aboutsummaryrefslogtreecommitdiffstats
path: root/mm
Commit message (Collapse)AuthorAge
* slub: remove object activities out of checking functionsChristoph Lameter2007-05-07
| | | | | | | | | | Make sure that the check function really only check things and do not perform activities. Extract the tracing and object seeding out of the two check functions and place them into slab_alloc and slab_free Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* SLUB: Free slabs and sort partial slab lists in kmem_cache_shrinkChristoph Lameter2007-05-07
| | | | | | | | | | | | | | | | | | | | | | | | | | At kmem_cache_shrink check if we have any empty slabs on the partial if so then remove them. Also--as an anti-fragmentation measure--sort the partial slabs so that the most fully allocated ones come first and the least allocated last. The next allocations may fill up the nearly full slabs. Having the least allocated slabs last gives them the maximum chance that their remaining objects may be freed. Thus we can hopefully minimize the partial slabs. I think this is the best one can do in terms antifragmentation measures. Real defragmentation (meaning moving objects out of slabs with the least free objects to those that are almost full) can be implemted by reverse scanning through the list produced here but that would mean that we need to provide a callback at slab cache creation that allows the deletion or moving of an object. This will involve slab API changes, so defer for now. Cc: Mel Gorman <mel@skynet.ie> Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* slub: add ability to list alloc / free callers per slabChristoph Lameter2007-05-07
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch enables listing the callers who allocated or freed objects in a cache. For example to list the allocators for kmalloc-128 do cat /sys/slab/kmalloc-128/alloc_calls 7 sn_io_slot_fixup+0x40/0x700 7 sn_io_slot_fixup+0x80/0x700 9 sn_bus_fixup+0xe0/0x380 6 param_sysfs_setup+0xf0/0x280 276 percpu_populate+0xf0/0x1a0 19 __register_chrdev_region+0x30/0x360 8 expand_files+0x2e0/0x6e0 1 sys_epoll_create+0x60/0x200 1 __mounts_open+0x140/0x2c0 65 kmem_alloc+0x110/0x280 3 alloc_disk_node+0xe0/0x200 33 as_get_io_context+0x90/0x280 74 kobject_kset_add_dir+0x40/0x140 12 pci_create_bus+0x2a0/0x5c0 1 acpi_ev_create_gpe_block+0x120/0x9e0 41 con_insert_unipair+0x100/0x1c0 1 uart_open+0x1c0/0xba0 1 dma_pool_create+0xe0/0x340 2 neigh_table_init_no_netlink+0x260/0x4c0 6 neigh_parms_alloc+0x30/0x200 1 netlink_kernel_create+0x130/0x320 5 fz_hash_alloc+0x50/0xe0 2 sn_common_hubdev_init+0xd0/0x6e0 28 kernel_param_sysfs_setup+0x30/0x180 72 process_zones+0x70/0x2e0 cat /sys/slab/kmalloc-128/free_calls 558 <not-available> 3 sn_io_slot_fixup+0x600/0x700 84 free_fdtable_rcu+0x120/0x260 2 seq_release+0x40/0x60 6 kmem_free+0x70/0xc0 24 free_as_io_context+0x20/0x200 1 acpi_get_object_info+0x3a0/0x3e0 1 acpi_add_single_object+0xcf0/0x1e40 2 con_release_unimap+0x80/0x140 1 free+0x20/0x40 SLAB_STORE_USER must be enabled for a slab cache by either booting with "slab_debug" or enabling user tracking specifically for the slab of interest. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* SLUB: Add MIN_PARTIALChristoph Lameter2007-05-07
| | | | | | | | | | | | | | | | | | | | We leave a mininum of partial slabs on nodes when we search for partial slabs on other node. Define a constant for that value. Then modify slub to keep MIN_PARTIAL slabs around. This avoids bad situations where a function frees the last object in a slab (which results in the page being returned to the page allocator) only to then allocate one again (which requires getting a page back from the page allocator if the partial list was empty). Keeping a couple of slabs on the partial list reduces overhead. Empty slabs are added to the end of the partial list to insure that partially allocated slabs are consumed first (defragmentation). Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* slub: validation of slabs (metadata and guard zones)Christoph Lameter2007-05-07
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This enables validation of slab. Validation means that all objects are checked to see if there are redzone violations, if padding has been overwritten or any pointers have been corrupted. Also checks the consistency of slab counters. Validation enables the detection of metadata corruption without the kernel having to execute code that actually uses (allocs/frees) and object. It allows one to make sure that the slab metainformation and the guard values around an object have not been compromised. A single slabcache can be checked by writing a 1 to the "validate" file. i.e. echo 1 >/sys/slab/kmalloc-128/validate or use the slabinfo tool to check all slabs slabinfo -v Error messages will show up in the syslog. Note that validation can only reach slabs that are on a list. This means that we are usually restricted to partial slabs and active slabs unless SLAB_STORE_USER is active which will build a full slab list and allows validation of slabs that are fully in use. Booting with "slub_debug" set will enable SLAB_STORE_USER and then full diagnostic are available. Note that we attempt to push cpu slabs back to the lists when we start the check. If the cpu slab is reactivated before we get to it (another processor grabs it before we get to it) then it cannot be checked. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* slub: enable tracking of full slabsChristoph Lameter2007-05-07
| | | | | | | | | | If slab tracking is on then build a list of full slabs so that we can verify the integrity of all slabs and are also able to built list of alloc/free callers. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* slub: fix object trackingChristoph Lameter2007-05-07
| | | | | | | | | | Object tracking did not work the right way for several call chains. Fix this up by adding a new parameter to slub_alloc and slub_free that specifies the caller address explicitly. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Add virt_to_head_page and consolidate code in slab and slubChristoph Lameter2007-05-07
| | | | | | Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: optimize compound_head() by avoiding a shared page flagChristoph Lameter2007-05-07
| | | | | | | | | | The patch adds PageTail(page) and PageHead(page) to check if a page is the head or the tail of a compound page. This is done by masking the two bits describing the state of a compound page and then comparing them. So one comparision and a branch instead of two bit checks and two branches. Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Make page->private usable in compound pagesChristoph Lameter2007-05-07
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If we add a new flag so that we can distinguish between the first page and the tail pages then we can avoid to use page->private in the first page. page->private == page for the first page, so there is no real information in there. Freeing up page->private makes the use of compound pages more transparent. They become more usable like real pages. Right now we have to be careful f.e. if we are going beyond PAGE_SIZE allocations in the slab on i386 because we can then no longer use the private field. This is one of the issues that cause us not to support debugging for page size slabs in SLAB. Having page->private available for SLUB would allow more meta information in the page struct. I can probably avoid the 16 bit ints that I have in there right now. Also if page->private is available then a compound page may be equipped with buffer heads. This may free up the way for filesystems to support larger blocks than page size. We add PageTail as an alias of PageReclaim. Compound pages cannot currently be reclaimed. Because of the alias one needs to check PageCompound first. The RFC for the this approach was discussed at http://marc.info/?t=117574302800001&r=1&w=2 [nacc@us.ibm.com: fix hugetlbfs] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* SLUB: allocate smallest object size if the user asks for 0 bytesChristoph Lameter2007-05-07
| | | | | | | | | | | | | | Makes SLUB behave like SLAB in this area to avoid issues.... Throw a stack dump to alert people. At some point the behavior should be switched back. NULL is no memory as far as I can tell and if the use asked for 0 bytes then he need to get no memory. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* SLUB: change default alignmentsChristoph Lameter2007-05-07
| | | | | | | | | | | | | | | | | | | | | Structures may contain u64 items on 32 bit platforms that are only able to address 64 bit items on 64 bit boundaries. Change the mininum alignment of slabs to conform to those expectations. ARCH_KMALLOC_MINALIGN must be changed for good since a variety of structure are mixed in the general slabs. ARCH_SLAB_MINALIGN is changed because currently there is no consistent specification of object alignment. We may have that in the future when the KMEM_CACHE and related macros are used to generate slabs. These pass the alignment of the structure generated by the compiler to the slab. With KMEM_CACHE etc we could align structures that do not contain 64 bit values to 32 bit boundaries potentially saving some memory. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* SLUB coreChristoph Lameter2007-05-07
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This is a new slab allocator which was motivated by the complexity of the existing code in mm/slab.c. It attempts to address a variety of concerns with the existing implementation. A. Management of object queues A particular concern was the complex management of the numerous object queues in SLAB. SLUB has no such queues. Instead we dedicate a slab for each allocating CPU and use objects from a slab directly instead of queueing them up. B. Storage overhead of object queues SLAB Object queues exist per node, per CPU. The alien cache queue even has a queue array that contain a queue for each processor on each node. For very large systems the number of queues and the number of objects that may be caught in those queues grows exponentially. On our systems with 1k nodes / processors we have several gigabytes just tied up for storing references to objects for those queues This does not include the objects that could be on those queues. One fears that the whole memory of the machine could one day be consumed by those queues. C. SLAB meta data overhead SLAB has overhead at the beginning of each slab. This means that data cannot be naturally aligned at the beginning of a slab block. SLUB keeps all meta data in the corresponding page_struct. Objects can be naturally aligned in the slab. F.e. a 128 byte object will be aligned at 128 byte boundaries and can fit tightly into a 4k page with no bytes left over. SLAB cannot do this. D. SLAB has a complex cache reaper SLUB does not need a cache reaper for UP systems. On SMP systems the per CPU slab may be pushed back into partial list but that operation is simple and does not require an iteration over a list of objects. SLAB expires per CPU, shared and alien object queues during cache reaping which may cause strange hold offs. E. SLAB has complex NUMA policy layer support SLUB pushes NUMA policy handling into the page allocator. This means that allocation is coarser (SLUB does interleave on a page level) but that situation was also present before 2.6.13. SLABs application of policies to individual slab objects allocated in SLAB is certainly a performance concern due to the frequent references to memory policies which may lead a sequence of objects to come from one node after another. SLUB will get a slab full of objects from one node and then will switch to the next. F. Reduction of the size of partial slab lists SLAB has per node partial lists. This means that over time a large number of partial slabs may accumulate on those lists. These can only be reused if allocator occur on specific nodes. SLUB has a global pool of partial slabs and will consume slabs from that pool to decrease fragmentation. G. Tunables SLAB has sophisticated tuning abilities for each slab cache. One can manipulate the queue sizes in detail. However, filling the queues still requires the uses of the spin lock to check out slabs. SLUB has a global parameter (min_slab_order) for tuning. Increasing the minimum slab order can decrease the locking overhead. The bigger the slab order the less motions of pages between per CPU and partial lists occur and the better SLUB will be scaling. G. Slab merging We often have slab caches with similar parameters. SLUB detects those on boot up and merges them into the corresponding general caches. This leads to more effective memory use. About 50% of all caches can be eliminated through slab merging. This will also decrease slab fragmentation because partial allocated slabs can be filled up again. Slab merging can be switched off by specifying slub_nomerge on boot up. Note that merging can expose heretofore unknown bugs in the kernel because corrupted objects may now be placed differently and corrupt differing neighboring objects. Enable sanity checks to find those. H. Diagnostics The current slab diagnostics are difficult to use and require a recompilation of the kernel. SLUB contains debugging code that is always available (but is kept out of the hot code paths). SLUB diagnostics can be enabled via the "slab_debug" option. Parameters can be specified to select a single or a group of slab caches for diagnostics. This means that the system is running with the usual performance and it is much more likely that race conditions can be reproduced. I. Resiliency If basic sanity checks are on then SLUB is capable of detecting common error conditions and recover as best as possible to allow the system to continue. J. Tracing Tracing can be enabled via the slab_debug=T,<slabcache> option during boot. SLUB will then protocol all actions on that slabcache and dump the object contents on free. K. On demand DMA cache creation. Generally DMA caches are not needed. If a kmalloc is used with __GFP_DMA then just create this single slabcache that is needed. For systems that have no ZONE_DMA requirement the support is completely eliminated. L. Performance increase Some benchmarks have shown speed improvements on kernbench in the range of 5-10%. The locking overhead of slub is based on the underlying base allocation size. If we can reliably allocate larger order pages then it is possible to increase slub performance much further. The anti-fragmentation patches may enable further performance increases. Tested on: i386 UP + SMP, x86_64 UP + SMP + NUMA emulation, IA64 NUMA + Simulator SLUB Boot options slub_nomerge Disable merging of slabs slub_min_order=x Require a minimum order for slab caches. This increases the managed chunk size and therefore reduces meta data and locking overhead. slub_min_objects=x Mininum objects per slab. Default is 8. slub_max_order=x Avoid generating slabs larger than order specified. slub_debug Enable all diagnostics for all caches slub_debug=<options> Enable selective options for all caches slub_debug=<o>,<cache> Enable selective options for a certain set of caches Available Debug options F Double Free checking, sanity and resiliency R Red zoning P Object / padding poisoning U Track last free / alloc T Trace all allocs / frees (only use for individual slabs). To use SLUB: Apply this patch and then select SLUB as the default slab allocator. [hugh@veritas.com: fix an oops-causing locking error] [akpm@linux-foundation.org: various stupid cleanups and small fixes] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* slab: mark set_up_list3s() __initAndrew Morton2007-05-07
| | | | | | | | | | | | | It is only ever used prior to free_initmem(). (It will cause a warning when we run the section checking, but that's a false-positive and it simply changes the source of an existing warning, which is also a false-positive) Cc: Christoph Lameter <clameter@engr.sgi.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Do not disable interrupts when reading min_free_kbytesMel Gorman2007-05-07
| | | | | | | | | | | | | | | | | The sysctl handler for min_free_kbytes calls setup_per_zone_pages_min() on read or write. This function iterates through every zone and calls spin_lock_irqsave() on the zone LRU lock. When reading min_free_kbytes, this is a total waste of time that disables interrupts on the local processor. It might even be noticable machines with large numbers of zones if a process started constantly reading min_free_kbytes. This patch only calls setup_per_zone_pages_min() only on write. Tested on an x86 laptop and it did the right thing. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* slab: NUMA kmem_cache dietEric Dumazet2007-05-07
| | | | | | | | | | | | | | | | | | | | | | | | Some NUMA machines have a big MAX_NUMNODES (possibly 1024), but fewer possible nodes. This patch dynamically sizes the 'struct kmem_cache' to allocate only needed space. I moved nodelists[] field at the end of struct kmem_cache, and use the following computation in kmem_cache_init() cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) + nr_node_ids * sizeof(struct kmem_list3 *); On my two nodes x86_64 machine, kmem_cache.obj_size is now 192 instead of 704 (This is because on x86_64, MAX_NUMNODES is 64) On bigger NUMA setups, this might reduce the gfporder of "cache_cache" Signed-off-by: Eric Dumazet <dada1@cosmosbay.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Andy Whitcroft <apw@shadowen.org> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* SLAB: don't allocate empty shared cachesEric Dumazet2007-05-07
| | | | | | | | | | | | | | | We can avoid allocating empty shared caches and avoid unecessary check of cache->limit. We save some memory. We avoid bringing into CPU cache unecessary cache lines. All accesses to l3->shared are already checking NULL pointers so this patch is safe. Signed-off-by: Eric Dumazet <dada1@cosmosbay.com> Acked-by: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* SLAB: use num_possible_cpus() in enable_cpucache()Eric Dumazet2007-05-07
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | The existing comment in mm/slab.c is *perfect*, so I reproduce it : /* * CPU bound tasks (e.g. network routing) can exhibit cpu bound * allocation behaviour: Most allocs on one cpu, most free operations * on another cpu. For these cases, an efficient object passing between * cpus is necessary. This is provided by a shared array. The array * replaces Bonwick's magazine layer. * On uniprocessor, it's functionally equivalent (but less efficient) * to a larger limit. Thus disabled by default. */ As most shiped linux kernels are now compiled with CONFIG_SMP, there is no way a preprocessor #if can detect if the machine is UP or SMP. Better to use num_possible_cpus(). This means on UP we allocate a 'size=0 shared array', to be more efficient. Another patch can later avoid the allocations of 'empty shared arrays', to save some memory. Signed-off-by: Eric Dumazet <dada1@cosmosbay.com> Acked-by: Pekka Enberg <penberg@cs.helsinki.fi> Acked-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* readahead: code cleanupJan Kara2007-05-07
| | | | | | | | | | | | | | Rename file_ra_state.prev_page to prev_index and file_ra_state.offset to prev_offset. Also update of prev_index in do_generic_mapping_read() is now moved close to the update of prev_offset. [wfg@mail.ustc.edu.cn: fix it] Signed-off-by: Jan Kara <jack@suse.cz> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: WU Fengguang <wfg@mail.ustc.edu.cn> Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* readahead: improve heuristic detecting sequential readsJan Kara2007-05-07
| | | | | | | | | | | | | | Introduce ra.offset and store in it an offset where the previous read ended. This way we can detect whether reads are really sequential (and thus we should not mark the page as accessed repeatedly) or whether they are random and just happen to be in the same page (and the page should really be marked accessed again). Signed-off-by: Jan Kara <jack@suse.cz> Acked-by: Nick Piggin <nickpiggin@yahoo.com.au> Cc: WU Fengguang <wfg@mail.ustc.edu.cn> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Add unitialized_var() macro for suppressing gcc warningsBorislav Petkov2007-05-07
| | | | | | | | | | | | | | | | | | | | | | | | | Introduce a macro for suppressing gcc from generating a warning about a probable uninitialized state of a variable. Example: - spinlock_t *ptl; + spinlock_t *uninitialized_var(ptl); Not a happy solution, but those warnings are obnoxious. - Using the usual pointlessly-set-it-to-zero approach wastes several bytes of text. - Using a macro means we can (hopefully) do something else if gcc changes cause the `x = x' hack to stop working - Using a macro means that people who are worried about hiding true bugs can easily turn it off. Signed-off-by: Borislav Petkov <bbpetkov@yahoo.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: simplify filemap_nopageNick Piggin2007-05-07
| | | | | | | | | | | | Identical block is duplicated twice: contrary to the comment, we have been re-reading the page *twice* in filemap_nopage rather than once. If any retry logic or anything is needed, it belongs in lower levels anyway. Only retry once. Linus agrees. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* add pfn_valid_within helper for sub-MAX_ORDER hole detectionAndy Whitcroft2007-05-07
| | | | | | | | | | | | | | | | | | | Generally we work under the assumption that memory the mem_map array is contigious and valid out to MAX_ORDER_NR_PAGES block of pages, ie. that if we have validated any page within this MAX_ORDER_NR_PAGES block we need not check any other. This is not true when CONFIG_HOLES_IN_ZONE is set and we must check each and every reference we make from a pfn. Add a pfn_valid_within() helper which should be used when scanning pages within a MAX_ORDER_NR_PAGES block when we have already checked the validility of the block normally with pfn_valid(). This can then be optimised away when we do not have holes within a MAX_ORDER_NR_PAGES block of pages. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* allow oom_adj of saintly processesJoshua N Pritikin2007-05-07
| | | | | | | | | | | If the badness of a process is zero then oom_adj>0 has no effect. This patch makes sure that the oom_adj shift actually increases badness points appropriately. Signed-off-by: Joshua N. Pritikin <jpritikin@pobox.com> Cc: Andrea Arcangeli <andrea@novell.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: make read_cache_page synchronousNick Piggin2007-05-07
| | | | | | | | | | | | | | | | Ensure pages are uptodate after returning from read_cache_page, which allows us to cut out most of the filesystem-internal PageUptodate calls. I didn't have a great look down the call chains, but this appears to fixes 7 possible use-before uptodate in hfs, 2 in hfsplus, 1 in jfs, a few in ecryptfs, 1 in jffs2, and a possible cleared data overwritten with readpage in block2mtd. All depending on whether the filler is async and/or can return with a !uptodate page. Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* slab: ensure cache_alloc_refill terminatesPekka Enberg2007-05-07
| | | | | | | | | | | | | If slab->inuse is corrupted, cache_alloc_refill can enter an infinite loop as detailed by Michael Richardson in the following post: <http://lkml.org/lkml/2007/2/16/292>. This adds a BUG_ON to catch those cases. Cc: Michael Richardson <mcr@sandelman.ca> Acked-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: remove gcc workaroundNick Piggin2007-05-07
| | | | | | | | | | | | Minimum gcc version is 3.2 now. However, with likely profiling, even modern gcc versions cannot always eliminate the call. Replace the placeholder functions with the more conventional empty static inlines, which should be optimal for everyone. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Use ZVC counters to establish exact size of dirtyable pagesChristoph Lameter2007-05-07
| | | | | | | | | | | | | | | | | | | | | | | | | | | We can use the global ZVC counters to establish the exact size of the LRU and the free pages. This allows a more accurate determination of the dirty ratio. This patch will fix the broken ratio calculations if large amounts of memory are allocated to huge pags or other consumers that do not put the pages on to the LRU. Notes: - I did not add NR_SLAB_RECLAIMABLE to the calculation of the dirtyable pages. Those may be reclaimable but they are at this point not dirtyable. If NR_SLAB_RECLAIMABLE would be considered then a huge number of reclaimable pages would stop writeback from occurring. - This patch used to be in mm as the last one in a series of patches. It was removed when Linus updated the treatment of highmem because there was a conflict. I updated the patch to follow Linus' approach. This patch is neede to fulfill the claims made in the beginning of the patchset that is now in Linus' tree. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Safer nr_node_ids and nr_node_ids determination and initial valuesChristoph Lameter2007-05-07
| | | | | | | | | | | | | | | | | | The nr_cpu_ids value is currently only calculated in smp_init. However, it may be needed before (SLUB needs it on kmem_cache_init!) and other kernel components may also want to allocate dynamically sized per cpu array before smp_init. So move the determination of possible cpus into sched_init() where we already loop over all possible cpus early in boot. Also initialize both nr_node_ids and nr_cpu_ids with the highest value they could take. If we have accidental users before these values are determined then the current valud of 0 may cause too small per cpu and per node arrays to be allocated. If it is set to the maximum possible then we only waste some memory for early boot users. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Add apply_to_page_range() which applies a function to a pte rangeJeremy Fitzhardinge2007-05-07
| | | | | | | | | | | | | | | | | | | | | | | | Add a new mm function apply_to_page_range() which applies a given function to every pte in a given virtual address range in a given mm structure. This is a generic alternative to cut-and-pasting the Linux idiomatic pagetable walking code in every place that a sequence of PTEs must be accessed. Although this interface is intended to be useful in a wide range of situations, it is currently used specifically by several Xen subsystems, for example: to ensure that pagetables have been allocated for a virtual address range, and to construct batched special pagetable update requests to map I/O memory (in ioremap()). [akpm@linux-foundation.org: fix warning, unpleasantly] Signed-off-by: Ian Pratt <ian.pratt@xensource.com> Signed-off-by: Christian Limpach <Christian.Limpach@cl.cam.ac.uk> Signed-off-by: Chris Wright <chrisw@sous-sol.org> Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Matt Mackall <mpm@waste.org> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* slab: introduce kreallocPekka Enberg2007-05-07
| | | | | | | | | | | | | | | This introduce krealloc() that reallocates memory while keeping the contents unchanged. The allocator avoids reallocation if the new size fits the currently used cache. I also added a simple non-optimized version for mm/slob.c for compatibility. [akpm@linux-foundation.org: fix warnings] Acked-by: Josef Sipek <jsipek@fsl.cs.sunysb.edu> Acked-by: Matt Mackall <mpm@selenic.com> Acked-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* [PATCH] x86-64: skip cache_free_alien() on non NUMASiddha, Suresh B2007-05-02
| | | | | | | | | | | | | | Set use_alien_caches to 0 on non NUMA platforms. And avoid calling the cache_free_alien() when use_alien_caches is not set. This will avoid the cache miss that happens while dereferencing slabp to get nodeid. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Signed-off-by: Andi Kleen <ak@suse.de> Cc: Andi Kleen <andi@firstfloor.org> Cc: Eric Dumazet <dada1@cosmosbay.com> Cc: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* [PATCH] i386: PARAVIRT: add kmap_atomic_pte for mapping highpte pagesJeremy Fitzhardinge2007-05-02
| | | | | | | | | | | | | | | | | | | | | | Xen and VMI both have special requirements when mapping a highmem pte page into the kernel address space. These can be dealt with by adding a new kmap_atomic_pte() function for mapping highptes, and hooking it into the paravirt_ops infrastructure. Xen specifically wants to map the pte page RO, so this patch exposes a helper function, kmap_atomic_prot, which maps the page with the specified page protections. This also adds a kmap_flush_unused() function to clear out the cached kmap mappings. Xen needs this to clear out any potential stray RW mappings of pages which will become part of a pagetable. [ Zach - vmi.c will need some attention after this patch. It wasn't immediately obvious to me what needs to be done. ] Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com> Signed-off-by: Andi Kleen <ak@suse.de> Cc: Zachary Amsden <zach@vmware.com>
* [PATCH] x86: PARAVIRT: add hooks to intercept mm creation and destructionJeremy Fitzhardinge2007-05-02
| | | | | | | | | | | | | | | | | | | | | Add hooks to allow a paravirt implementation to track the lifetime of an mm. Paravirtualization requires three hooks, but only two are needed in common code. They are: arch_dup_mmap, which is called when a new mmap is created at fork arch_exit_mmap, which is called when the last process reference to an mm is dropped, which typically happens on exit and exec. The third hook is activate_mm, which is called from the arch-specific activate_mm() macro/function, and so doesn't need stub versions for other architectures. It's called when an mm is first used. Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com> Signed-off-by: Andi Kleen <ak@suse.de> Cc: linux-arch@vger.kernel.org Cc: James Bottomley <James.Bottomley@SteelEye.com> Acked-by: Ingo Molnar <mingo@elte.hu>
* [PATCH] x86-64: Fix vmalloc_32 to really allocate <4GB on 64bit platformsAndi Kleen2007-05-02
| | | | | | | Ugly ifdef, but should handle all 64bit platforms that have suitable zones. On some like Altix it's probably impossible without IOMMU use to get memory <4GB this way, but they have to live with that. Signed-off-by: Andi Kleen <ak@suse.de>
* Merge branch 'for-linus' of git://git390.osdl.marist.edu/pub/scm/linux-2.6Linus Torvalds2007-04-27
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | * 'for-linus' of git://git390.osdl.marist.edu/pub/scm/linux-2.6: (38 commits) [S390] SPIN_LOCK_UNLOCKED cleanup in drivers/s390 [S390] Clean up smp code in preparation for some larger changes. [S390] Remove debugging junk. [S390] Switch etr from tasklet to workqueue. [S390] split page_test_and_clear_dirty. [S390] Processor degradation notification. [S390] vtime: cleanup per_cpu usage. [S390] crypto: cleanup. [S390] sclp: fix coding style. [S390] vmlogrdr: stop IUCV connection in vmlogrdr_release. [S390] sclp: initialize early. [S390] ctc: kmalloc->kzalloc/casting cleanups. [S390] zfcpdump support. [S390] dasd: Add ipldev parameter. [S390] dasd: Add sysfs attribute status and generate uevents. [S390] Improved kernel stack overflow checking. [S390] Get rid of console setup functions. [S390] No execute support cleanup. [S390] Minor fault path optimization. [S390] Use generic bug. ...
| * [S390] split page_test_and_clear_dirty.Martin Schwidefsky2007-04-27
| | | | | | | | | | | | | | | | | | | | | | | | | | The page_test_and_clear_dirty primitive really consists of two operations, page_test_dirty and the page_clear_dirty. The combination of the two is not an atomic operation, so it makes more sense to have two separate operations instead of one. In addition to the improved readability of the s390 version of SetPageUptodate, it now avoids the page_test_dirty operation which is an insert-storage-key-extended (iske) instruction which is an expensive operation. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
* | Change default dirty-writeback limitsLinus Torvalds2007-04-27
|/ | | | | | | | | Do this really early in the 2.6.22-rc series, so that we'll get feedback. And don't change by half measures. Just cut the default dirty limit to a quarter of what it was, and see if anybody even notices. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* page migration: fix NR_FILE_PAGES accountingChristoph Lameter2007-04-24
| | | | | | | | | | | | | | NR_FILE_PAGES must be accounted for depending on the zone that the page belongs to. If we replace the page in the radix tree then we may have to shift the count to another zone. Suggested-by: Ethan Solomita <solo@google.com> Eventually-typed-in-by: Christoph Lameter <clameter@sgi.com> Cc: Martin Bligh <mbligh@mbligh.org> Cc: <stable@kernel.org> Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* fix OOM killing processes wrongly thought MPOL_BINDHugh Dickins2007-04-24
| | | | | | | | | | | | | | | I only have CONFIG_NUMA=y for build testing: surprised when trying a memhog to see lots of other processes killed with "No available memory (MPOL_BIND)". memhog is killed correctly once we initialize nodemask in constrained_alloc(). Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Christoph Lameter <clameter@sgi.com> Acked-by: William Irwin <bill.irwin@oracle.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* oom: kill all threads that share mm with killed taskDavid Rientjes2007-04-24
| | | | | | | | | | | | | | | | oom_kill_task() calls __oom_kill_task() to OOM kill a selected task. When finding other threads that share an mm with that task, we need to kill those individual threads and not the same one. (Bug introduced by f2a2a7108aa0039ba7a5fe7a0d2ecef2219a7584) Acked-by: William Irwin <bill.irwin@oracle.com> Acked-by: Christoph Lameter <clameter@engr.sgi.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Andrew Morton <akpm@osdl.org> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* [PATCH] nommu: fix bug ip_conntrack does not work on nommuWu, Bryan2007-04-12
| | | | | | | | | | num_physpages is not exported out in mm/nommu.c, so the ip_conntrack module link will fail. Signed-off-by: Bryan Wu <bryan.wu@analog.com> Acked-By: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge branch 'for-linus' of git://git390.osdl.marist.edu/pub/scm/linux-2.6Linus Torvalds2007-04-04
|\ | | | | | | | | | | * 'for-linus' of git://git390.osdl.marist.edu/pub/scm/linux-2.6: [S390] cio: Fix handling of interrupt for csch(). [S390] page_mkclean data corruption.
| * [S390] page_mkclean data corruption.Martin Schwidefsky2007-04-04
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The git commit c2fda5fed81eea077363b285b66eafce20dfd45a which added the page_test_and_clear_dirty call to page_mkclean and the git commit 7658cc289288b8ae7dd2c2224549a048431222b3 which fixes the "nasty and subtle race in shared mmap'ed page writeback" problem in clear_page_dirty_for_io cause data corruption on s390. The effect of the two changes is that for every call to clear_page_dirty_for_io a page_test_and_clear_dirty is done. If the per page dirty bit is set set_page_dirty is called. Strangly clear_page_dirty_for_io is called for not-uptodate pages, e.g. over this call-chain: [<000000000007c0f2>] clear_page_dirty_for_io+0x12a/0x130 [<000000000007c494>] generic_writepages+0x258/0x3e0 [<000000000007c692>] do_writepages+0x76/0x7c [<00000000000c7a26>] __writeback_single_inode+0xba/0x3e4 [<00000000000c831a>] sync_sb_inodes+0x23e/0x398 [<00000000000c8802>] writeback_inodes+0x12e/0x140 [<000000000007b9ee>] wb_kupdate+0xd2/0x178 [<000000000007cca2>] pdflush+0x162/0x23c The bad news now is that page_test_and_clear_dirty might claim that a not-uptodate page is dirty since SetPageUptodate which resets the per page dirty bit has not yet been called. The page writeback that follows clobbers the data on disk. The simplest solution to this problem is to move the call to page_test_and_clear_dirty under the "if (page_mapped(page))". If a file backed page is mapped it is uptodate. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
* | [PATCH] SLAB: Mention slab name when listing corrupt objectsDavid Howells2007-04-04
|/ | | | | | | | | Mention the slab name when listing corrupt objects. Although the function that released the memory is mentioned, that is frequently ambiguous as such functions often release several pieces of memory. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* [PATCH] mm: fix xip issue with /dev/zeroCarsten Otte2007-03-29
| | | | | | | | | | | | | | | Fix the bug, that reading into xip mapping from /dev/zero fills the user page table with ZERO_PAGE() entries. Later on, xip cannot tell which pages have been ZERO_PAGE() filled by access to a sparse mapping, and which ones origin from /dev/zero. It will unmap ZERO_PAGE from all mappings when filling the sparse hole with data. xip does now use its own zeroed page for its sparse mappings. Please apply. Signed-off-by: Carsten Otte <cotte@de.ibm.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* [PATCH] holepunch: fix mmap_sem i_mutex deadlockHugh Dickins2007-03-29
| | | | | | | | | | | | | | | | | | | sys_madvise has down_write of mmap_sem, then madvise_remove calls vmtruncate_range which takes i_mutex and i_alloc_sem: no, we can easily devise deadlocks from that ordering. madvise_remove drop mmap_sem while calling vmtruncate_range: luckily, since madvise_remove doesn't split or merge vmas, it's easy to handle this case with a NULL prev, without restructuring sys_madvise. (Though sad to retake mmap_sem when it's unlikely to be needed, and certainly down_read is sufficient for MADV_REMOVE, unlike the other madvices.) Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: Miklos Szeredi <mszeredi@suse.cz> Cc: Badari Pulavarty <pbadari@us.ibm.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* [PATCH] holepunch: fix disconnected pages after second truncateHugh Dickins2007-03-29
| | | | | | | | | | | | | | | | | | | | | | | | shmem_truncate_range has its own truncate_inode_pages_range, to free any pages racily instantiated while it was in progress: a SHMEM_PAGEIN flag is set when this might have happened. But holepunching gets no chance to clear that flag at the start of vmtruncate_range, so it's always set (unless a truncate came just before), so holepunch almost always does this second truncate_inode_pages_range. shmem holepunch has unlikely swap<->file races hereabouts whatever we do (without a fuller rework than is fit for this release): I was going to skip the second truncate in the punch_hole case, but Miklos points out that would make holepunch correctness more vulnerable to swapoff. So keep the second truncate, but follow it by an unmap_mapping_range to eliminate the disconnected pages (freed from pagecache while still mapped in userspace) that it might have left behind. Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: Miklos Szeredi <mszeredi@suse.cz> Cc: Badari Pulavarty <pbadari@us.ibm.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* [PATCH] holepunch: fix shmem_truncate_range punch lockingHugh Dickins2007-03-29
| | | | | | | | | | | | | | | | | | | | | Miklos Szeredi observes that during truncation of shmem page directories, info->lock is released to improve latency (after lowering i_size and next_index to exclude races); but this is quite wrong for holepunching, which receives no such protection from i_size or next_index, and is left vulnerable to races with shmem_unuse, shmem_getpage and shmem_writepage. Hold info->lock throughout when holepunching? No, any user could prevent rescheduling for far too long. Instead take info->lock just when needed: in shmem_free_swp when removing the swap entries, and whenever removing a directory page from the level above. But so long as we remove before scanning, we can safely skip taking the lock at the lower levels, except at misaligned start and end of the hole. Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: Miklos Szeredi <mszeredi@suse.cz> Cc: Badari Pulavarty <pbadari@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* [PATCH] holepunch: fix shmem_truncate_range punching too farHugh Dickins2007-03-29
| | | | | | | | | | | | | | | | | | | | | Miklos Szeredi observes BUG_ON(!entry) in shmem_writepage() triggered in rare circumstances, because shmem_truncate_range() erroneously removes partially truncated directory pages at the end of the range: later reclaim on pages pointing to these removed directories triggers the BUG. Indeed, and it can also cause data loss beyond the hole. Fix this as in the patch proposed by Miklos, but distinguish between "limit" (how far we need to search: ignore truncation's next_index optimization in the holepunch case - if there are races it's more consistent to act on the whole range specified) and "upper_limit" (how far we can free directory pages: generally we must be careful to keep partially punched pages, but can relax at end of file - i_size being held stable by i_mutex). Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: Miklos Szeredi <mszeredi@suse.cs> Cc: Badari Pulavarty <pbadari@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>