan that entry twice or didn't dare to make it go through it just once there. Going through twice would have required restoring fack_count after the walk but as noted above, I chose to drop the additional walk step altogether here. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
* tcp: Fix inconsistency source (CA_Open only when !tcp_left_out(tp))Ilpo Järvinen2008-06-04
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It is possible that this skip path causes TCP to end up into an invalid state where ca_state was left to CA_Open while some segments already came into sacked_out. If next valid ACK doesn't contain new SACK information TCP fails to enter into tcp_fastretrans_alert(). Thus at least high_seq is set incorrectly to a too high seqno because some new data segments could be sent in between (and also, limited transmit is not being correctly invoked there). Reordering in both directions can easily cause this situation to occur. I guess we would want to use tcp_moderate_cwnd(tp) there as well as it may be possible to use this to trigger oversized burst to network by sending an old ACK with huge amount of SACK info, but I'm a bit unsure about its effects (mainly to FlightSize), so to be on the safe side I just currently fixed it minimally to keep TCP's state consistent (obviously, such nasty ACKs have been possible this far). Though it seems that FlightSize is already underestimated by some amount, so probably on the long term we might want to trigger recovery there too, if appropriate, to make FlightSize calculation to resemble reality at the time when the losses where discovered (but such change scares me too much now and requires some more thinking anyway how to do that as it likely involves some code shuffling). This bug was found by Brian Vowell while running my TCP debug patch to find cause of another TCP issue (fackets_out miscount). Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
* tcp FRTO: work-around inorder receiversIlpo Järvinen2008-05-13
| | | | | | | | | | | | | | | | | | | | | | | | | If receiver consumes segments successfully only in-order, FRTO fallback to conventional recovery produces RTO loop because FRTO's forward transmissions will always get dropped and need to be resent, yet by default they're not marked as lost (which are the only segments we will retransmit in CA_Loss). Price to pay about this is occassionally unnecessarily retransmitting the forward transmission(s). SACK blocks help a bit to avoid this, so it's mainly a concern for NewReno case though SACK is not fully immune either. This change has a side-effect of fixing SACKFRTO problem where it didn't have snd_nxt of the RTO time available anymore when fallback become necessary (this problem would have only occured when RTO would occur for two or more segments and ECE arrives in step 3; no need to figure out how to fix that unless the TODO item of selective behavior is considered in future). Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Reported-by: Damon L. Chesser <damon@damtek.com> Tested-by: Damon L. Chesser <damon@damtek.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* tcp FRTO: Fix fallback to conventional recoveryIlpo Järvinen2008-05-13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It seems that commit 009a2e3e4ec ("[TCP] FRTO: Improve interoperability with other undo_marker users") run into another land-mine which caused fallback to conventional recovery to break: 1. Cumulative ACK arrives after FRTO retransmission 2. tcp_try_to_open sees zero retrans_out, clears retrans_stamp which should be kept like in CA_Loss state it would be 3. undo_marker change allowed tcp_packet_delayed to return true because of the cleared retrans_stamp once FRTO is terminated causing LossUndo to occur, which means all loss markings FRTO made are reverted. This means that the conventional recovery basically recovered one loss per RTT, which is not that efficient. It was quite unobvious that the undo_marker change broken something like this, I had a quite long session to track it down because of the non-intuitiviness of the bug (luckily I had a trivial reproducer at hand and I was also able to learn to use kprobes in the process as well :-)). This together with the NewReno+FRTO fix and FRTO in-order workaround this fixes Damon's problems, this and the first mentioned are enough to fix Bugzilla #10063. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Reported-by: Damon L. Chesser <damon@damtek.com> Tested-by: Damon L. Chesser <damon@damtek.com> Tested-by: Sebastian Hyrwall <zibbe@cisko.org> Signed-off-by: David S. Miller <davem@davemloft.net>
* tcp FRTO: SACK variant is errorneously used with NewRenoIlpo Järvinen2008-05-08
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Note: there's actually another bug in FRTO's SACK variant, which is the causing failure in NewReno case because of the error that's fixed here. I'll fix the SACK case separately (it's a separate bug really, though related, but in order to fix that I need to audit tp->snd_nxt usage a bit). There were two places where SACK variant of FRTO is getting incorrectly used even if SACK wasn't negotiated by the TCP flow. This leads to incorrect setting of frto_highmark with NewReno if a previous recovery was interrupted by another RTO. An eventual fallback to conventional recovery then incorrectly considers one or couple of segments as forward transmissions though they weren't, which then are not LOST marked during fallback making them "non-retransmittable" until the next RTO. In a bad case, those segments are really lost and are the only one left in the window. Thus TCP needs another RTO to continue. The next FRTO, however, could again repeat the same events making the progress of the TCP flow extremely slow. In order for these events to occur at all, FRTO must occur again in FRTOs step 3 while the key segments must be lost as well, which is not too likely in practice. It seems to most frequently with some small devices such as network printers that *seem* to accept TCP segments only in-order. In cases were key segments weren't lost, things get automatically resolved because those wrongly marked segments don't need to be retransmitted in order to continue. I found a reproducer after digging up relevant reports (few reports in total, none at netdev or lkml I know of), some cases seemed to indicate middlebox issues which seems now to be a false assumption some people had made. Bugzilla #10063 _might_ be related. Damon L. Chesser <damon@damtek.com> had a reproducable case and was kind enough to tcpdump it for me. With the tcpdump log it was quite trivial to figure out. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
* ip: Use inline function dst_metric() instead of direct access to dst->metric[]Satoru SATOH2008-05-05
| | | | | | | | | | | | There are functions to refer to the value of dst->metric[THE_METRIC-1] directly without use of a inline function "dst_metric" defined in net/dst.h. The following patch changes them to use the inline function consistently. Signed-off-by: Satoru SATOH <satoru.satoh@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: use get/put_unaligned_* helpersHarvey Harrison2008-05-02
| | | | | Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>