aboutsummaryrefslogtreecommitdiffstats
path: root/mm/vmstat.c
Commit message (Collapse)AuthorAge
...
* [PATCH] zoned vm counters: conversion of nr_dirty to per zone counterChristoph Lameter2006-06-30
| | | | | | | | | | | | | | | This makes nr_dirty a per zone counter. Looping over all processors is avoided during writeback state determination. The counter aggregation for nr_dirty had to be undone in the NFS layer since we summed up the page counts from multiple zones. Someone more familiar with NFS should probably review what I have done. [akpm@osdl.org: bugfix] Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] zoned vm counters: conversion of nr_pagetables to per zone counterChristoph Lameter2006-06-30
| | | | | | | | | Conversion of nr_page_table_pages to a per zone counter [akpm@osdl.org: bugfix] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] zoned vm counters: conversion of nr_slab to per zone counterChristoph Lameter2006-06-30
| | | | | | | | | | | | | - Allows reclaim to access counter without looping over processor counts. - Allows accurate statistics on how many pages are used in a zone by the slab. This may become useful to balance slab allocations over various zones. [akpm@osdl.org: bugfix] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] zoned vm counters: split NR_ANON_PAGES off from NR_FILE_MAPPEDChristoph Lameter2006-06-30
| | | | | | | | | | | | | | | | | | | | | | | | | The current NR_FILE_MAPPED is used by zone reclaim and the dirty load calculation as the number of mapped pagecache pages. However, that is not true. NR_FILE_MAPPED includes the mapped anonymous pages. This patch separates those and therefore allows an accurate tracking of the anonymous pages per zone. It then becomes possible to determine the number of unmapped pages per zone and we can avoid scanning for unmapped pages if there are none. Also it may now be possible to determine the mapped/unmapped ratio in get_dirty_limit. Isnt the number of anonymous pages irrelevant in that calculation? Note that this will change the meaning of the number of mapped pages reported in /proc/vmstat /proc/meminfo and in the per node statistics. This may affect user space tools that monitor these counters! NR_FILE_MAPPED works like NR_FILE_DIRTY. It is only valid for pagecache pages. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] zoned vm counters: conversion of nr_pagecache to per zone counterChristoph Lameter2006-06-30
| | | | | | | | | | | | | | | | | | Currently a single atomic variable is used to establish the size of the page cache in the whole machine. The zoned VM counters have the same method of implementation as the nr_pagecache code but also allow the determination of the pagecache size per zone. Remove the special implementation for nr_pagecache and make it a zoned counter named NR_FILE_PAGES. Updates of the page cache counters are always performed with interrupts off. We can therefore use the __ variant here. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] zoned vm counters: convert nr_mapped to per zone counterChristoph Lameter2006-06-30
| | | | | | | | | | | | | | | | | | | | nr_mapped is important because it allows a determination of how many pages of a zone are not mapped, which would allow a more efficient means of determining when we need to reclaim memory in a zone. We take the nr_mapped field out of the page state structure and define a new per zone counter named NR_FILE_MAPPED (the anonymous pages will be split off from NR_MAPPED in the next patch). We replace the use of nr_mapped in various kernel locations. This avoids the looping over all processors in try_to_free_pages(), writeback, reclaim (swap + zone reclaim). [akpm@osdl.org: bugfix] Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] zoned vm counters: basic ZVC (zoned vm counter) implementationChristoph Lameter2006-06-30
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Per zone counter infrastructure The counters that we currently have for the VM are split per processor. The processor however has not much to do with the zone these pages belong to. We cannot tell f.e. how many ZONE_DMA pages are dirty. So we are blind to potentially inbalances in the usage of memory in various zones. F.e. in a NUMA system we cannot tell how many pages are dirty on a particular node. If we knew then we could put measures into the VM to balance the use of memory between different zones and different nodes in a NUMA system. For example it would be possible to limit the dirty pages per node so that fast local memory is kept available even if a process is dirtying huge amounts of pages. Another example is zone reclaim. We do not know how many unmapped pages exist per zone. So we just have to try to reclaim. If it is not working then we pause and try again later. It would be better if we knew when it makes sense to reclaim unmapped pages from a zone. This patchset allows the determination of the number of unmapped pages per zone. We can remove the zone reclaim interval with the counters introduced here. Futhermore the ability to have various usage statistics available will allow the development of new NUMA balancing algorithms that may be able to improve the decision making in the scheduler of when to move a process to another node and hopefully will also enable automatic page migration through a user space program that can analyse the memory load distribution and then rebalance memory use in order to increase performance. The counter framework here implements differential counters for each processor in struct zone. The differential counters are consolidated when a threshold is exceeded (like done in the current implementation for nr_pageache), when slab reaping occurs or when a consolidation function is called. Consolidation uses atomic operations and accumulates counters per zone in the zone structure and also globally in the vm_stat array. VM functions can access the counts by simply indexing a global or zone specific array. The arrangement of counters in an array also simplifies processing when output has to be generated for /proc/*. Counters can be updated by calling inc/dec_zone_page_state or _inc/dec_zone_page_state analogous to *_page_state. The second group of functions can be called if it is known that interrupts are disabled. Special optimized increment and decrement functions are provided. These can avoid certain checks and use increment or decrement instructions that an architecture may provide. We also add a new CONFIG_DMA_IS_NORMAL that signifies that an architecture can do DMA to all memory and therefore ZONE_NORMAL will not be populated. This is only currently set for IA64 SGI SN2 and currently only affects node_page_state(). In the best case node_page_state can be reduced to retrieving a single counter for the one zone on the node. [akpm@osdl.org: cleanups] [akpm@osdl.org: export vm_stat[] for filesystems] Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] zoned vm counters: create vmstat.c/.h from page_alloc.c/.hChristoph Lameter2006-06-30
NOTE: ZVC are *not* the lightweight event counters. ZVCs are reliable whereas event counters do not need to be. Zone based VM statistics are necessary to be able to determine what the state of memory in one zone is. In a NUMA system this can be helpful for local reclaim and other memory optimizations that may be able to shift VM load in order to get more balanced memory use. It is also useful to know how the computing load affects the memory allocations on various zones. This patchset allows the retrieval of that data from userspace. The patchset introduces a framework for counters that is a cross between the existing page_stats --which are simply global counters split per cpu-- and the approach of deferred incremental updates implemented for nr_pagecache. Small per cpu 8 bit counters are added to struct zone. If the counter exceeds certain thresholds then the counters are accumulated in an array of atomic_long in the zone and in a global array that sums up all zone values. The small 8 bit counters are next to the per cpu page pointers and so they will be in high in the cpu cache when pages are allocated and freed. Access to VM counter information for a zone and for the whole machine is then possible by simply indexing an array (Thanks to Nick Piggin for pointing out that approach). The access to the total number of pages of various types does no longer require the summing up of all per cpu counters. Benefits of this patchset right now: - Ability for UP and SMP configuration to determine how memory is balanced between the DMA, NORMAL and HIGHMEM zones. - loops over all processors are avoided in writeback and reclaim paths. We can avoid caching the writeback information because the needed information is directly accessible. - Special handling for nr_pagecache removed. - zone_reclaim_interval vanishes since VM stats can now determine when it is worth to do local reclaim. - Fast inline per node page state determination. - Accurate counters in /sys/devices/system/node/node*/meminfo. Current counters are counting simply which processor allocated a page somewhere and guestimate based on that. So the counters were not useful to show the actual distribution of page use on a specific zone. - The swap_prefetch patch requires per node statistics in order to figure out when processors of a node can prefetch. This patch provides some of the needed numbers. - Detailed VM counters available in more /proc and /sys status files. References to earlier discussions: V1 http://marc.theaimsgroup.com/?l=linux-kernel&m=113511649910826&w=2 V2 http://marc.theaimsgroup.com/?l=linux-kernel&m=114980851924230&w=2 V3 http://marc.theaimsgroup.com/?l=linux-kernel&m=115014697910351&w=2 V4 http://marc.theaimsgroup.com/?l=linux-kernel&m=115024767318740&w=2 Performance tests with AIM7 did not show any regressions. Seems to be a tad faster even. Tested on ia64/NUMA. Builds fine on i386, SMP / UP. Includes fixes for s390/arm/uml arch code. This patch: Move counter code from page_alloc.c/page-flags.h to vmstat.c/h. Create vmstat.c/vmstat.h by separating the counter code and the proc functions. Move the vm_stat_text array before zoneinfo_show. [akpm@osdl.org: s390 build fix] [akpm@osdl.org: HOTPLUG_CPU build fix] Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>