aboutsummaryrefslogtreecommitdiffstats
path: root/mm
Commit message (Collapse)AuthorAge
* mm: migration: allow the migration of PageSwapCache pagesMel Gorman2010-05-25
| | | | | | | | | | | | | | | | | PageAnon pages that are unmapped may or may not have an anon_vma so are not currently migrated. However, a swap cache page can be migrated and fits this description. This patch identifies page swap caches and allows them to be migrated but ensures that no attempt to made to remap the pages would would potentially try to access an already freed anon_vma. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: migration: do not try to migrate unmapped anonymous pagesMel Gorman2010-05-25
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | rmap_walk_anon() was triggering errors in memory compaction that look like use-after-free errors. The problem is that between the page being isolated from the LRU and rcu_read_lock() being taken, the mapcount of the page dropped to 0 and the anon_vma gets freed. This can happen during memory compaction if pages being migrated belong to a process that exits before migration completes. Hence, the use-after-free race looks like 1. Page isolated for migration 2. Process exits 3. page_mapcount(page) drops to zero so anon_vma was no longer reliable 4. unmap_and_move() takes the rcu_lock but the anon_vma is already garbage 4. call try_to_unmap, looks up tha anon_vma and "locks" it but the lock is garbage. This patch checks the mapcount after the rcu lock is taken. If the mapcount is zero, the anon_vma is assumed to be freed and no further action is taken. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: migration: share the anon_vma ref counts between KSM and page migrationMel Gorman2010-05-25
| | | | | | | | | | | | | | | For clarity of review, KSM and page migration have separate refcounts on the anon_vma. While clear, this is a waste of memory. This patch gets KSM and page migration to share their toys in a spirit of harmony. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Christoph Lameter <cl@linux-foundation.org> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: migration: take a reference to the anon_vma before migratingMel Gorman2010-05-25
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patchset is a memory compaction mechanism that reduces external fragmentation memory by moving GFP_MOVABLE pages to a fewer number of pageblocks. The term "compaction" was chosen as there are is a number of mechanisms that are not mutually exclusive that can be used to defragment memory. For example, lumpy reclaim is a form of defragmentation as was slub "defragmentation" (really a form of targeted reclaim). Hence, this is called "compaction" to distinguish it from other forms of defragmentation. In this implementation, a full compaction run involves two scanners operating within a zone - a migration and a free scanner. The migration scanner starts at the beginning of a zone and finds all movable pages within one pageblock_nr_pages-sized area and isolates them on a migratepages list. The free scanner begins at the end of the zone and searches on a per-area basis for enough free pages to migrate all the pages on the migratepages list. As each area is respectively migrated or exhausted of free pages, the scanners are advanced one area. A compaction run completes within a zone when the two scanners meet. This method is a bit primitive but is easy to understand and greater sophistication would require maintenance of counters on a per-pageblock basis. This would have a big impact on allocator fast-paths to improve compaction which is a poor trade-off. It also does not try relocate virtually contiguous pages to be physically contiguous. However, assuming transparent hugepages were in use, a hypothetical khugepaged might reuse compaction code to isolate free pages, split them and relocate userspace pages for promotion. Memory compaction can be triggered in one of three ways. It may be triggered explicitly by writing any value to /proc/sys/vm/compact_memory and compacting all of memory. It can be triggered on a per-node basis by writing any value to /sys/devices/system/node/nodeN/compact where N is the node ID to be compacted. When a process fails to allocate a high-order page, it may compact memory in an attempt to satisfy the allocation instead of entering direct reclaim. Explicit compaction does not finish until the two scanners meet and direct compaction ends if a suitable page becomes available that would meet watermarks. The series is in 14 patches. The first three are not "core" to the series but are important pre-requisites. Patch 1 reference counts anon_vma for rmap_walk_anon(). Without this patch, it's possible to use anon_vma after free if the caller is not holding a VMA or mmap_sem for the pages in question. While there should be no existing user that causes this problem, it's a requirement for memory compaction to be stable. The patch is at the start of the series for bisection reasons. Patch 2 merges the KSM and migrate counts. It could be merged with patch 1 but would be slightly harder to review. Patch 3 skips over unmapped anon pages during migration as there are no guarantees about the anon_vma existing. There is a window between when a page was isolated and migration started during which anon_vma could disappear. Patch 4 notes that PageSwapCache pages can still be migrated even if they are unmapped. Patch 5 allows CONFIG_MIGRATION to be set without CONFIG_NUMA Patch 6 exports a "unusable free space index" via debugfs. It's a measure of external fragmentation that takes the size of the allocation request into account. It can also be calculated from userspace so can be dropped if requested Patch 7 exports a "fragmentation index" which only has meaning when an allocation request fails. It determines if an allocation failure would be due to a lack of memory or external fragmentation. Patch 8 moves the definition for LRU isolation modes for use by compaction Patch 9 is the compaction mechanism although it's unreachable at this point Patch 10 adds a means of compacting all of memory with a proc trgger Patch 11 adds a means of compacting a specific node with a sysfs trigger Patch 12 adds "direct compaction" before "direct reclaim" if it is determined there is a good chance of success. Patch 13 adds a sysctl that allows tuning of the threshold at which the kernel will compact or direct reclaim Patch 14 temporarily disables compaction if an allocation failure occurs after compaction. Testing of compaction was in three stages. For the test, debugging, preempt, the sleep watchdog and lockdep were all enabled but nothing nasty popped out. min_free_kbytes was tuned as recommended by hugeadm to help fragmentation avoidance and high-order allocations. It was tested on X86, X86-64 and PPC64. Ths first test represents one of the easiest cases that can be faced for lumpy reclaim or memory compaction. 1. Machine freshly booted and configured for hugepage usage with a) hugeadm --create-global-mounts b) hugeadm --pool-pages-max DEFAULT:8G c) hugeadm --set-recommended-min_free_kbytes d) hugeadm --set-recommended-shmmax The min_free_kbytes here is important. Anti-fragmentation works best when pageblocks don't mix. hugeadm knows how to calculate a value that will significantly reduce the worst of external-fragmentation-related events as reported by the mm_page_alloc_extfrag tracepoint. 2. Load up memory a) Start updatedb b) Create in parallel a X files of pagesize*128 in size. Wait until files are created. By parallel, I mean that 4096 instances of dd were launched, one after the other using &. The crude objective being to mix filesystem metadata allocations with the buffer cache. c) Delete every second file so that pageblocks are likely to have holes d) kill updatedb if it's still running At this point, the system is quiet, memory is full but it's full with clean filesystem metadata and clean buffer cache that is unmapped. This is readily migrated or discarded so you'd expect lumpy reclaim to have no significant advantage over compaction but this is at the POC stage. 3. In increments, attempt to allocate 5% of memory as hugepages. Measure how long it took, how successful it was, how many direct reclaims took place and how how many compactions. Note the compaction figures might not fully add up as compactions can take place for orders other than the hugepage size X86 vanilla compaction Final page count 913 916 (attempted 1002) pages reclaimed 68296 9791 X86-64 vanilla compaction Final page count: 901 902 (attempted 1002) Total pages reclaimed: 112599 53234 PPC64 vanilla compaction Final page count: 93 94 (attempted 110) Total pages reclaimed: 103216 61838 There was not a dramatic improvement in success rates but it wouldn't be expected in this case either. What was important is that fewer pages were reclaimed in all cases reducing the amount of IO required to satisfy a huge page allocation. The second tests were all performance related - kernbench, netperf, iozone and sysbench. None showed anything too remarkable. The last test was a high-order allocation stress test. Many kernel compiles are started to fill memory with a pressured mix of unmovable and movable allocations. During this, an attempt is made to allocate 90% of memory as huge pages - one at a time with small delays between attempts to avoid flooding the IO queue. vanilla compaction Percentage of request allocated X86 98 99 Percentage of request allocated X86-64 95 98 Percentage of request allocated PPC64 55 70 This patch: rmap_walk_anon() does not use page_lock_anon_vma() for looking up and locking an anon_vma and it does not appear to have sufficient locking to ensure the anon_vma does not disappear from under it. This patch copies an approach used by KSM to take a reference on the anon_vma while pages are being migrated. This should prevent rmap_walk() running into nasty surprises later because anon_vma has been freed. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: default to node zonelist ordering when nodes have only lowmemDavid Rientjes2010-05-25
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There are two types of zonelist ordering methodologies: - node order, preferring allocations on a node to stay local to and - zone order, preferring allocations come from a higher zone to avoid allocating in lowmem zones even though they may not be local. The ordering technique used by the kernel is configurable on the command line, but also has some logic to determine what the default should be. This logic currently lacks knowledge of systems where a node may only have lowmem. For such systems, it is necessary to use node order so that GFP_KERNEL allocations may be satisfied by nodes consisting of only lowmem. If zone order is used, GFP_KERNEL allocations to such nodes are actually allocated on a node with local affinity that includes ZONE_NORMAL. This change defaults to node zonelist ordering if any node lacks ZONE_NORMAL. To force zone order, append 'numa_zonelist_order=zone' to the kernel command line. Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mincore: do nested page table walksJohannes Weiner2010-05-25
| | | | | | | | | | | | | | Do page table walks with the well-known nested loops we use in several other places already. This avoids doing full page table walks after every pte range and also allows to handle unmapped areas bigger than one pte range in one go. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mincore: pass ranges as start,end address pairsJohannes Weiner2010-05-25
| | | | | | | | | | | Instead of passing a start address and a number of pages into the helper functions, convert them to use a start and an end address. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mincore: break do_mincore() into logical piecesJohannes Weiner2010-05-25
| | | | | | | | | | | | | | Split out functions to handle hugetlb ranges, pte ranges and unmapped ranges, to improve readability but also to prepare the file structure for nested page table walks. No semantic changes intended. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mincore: cleanupsJohannes Weiner2010-05-25
| | | | | | | | | | | | | | | | | | | This fixes some minor issues that bugged me while going over the code: o adjust argument order of do_mincore() to match the syscall o simplify range length calculation o drop superfluous shift in huge tlb calculation, address is page aligned o drop dead nr_huge calculation o check pte_none() before pte_present() o comment and whitespace fixes No semantic changes intended. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* cpuset,mm: fix no node to alloc memory when changing cpuset's memsMiao Xie2010-05-25
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Before applying this patch, cpuset updates task->mems_allowed and mempolicy by setting all new bits in the nodemask first, and clearing all old unallowed bits later. But in the way, the allocator may find that there is no node to alloc memory. The reason is that cpuset rebinds the task's mempolicy, it cleans the nodes which the allocater can alloc pages on, for example: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom This patch fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. [akpm@linux-foundation.org: fix spello] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mempolicy: restructure rebinding-mempolicy functionsMiao Xie2010-05-25
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Nick Piggin reported that the allocator may see an empty nodemask when changing cpuset's mems[1]. It happens only on the kernel that do not do atomic nodemask_t stores. (MAX_NUMNODES > BITS_PER_LONG) But I found that there is also a problem on the kernel that can do atomic nodemask_t stores. The problem is that the allocator can't find a node to alloc page when changing cpuset's mems though there is a lot of free memory. The reason is like this: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom I can use the attached program reproduce it by the following step: # mkdir /dev/cpuset # mount -t cpuset cpuset /dev/cpuset # mkdir /dev/cpuset/1 # echo `cat /dev/cpuset/cpus` > /dev/cpuset/1/cpus # echo `cat /dev/cpuset/mems` > /dev/cpuset/1/mems # echo $$ > /dev/cpuset/1/tasks # numactl --membind=`cat /dev/cpuset/mems` ./cpuset_mem_hog <nr_tasks> & <nr_tasks> = max(nr_cpus - 1, 1) # killall -s SIGUSR1 cpuset_mem_hog # ./change_mems.sh several hours later, oom will happen though there is a lot of free memory. This patchset fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. This patch: In order to fix no node to alloc memory, when we want to update mempolicy and mems_allowed, we expand the set of nodes first (set all the newly nodes) and shrink the set of nodes lazily(clean disallowed nodes), But the mempolicy's rebind functions may breaks the expanding. So we restructure the mempolicy's rebind functions and split the rebind work to two steps, just like the update of cpuset's mems: The 1st step: expand the set of the mempolicy's nodes. The 2nd step: shrink the set of the mempolicy's nodes. It is used when there is no real lock to protect the mempolicy in the read-side. Otherwise we can do rebind work at once. In order to implement it, we define enum mpol_rebind_step { MPOL_REBIND_ONCE, MPOL_REBIND_STEP1, MPOL_REBIND_STEP2, MPOL_REBIND_NSTEP, }; If the mempolicy needn't be updated by two steps, we can pass MPOL_REBIND_ONCE to the rebind functions. Or we can pass MPOL_REBIND_STEP1 to do the first step of the rebind work and pass MPOL_REBIND_STEP2 to do the second step work. Besides that, it maybe long time between these two step and we have to release the lock that protects mempolicy and mems_allowed. If we hold the lock once again, we must check whether the current mempolicy is under the rebinding (the first step has been done) or not, because the task may alloc a new mempolicy when we don't hold the lock. So we defined the following flag to identify it: #define MPOL_F_REBINDING (1 << 2) The new functions will be used in the next patch. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mempolicy: factor mpol_shared_policy_init() return pathsLee Schermerhorn2010-05-25
| | | | | | | | | | | | | | Factor out duplicate put/frees in mpol_shared_policy_init() to a common return path. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mempolicy: rename policy_types and cleanup initializationLee Schermerhorn2010-05-25
| | | | | | | | | | | | | | | | Rename 'policy_types[]' to 'policy_modes[]' to better match the array contents. Use designated intializer syntax for policy_modes[]. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mempolicy: lose unnecessary loop variable in mpol_parse_str()Lee Schermerhorn2010-05-25
| | | | | | | | | | | | | | | We don't really need the extra variable 'i' in mpol_parse_str(). The only use is as the the loop variable. Then, it's assigned to 'mode'. Just use mode, and loose the 'uninitialized_var()' macro. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mempolicy: don't call mpol_set_nodemask() when no_contextLee Schermerhorn2010-05-25
| | | | | | | | | | | | | | | | | | No need to call mpol_set_nodemask() when we have no context for the mempolicy. This can occur when we're parsing a tmpfs 'mpol' mount option. Just save the raw nodemask in the mempolicy's w.user_nodemask member for use when a tmpfs/shmem file is created. mpol_shared_policy_init() will "contextualize" the policy for the new file based on the creating task's context. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mempolicy: remove redundant checkBob Liu2010-05-25
| | | | | | | | | | | | | | Lee's patch "mempolicy: use MPOL_PREFERRED for system-wide default policy" has made the MPOL_DEFAULT only used in the memory policy APIs. So, no need to check in __mpol_equal also. Also get rid of mpol_match_intent() and move its logic directly into __mpol_equal(). Signed-off-by: Bob Liu <lliubbo@gmail.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mempolicy: remove case MPOL_INTERLEAVE from policy_zonelist()Bob Liu2010-05-25
| | | | | | | | | | | | In policy_zonelist() mode MPOL_INTERLEAVE shouldn't happen, so fall through to BUG() instead of break to return. I also fixed the comment. Signed-off-by: Bob Liu <lliubbo@gmail.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mempolicy: remove redundant codeBob Liu2010-05-25
| | | | | | | | | | | | | | | | 1. In funtion is_valid_nodemask(), varibable k will be inited to 0 in the following loop, needn't init to policy_zone anymore. 2. (MPOL_F_STATIC_NODES | MPOL_F_RELATIVE_NODES) has already defined to MPOL_MODE_FLAGS in mempolicy.h. Signed-off-by: Bob Liu <lliubbo@gmail.com> Acked-by: David Rientjes <rientjes@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: remove return value of putback_lru_pages()Minchan Kim2010-05-25
| | | | | | | | | | | | | | | | putback_lru_page() never can fail. So it doesn't matter count of "the number of pages put back". In addition, users of this functions don't use return value. Let's remove unnecessary code. Signed-off-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* shmem: remove redundant codeHuang Shijie2010-05-25
| | | | | | | | | | | prep_new_page() will call set_page_private(page, 0) to initialise the page, so the code is redundant. Signed-off-by: Huang Shijie <shijie8@gmail.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* sparsemem: on no vmemmap path put mem_map on node high tooYinghai Lu2010-05-25
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We need to put mem_map high when virtual memmap is not used. before this patch free mem pfn range on first node: [ 0.000000] 19 - 1f [ 0.000000] 28 40 - 80 95 [ 0.000000] 702 740 - 1000 1000 [ 0.000000] 347c - 347e [ 0.000000] 34e7 3500 - 3b80 3b8b [ 0.000000] 73b8b 73bc0 - 73c00 73c00 [ 0.000000] 73ddd - 73e00 [ 0.000000] 73fdd - 74000 [ 0.000000] 741dd - 74200 [ 0.000000] 743dd - 74400 [ 0.000000] 745dd - 74600 [ 0.000000] 747dd - 74800 [ 0.000000] 749dd - 74a00 [ 0.000000] 74bdd - 74c00 [ 0.000000] 74ddd - 74e00 [ 0.000000] 74fdd - 75000 [ 0.000000] 751dd - 75200 [ 0.000000] 753dd - 75400 [ 0.000000] 755dd - 75600 [ 0.000000] 757dd - 75800 [ 0.000000] 759dd - 75a00 [ 0.000000] 79bdd 79c00 - 7d540 7d550 [ 0.000000] 7f745 - 7f750 [ 0.000000] 10000b 100040 - 2080000 2080000 so only 79c00 - 7d540 are major free block under 4g... after this patch, we will get [ 0.000000] 19 - 1f [ 0.000000] 28 40 - 80 95 [ 0.000000] 702 740 - 1000 1000 [ 0.000000] 347c - 347e [ 0.000000] 34e7 3500 - 3600 3600 [ 0.000000] 37dd - 3800 [ 0.000000] 39dd - 3a00 [ 0.000000] 3bdd - 3c00 [ 0.000000] 3ddd - 3e00 [ 0.000000] 3fdd - 4000 [ 0.000000] 41dd - 4200 [ 0.000000] 43dd - 4400 [ 0.000000] 45dd - 4600 [ 0.000000] 47dd - 4800 [ 0.000000] 49dd - 4a00 [ 0.000000] 4bdd - 4c00 [ 0.000000] 4ddd - 4e00 [ 0.000000] 4fdd - 5000 [ 0.000000] 51dd - 5200 [ 0.000000] 53dd - 5400 [ 0.000000] 95dd 9600 - 7d540 7d550 [ 0.000000] 7f745 - 7f750 [ 0.000000] 17000b 170040 - 2080000 2080000 we will have 9600 - 7d540 for major free block... sparse-vmemmap path already used __alloc_bootmem_node_high() Signed-off-by: Yinghai Lu <yinghai@kernel.org> Cc: Jiri Slaby <jirislaby@gmail.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@elte.hu> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* page allocator: reduce fragmentation in buddy allocator by adding buddies ↵Corrado Zoccolo2010-05-25
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | that are merging to the tail of the free lists In order to reduce fragmentation, this patch classifies freed pages in two groups according to their probability of being part of a high order merge. Pages belonging to a compound whose next-highest buddy is free are more likely to be part of a high order merge in the near future, so they will be added at the tail of the freelist. The remaining pages are put at the front of the freelist. In this way, the pages that are more likely to cause a big merge are kept free longer. Consequently there is a tendency to aggregate the long-living allocations on a subset of the compounds, reducing the fragmentation. This heuristic was tested on three machines, x86, x86-64 and ppc64 with 3GB of RAM in each machine. The tests were kernbench, netperf, sysbench and STREAM for performance and a high-order stress test for huge page allocations. KernBench X86 Elapsed mean 374.77 ( 0.00%) 375.10 (-0.09%) User mean 649.53 ( 0.00%) 650.44 (-0.14%) System mean 54.75 ( 0.00%) 54.18 ( 1.05%) CPU mean 187.75 ( 0.00%) 187.25 ( 0.27%) KernBench X86-64 Elapsed mean 94.45 ( 0.00%) 94.01 ( 0.47%) User mean 323.27 ( 0.00%) 322.66 ( 0.19%) System mean 36.71 ( 0.00%) 36.50 ( 0.57%) CPU mean 380.75 ( 0.00%) 381.75 (-0.26%) KernBench PPC64 Elapsed mean 173.45 ( 0.00%) 173.74 (-0.17%) User mean 587.99 ( 0.00%) 587.95 ( 0.01%) System mean 60.60 ( 0.00%) 60.57 ( 0.05%) CPU mean 373.50 ( 0.00%) 372.75 ( 0.20%) Nothing notable for kernbench. NetPerf UDP X86 64 42.68 ( 0.00%) 42.77 ( 0.21%) 128 85.62 ( 0.00%) 85.32 (-0.35%) 256 170.01 ( 0.00%) 168.76 (-0.74%) 1024 655.68 ( 0.00%) 652.33 (-0.51%) 2048 1262.39 ( 0.00%) 1248.61 (-1.10%) 3312 1958.41 ( 0.00%) 1944.61 (-0.71%) 4096 2345.63 ( 0.00%) 2318.83 (-1.16%) 8192 4132.90 ( 0.00%) 4089.50 (-1.06%) 16384 6770.88 ( 0.00%) 6642.05 (-1.94%)* NetPerf UDP X86-64 64 148.82 ( 0.00%) 154.92 ( 3.94%) 128 298.96 ( 0.00%) 312.95 ( 4.47%) 256 583.67 ( 0.00%) 626.39 ( 6.82%) 1024 2293.18 ( 0.00%) 2371.10 ( 3.29%) 2048 4274.16 ( 0.00%) 4396.83 ( 2.79%) 3312 6356.94 ( 0.00%) 6571.35 ( 3.26%) 4096 7422.68 ( 0.00%) 7635.42 ( 2.79%)* 8192 12114.81 ( 0.00%)* 12346.88 ( 1.88%) 16384 17022.28 ( 0.00%)* 17033.19 ( 0.06%)* 1.64% 2.73% NetPerf UDP PPC64 64 49.98 ( 0.00%) 50.25 ( 0.54%) 128 98.66 ( 0.00%) 100.95 ( 2.27%) 256 197.33 ( 0.00%) 191.03 (-3.30%) 1024 761.98 ( 0.00%) 785.07 ( 2.94%) 2048 1493.50 ( 0.00%) 1510.85 ( 1.15%) 3312 2303.95 ( 0.00%) 2271.72 (-1.42%) 4096 2774.56 ( 0.00%) 2773.06 (-0.05%) 8192 4918.31 ( 0.00%) 4793.59 (-2.60%) 16384 7497.98 ( 0.00%) 7749.52 ( 3.25%) The tests are run to have confidence limits within 1%. Results marked with a * were not confident although in this case, it's only outside by small amounts. Even with some results that were not confident, the netperf UDP results were generally positive. NetPerf TCP X86 64 652.25 ( 0.00%)* 648.12 (-0.64%)* 23.80% 22.82% 128 1229.98 ( 0.00%)* 1220.56 (-0.77%)* 21.03% 18.90% 256 2105.88 ( 0.00%) 1872.03 (-12.49%)* 1.00% 16.46% 1024 3476.46 ( 0.00%)* 3548.28 ( 2.02%)* 13.37% 11.39% 2048 4023.44 ( 0.00%)* 4231.45 ( 4.92%)* 9.76% 12.48% 3312 4348.88 ( 0.00%)* 4396.96 ( 1.09%)* 6.49% 8.75% 4096 4726.56 ( 0.00%)* 4877.71 ( 3.10%)* 9.85% 8.50% 8192 4732.28 ( 0.00%)* 5777.77 (18.10%)* 9.13% 13.04% 16384 5543.05 ( 0.00%)* 5906.24 ( 6.15%)* 7.73% 8.68% NETPERF TCP X86-64 netperf-tcp-vanilla-netperf netperf-tcp tcp-vanilla pgalloc-delay 64 1895.87 ( 0.00%)* 1775.07 (-6.81%)* 5.79% 4.78% 128 3571.03 ( 0.00%)* 3342.20 (-6.85%)* 3.68% 6.06% 256 5097.21 ( 0.00%)* 4859.43 (-4.89%)* 3.02% 2.10% 1024 8919.10 ( 0.00%)* 8892.49 (-0.30%)* 5.89% 6.55% 2048 10255.46 ( 0.00%)* 10449.39 ( 1.86%)* 7.08% 7.44% 3312 10839.90 ( 0.00%)* 10740.15 (-0.93%)* 6.87% 7.33% 4096 10814.84 ( 0.00%)* 10766.97 (-0.44%)* 6.86% 8.18% 8192 11606.89 ( 0.00%)* 11189.28 (-3.73%)* 7.49% 5.55% 16384 12554.88 ( 0.00%)* 12361.22 (-1.57%)* 7.36% 6.49% NETPERF TCP PPC64 netperf-tcp-vanilla-netperf netperf-tcp tcp-vanilla pgalloc-delay 64 594.17 ( 0.00%) 596.04 ( 0.31%)* 1.00% 2.29% 128 1064.87 ( 0.00%)* 1074.77 ( 0.92%)* 1.30% 1.40% 256 1852.46 ( 0.00%)* 1856.95 ( 0.24%) 1.25% 1.00% 1024 3839.46 ( 0.00%)* 3813.05 (-0.69%) 1.02% 1.00% 2048 4885.04 ( 0.00%)* 4881.97 (-0.06%)* 1.15% 1.04% 3312 5506.90 ( 0.00%) 5459.72 (-0.86%) 4096 6449.19 ( 0.00%) 6345.46 (-1.63%) 8192 7501.17 ( 0.00%) 7508.79 ( 0.10%) 16384 9618.65 ( 0.00%) 9490.10 (-1.35%) There was a distinct lack of confidence in the X86* figures so I included what the devation was where the results were not confident. Many of the results, whether gains or losses were within the standard deviation so no solid conclusion can be reached on performance impact. Looking at the figures, only the X86-64 ones look suspicious with a few losses that were outside the noise. However, the results were so unstable that without knowing why they vary so much, a solid conclusion cannot be reached. SYSBENCH X86 sysbench-vanilla pgalloc-delay 1 7722.85 ( 0.00%) 7756.79 ( 0.44%) 2 14901.11 ( 0.00%) 13683.44 (-8.90%) 3 15171.71 ( 0.00%) 14888.25 (-1.90%) 4 14966.98 ( 0.00%) 15029.67 ( 0.42%) 5 14370.47 ( 0.00%) 14865.00 ( 3.33%) 6 14870.33 ( 0.00%) 14845.57 (-0.17%) 7 14429.45 ( 0.00%) 14520.85 ( 0.63%) 8 14354.35 ( 0.00%) 14362.31 ( 0.06%) SYSBENCH X86-64 1 17448.70 ( 0.00%) 17484.41 ( 0.20%) 2 34276.39 ( 0.00%) 34251.00 (-0.07%) 3 50805.25 ( 0.00%) 50854.80 ( 0.10%) 4 66667.10 ( 0.00%) 66174.69 (-0.74%) 5 66003.91 ( 0.00%) 65685.25 (-0.49%) 6 64981.90 ( 0.00%) 65125.60 ( 0.22%) 7 64933.16 ( 0.00%) 64379.23 (-0.86%) 8 63353.30 ( 0.00%) 63281.22 (-0.11%) 9 63511.84 ( 0.00%) 63570.37 ( 0.09%) 10 62708.27 ( 0.00%) 63166.25 ( 0.73%) 11 62092.81 ( 0.00%) 61787.75 (-0.49%) 12 61330.11 ( 0.00%) 61036.34 (-0.48%) 13 61438.37 ( 0.00%) 61994.47 ( 0.90%) 14 62304.48 ( 0.00%) 62064.90 (-0.39%) 15 63296.48 ( 0.00%) 62875.16 (-0.67%) 16 63951.76 ( 0.00%) 63769.09 (-0.29%) SYSBENCH PPC64 -sysbench-pgalloc-delay-sysbench sysbench-vanilla pgalloc-delay 1 7645.08 ( 0.00%) 7467.43 (-2.38%) 2 14856.67 ( 0.00%) 14558.73 (-2.05%) 3 21952.31 ( 0.00%) 21683.64 (-1.24%) 4 27946.09 ( 0.00%) 28623.29 ( 2.37%) 5 28045.11 ( 0.00%) 28143.69 ( 0.35%) 6 27477.10 ( 0.00%) 27337.45 (-0.51%) 7 26489.17 ( 0.00%) 26590.06 ( 0.38%) 8 26642.91 ( 0.00%) 25274.33 (-5.41%) 9 25137.27 ( 0.00%) 24810.06 (-1.32%) 10 24451.99 ( 0.00%) 24275.85 (-0.73%) 11 23262.20 ( 0.00%) 23674.88 ( 1.74%) 12 24234.81 ( 0.00%) 23640.89 (-2.51%) 13 24577.75 ( 0.00%) 24433.50 (-0.59%) 14 25640.19 ( 0.00%) 25116.52 (-2.08%) 15 26188.84 ( 0.00%) 26181.36 (-0.03%) 16 26782.37 ( 0.00%) 26255.99 (-2.00%) Again, there is little to conclude here. While there are a few losses, the results vary by +/- 8% in some cases. They are the results of most concern as there are some large losses but it's also within the variance typically seen between kernel releases. The STREAM results varied so little and are so verbose that I didn't include them here. The final test stressed how many huge pages can be allocated. The absolute number of huge pages allocated are the same with or without the page. However, the "unusability free space index" which is a measure of external fragmentation was slightly lower (lower is better) throughout the lifetime of the system. I also measured the latency of how long it took to successfully allocate a huge page. The latency was slightly lower and on X86 and PPC64, more huge pages were allocated almost immediately from the free lists. The improvement is slight but there. [mel@csn.ul.ie: Tested, reworked for less branches] [czoccolo@gmail.com: fix oops by checking pfn_valid_within()] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Corrado Zoccolo <czoccolo@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* tmpfs: insert tmpfs cache pages to inactive list at firstKOSAKI Motohiro2010-05-25
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Shaohua Li reported parallel file copy on tmpfs can lead to OOM killer. This is regression of caused by commit 9ff473b9a7 ("vmscan: evict streaming IO first"). Wow, It is 2 years old patch! Currently, tmpfs file cache is inserted active list at first. This means that the insertion doesn't only increase numbers of pages in anon LRU, but it also reduces anon scanning ratio. Therefore, vmscan will get totally confused. It scans almost only file LRU even though the system has plenty unused tmpfs pages. Historically, lru_cache_add_active_anon() was used for two reasons. 1) Intend to priotize shmem page rather than regular file cache. 2) Intend to avoid reclaim priority inversion of used once pages. But we've lost both motivation because (1) Now we have separate anon and file LRU list. then, to insert active list doesn't help such priotize. (2) In past, one pte access bit will cause page activation. then to insert inactive list with pte access bit mean higher priority than to insert active list. Its priority inversion may lead to uninteded lru chun. but it was already solved by commit 645747462 (vmscan: detect mapped file pages used only once). (Thanks Hannes, you are great!) Thus, now we can use lru_cache_add_anon() instead. Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reported-by: Shaohua Li <shaohua.li@intel.com> Reviewed-by: Wu Fengguang <fengguang.wu@intel.com> Reviewed-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Henrique de Moraes Holschuh <hmh@hmh.eng.br> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
*-------. Merge branches 'slab/align', 'slab/cleanups', 'slab/fixes', 'slab/memhotadd' ↵Pekka Enberg2010-05-22
|\ \ \ \ \ | | | | | | | | | | | | | | | | | | and 'slub/fixes' into slab-for-linus
| | | | | * slub: Use alloc_pages_exact_node() for page allocationMinchan Kim2010-05-22
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The alloc_slab_page() in SLUB uses alloc_pages() if node is '-1'. This means that node validity check in alloc_pages_node is unnecessary and we can use alloc_pages_exact_node() to avoid comparison and branch as commit 6484eb3e2a81807722 ("page allocator: do not check NUMA node ID when the caller knows the node is valid") did for the page allocator. Cc: Christoph Lameter <cl@linux-foundation.org> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
| | | | | * slub: __kmalloc_node_track_caller should trace kmalloc_large_node caseXiaotian Feng2010-05-22
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 94b528d (kmemtrace: SLUB hooks for caller-tracking functions) missed tracing kmalloc_large_node in __kmalloc_node_track_caller. We should trace it same as __kmalloc_node. Acked-by: David Rientjes <rientjes@google.com> Cc: Matt Mackall <mpm@selenic.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Vegard Nossum <vegard.nossum@gmail.com> Signed-off-by: Xiaotian Feng <dfeng@redhat.com> Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
| | | | | * slub: Potential stack overflowEric Dumazet2010-05-22
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | I discovered that we can overflow stack if CONFIG_SLUB_DEBUG=y and use slabs with many objects, since list_slab_objects() and process_slab() use DECLARE_BITMAP(map, page->objects). With 65535 bits, we use 8192 bytes of stack ... Switch these allocations to dynamic allocations. Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
| | | | * | slab: add memory hotplug supportDavid Rientjes2010-04-07
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Slab lacks any memory hotplug support for nodes that are hotplugged without cpus being hotplugged. This is possible at least on x86 CONFIG_MEMORY_HOTPLUG_SPARSE kernels where SRAT entries are marked ACPI_SRAT_MEM_HOT_PLUGGABLE and the regions of RAM represent a seperate node. It can also be done manually by writing the start address to /sys/devices/system/memory/probe for kernels that have CONFIG_ARCH_MEMORY_PROBE set, which is how this patch was tested, and then onlining the new memory region. When a node is hotadded, a nodelist for that node is allocated and initialized for each slab cache. If this isn't completed due to a lack of memory, the hotadd is aborted: we have a reasonable expectation that kmalloc_node(nid) will work for all caches if nid is online and memory is available. Since nodelists must be allocated and initialized prior to the new node's memory actually being online, the struct kmem_list3 is allocated off-node due to kmalloc_node()'s fallback. When an entire node would be offlined, its nodelists are subsequently drained. If slab objects still exist and cannot be freed, the offline is aborted. It is possible that objects will be allocated between this drain and page isolation, so it's still possible that the offline will still fail, however. Acked-by: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
| | | * | | slab: Fix missing DEBUG_SLAB last userShiyong Li2010-04-14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Even with SLAB_RED_ZONE and SLAB_STORE_USER enabled, kernel would NOT store redzone and last user data around allocated memory space if "arch cache line > sizeof(unsigned long long)". As a result, last user information is unexpectedly MISSED while dumping slab corruption log. This fix makes sure that redzone and last user tags get stored unless the required alignment breaks redzone's. Signed-off-by: Shiyong Li <shi-yong.li@motorola.com> Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
| | * | | | slab: Fix continuation linesJoe Perches2010-03-28
| | | |/ / | | |/| | | | | | | | | | | | | | | | | Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
| * | | | mm: Move ARCH_SLAB_MINALIGN and ARCH_KMALLOC_MINALIGN to <linux/slub_def.h>David Woodhouse2010-05-19
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Acked-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David Woodhouse <David.Woodhouse@intel.com> Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
| * | | | mm: Move ARCH_SLAB_MINALIGN and ARCH_KMALLOC_MINALIGN to <linux/slob_def.h>David Woodhouse2010-05-19
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Acked-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David Woodhouse <David.Woodhouse@intel.com> Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
| * | | | mm: Move ARCH_SLAB_MINALIGN and ARCH_KMALLOC_MINALIGN to <linux/slab_def.h>David Woodhouse2010-05-19
| | |_|/ | |/| | | | | | | | | | | | | | | | | | Acked-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David Woodhouse <David.Woodhouse@intel.com> Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
* | | | Merge branch 'for-linus' of ↵Linus Torvalds2010-05-21
|\ \ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6 * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6: (69 commits) fix handling of offsets in cris eeprom.c, get rid of fake on-stack files get rid of home-grown mutex in cris eeprom.c switch ecryptfs_write() to struct inode *, kill on-stack fake files switch ecryptfs_get_locked_page() to struct inode * simplify access to ecryptfs inodes in ->readpage() and friends AFS: Don't put struct file on the stack Ban ecryptfs over ecryptfs logfs: replace inode uid,gid,mode initialization with helper function ufs: replace inode uid,gid,mode initialization with helper function udf: replace inode uid,gid,mode init with helper ubifs: replace inode uid,gid,mode initialization with helper function sysv: replace inode uid,gid,mode initialization with helper function reiserfs: replace inode uid,gid,mode initialization with helper function ramfs: replace inode uid,gid,mode initialization with helper function omfs: replace inode uid,gid,mode initialization with helper function bfs: replace inode uid,gid,mode initialization with helper function ocfs2: replace inode uid,gid,mode initialization with helper function nilfs2: replace inode uid,gid,mode initialization with helper function minix: replace inode uid,gid,mode init with helper ext4: replace inode uid,gid,mode init with helper ... Trivial conflict in fs/fs-writeback.c (mark bitfields unsigned)
| * | | | ramfs: replace inode uid,gid,mode initialization with helper functionDmitry Monakhov2010-05-21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - seems what ramfs_get_inode is only locally, make it static. [AV: the hell it is; it's used by shmem, so shmem needed conversion too and no, that function can't be made static] Signed-off-by: Dmitry Monakhov <dmonakhov@openvz.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
| * | | | sanitize vfs_fsync calling conventionsChristoph Hellwig2010-05-21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Now that the last user passing a NULL file pointer is gone we can remove the redundant dentry argument and associated hacks inside vfs_fsynmc_range. The next step will be removig the dentry argument from ->fsync, but given the luck with the last round of method prototype changes I'd rather defer this until after the main merge window. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
| * | | | fs: xattr_handler table should be constStephen Hemminger2010-05-21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The entries in xattr handler table should be immutable (ie const) like other operation tables. Later patches convert common filesystems. Uncoverted filesystems will still work, but will generate a compiler warning. Signed-off-by: Stephen Hemminger <shemminger@vyatta.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* | | | | Merge git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging-2.6Linus Torvalds2010-05-21
|\ \ \ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | * git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging-2.6: (577 commits) Staging: ramzswap: Handler for swap slot free callback swap: Add swap slot free callback to block_device_operations swap: Add flag to identify block swap devices Staging: vt6655: use ETH_FRAME_LEN macro instead of custom one Staging: vt6655: use ETH_DATA_LEN macro instead of custom one Staging: vt6655: use ETH_FCS_LEN macro instead of custom one Staging: vt6656: use ETH_HLEN macro instead of custom one Staging: comedi: quatech_daqp_cs.c Replace eos semaphore with a completion. Staging: dt3155v4l: remove private memory allocator Staging: crystalhd: Remove typedefs from driver Staging: winbond: Fix for pointer name format issue in mds.c Staging: vt6656: removed custom UCHAR/USHORT/UINT/ULONG/ULONGLONG typedefs Staging: vt6656: removed custom CHAR/SHORT/INT/LONG typedefs Staging: comedi: Altered the way printk is used in 8255.c staging: iio: adis16350 and similar IMU driver Staging: iio: max1363 Fix two bugs in single_channel_from_ring Staging: iio: adis16220 extract bin_attribute structures from state Staging: iio: adis16220 vibration sensor driver Staging: comedi: Kconfig dependancy fixes Staging: comedi: fix up build error from last Kconfig changes ...
| * \ \ \ \ Merge staging-next tree into Linus's latest versionGreg Kroah-Hartman2010-05-21
| |\ \ \ \ \ | | |/ / / / | |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Conflicts: drivers/staging/arlan/arlan-main.c drivers/staging/comedi/drivers/cb_das16_cs.c drivers/staging/cx25821/cx25821-alsa.c drivers/staging/dt3155/dt3155_drv.c drivers/staging/hv/hv.c drivers/staging/netwave/netwave_cs.c drivers/staging/wavelan/wavelan.c drivers/staging/wavelan/wavelan_cs.c drivers/staging/wlags49_h2/wl_cs.c This required a bit of hand merging due to the conflicts that happened in the later .34-rc releases, as well as some staging driver changing coming in through other trees (v4l and pcmcia). Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
| | * | | | swap: Add swap slot free callback to block_device_operationsNitin Gupta2010-05-18
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This callback is required when RAM based devices are used as swap disks. One such device is ramzswap which is used as compressed in-memory swap disk. For such devices, we need a callback as soon as a swap slot is no longer used to allow freeing memory allocated for this slot. Without this callback, stale data can quickly accumulate in memory defeating the whole purpose of such devices. Signed-off-by: Nitin Gupta <ngupta@vflare.org> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Acked-by: Nigel Cunningham <nigel@tuxonice.net> Acked-by: Pekka Enberg <penberg@cs.helsinki.fi> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
| | * | | | swap: Add flag to identify block swap devicesNitin Gupta2010-05-18
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Added SWP_BLKDEV flag to distinguish block and regular file backed swap devices. We could also check if a swap is entire block device, rather than a file, by: S_ISBLK(swap_info_struct->swap_file->f_mapping->host->i_mode) but, I think, simply checking this flag is more convenient. Signed-off-by: Nitin Gupta <ngupta@vflare.org> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Acked-by: Nigel Cunningham <nigel@tuxonice.net> Acked-by: Pekka Enberg <penberg@cs.helsinki.fi> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
* | | | | | Merge branch 'master' into for-2.6.35Jens Axboe2010-05-21
|\| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Conflicts: fs/ext3/fsync.c Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
| * | | | | Merge branch 'for-linus' of ↵Linus Torvalds2010-05-20
| |\ \ \ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (44 commits) vlynq: make whole Kconfig-menu dependant on architecture add descriptive comment for TIF_MEMDIE task flag declaration. EEPROM: max6875: Header file cleanup EEPROM: 93cx6: Header file cleanup EEPROM: Header file cleanup agp: use NULL instead of 0 when pointer is needed rtc-v3020: make bitfield unsigned PCI: make bitfield unsigned jbd2: use NULL instead of 0 when pointer is needed cciss: fix shadows sparse warning doc: inode uses a mutex instead of a semaphore. uml: i386: Avoid redefinition of NR_syscalls fix "seperate" typos in comments cocbalt_lcdfb: correct sections doc: Change urls for sparse Powerpc: wii: Fix typo in comment i2o: cleanup some exit paths Documentation/: it's -> its where appropriate UML: Fix compiler warning due to missing task_struct declaration UML: add kernel.h include to signal.c ...
| | * \ \ \ \ Merge branch 'master' into for-nextJiri Kosina2010-04-22
| | |\ \ \ \ \
| | * | | | | | Fix typos in commentsThomas Weber2010-03-16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | [Ss]ytem => [Ss]ystem udpate => update paramters => parameters orginal => original Signed-off-by: Thomas Weber <swirl@gmx.li> Acked-by: Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
| | * | | | | | mm: fix typo in refill_stock() commentGreg Thelen2010-03-15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Change refill_stock() comment: s/consumt_stock()/consume_stock()/ Signed-off-by: Greg Thelen <gthelen@google.com> Acked-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
| * | | | | | | Merge branch 'for-linus' of ↵Linus Torvalds2010-05-20
| |\ \ \ \ \ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: ia64: add sparse annotation to __ia64_per_cpu_var() percpu: implement kernel memory based chunk allocation percpu: move vmalloc based chunk management into percpu-vm.c percpu: misc preparations for nommu support percpu: reorganize chunk creation and destruction percpu: factor out pcpu_addr_in_first/reserved_chunk() and update per_cpu_ptr_to_phys()
| | * | | | | | | percpu: implement kernel memory based chunk allocationTejun Heo2010-05-01
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Implement an alternate percpu chunk management based on kernel memeory for nommu SMP architectures. Instead of mapping into vmalloc area, chunks are allocated as a contiguous kernel memory using alloc_pages(). As such, percpu allocator on nommu will have the following restrictions. * It can't fill chunks on-demand page-by-page. It has to allocate each chunk fully upfront. * It can't support sparse chunk for NUMA configurations. SMP w/o mmu is crazy enough. Let's hope no one does NUMA w/o mmu. :-P * If chunk size isn't power-of-two multiple of PAGE_SIZE, the unaligned amount will be wasted on each chunk. So, archs which use this better align chunk size. For instructions on how to use this, read the comment on top of mm/percpu-km.c. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: David Howells <dhowells@redhat.com> Cc: Graff Yang <graff.yang@gmail.com> Cc: Sonic Zhang <sonic.adi@gmail.com>
| | * | | | | | | percpu: move vmalloc based chunk management into percpu-vm.cTejun Heo2010-05-01
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Separate out and move chunk management (creation/desctruction and [de]population) code into percpu-vm.c which is included by percpu.c and compiled together. The interface for chunk management is defined as follows. * pcpu_populate_chunk - populate the specified range of a chunk * pcpu_depopulate_chunk - depopulate the specified range of a chunk * pcpu_create_chunk - create a new chunk * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop * pcpu_addr_to_page - translate address to physical address * pcpu_verify_alloc_info - check alloc_info is acceptable during init Other than wrapping vmalloc_to_page() inside pcpu_addr_to_page() and dummy pcpu_verify_alloc_info() implementation, this patch only moves code around. This separation is to allow alternate chunk management implementation. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: David Howells <dhowells@redhat.com> Cc: Graff Yang <graff.yang@gmail.com> Cc: Sonic Zhang <sonic.adi@gmail.com>
| | * | | | | | | percpu: misc preparations for nommu supportTejun Heo2010-05-01
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Make the following misc preparations for percpu nommu support. * Remove refernces to vmalloc in common comments as nommu percpu won't use it. * Rename chunk->vms to chunk->data and make it void *. Its use is determined by chunk management implementation. * Relocate utility functions and add __maybe_unused to functions which might not be used by different chunk management implementations. This patch doesn't cause any functional change. This is to allow alternate chunk management implementation for percpu nommu support. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: David Howells <dhowells@redhat.com> Cc: Graff Yang <graff.yang@gmail.com> Cc: Sonic Zhang <sonic.adi@gmail.com>