| Commit message (Collapse) | Author | Age |
|
|
|
|
|
|
|
|
|
|
| |
It is always "an" if there is a vowel _spoken_ (not written).
So it is:
"an hour" (spoken vowel)
but
"a uniform" (spoken 'j')
Signed-off-by: Frederik Schwarzer <schwarzerf@gmail.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Impact: Use new API
Convert kernel mm functions to use struct cpumask.
We skip include/linux/percpu.h and mm/allocpercpu.c, which are in flux.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Mike Travis <travis@sgi.com>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
|
|\
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
Conflicts:
arch/x86/kernel/io_apic.c
|
| |\
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Conflicts:
mm/slub.c
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Currently fault-injection capability for SLAB allocator is only
available to SLAB. This patch makes it available to SLUB, too.
[penberg@cs.helsinki.fi: unify slab and slub implementations]
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
|
| | | | |
| | \ | |
| |\ \ \
| | | | |
| | | | |
| | | | | |
into for-linus
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
It should be 'lose', not 'loose'.
Signed-off-by: Nick Andrew <nick@nick-andrew.net>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
The return value for early_kmem_cache_node_alloc() is unused, so it is
better defined as void.
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Use 'slab page' instead of 'slab object'.
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
This patch replaces __builtin_return_address(0) with _RET_IP_, since a
previous patch moved _RET_IP_ and _THIS_IP_ to include/linux/kernel.h and
they're widely available now. This makes for shorter and easier to read
code.
[penberg@cs.helsinki.fi: remove _RET_IP_ casts to void pointer]
Signed-off-by: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
|
| | |/ /
| | | |
| | | |
| | | |
| | | |
| | | | |
Signed-off-by: Cyrill Gorcunov <gorcunov@gmail.com>
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
If a slab cache is mergeable and the sysfs alias cannot be added, the
target cache shall have its refcount decremented. kmem_cache_create()
will return NULL, so if kmem_cache_destroy() is ever called on the target
cache, it will never be freed if the refcount has been leaked.
Likewise, if a slab cache is not mergeable and the sysfs link cannot be
added, the new cache shall be removed from the slab_caches list.
kmem_cache_create() will return NULL, so it will be impossible to call
kmem_cache_destroy() on it.
Both of these operations require slub_lock since refcount of all slab
caches and slab_caches are protected by the lock.
In the mergeable case, it would be better to restore objsize and offset
back to their original values, but this could race with another merge
since slub_lock was dropped.
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
|
| | |/
| |/|
| | |
| | |
| | |
| | |
| | |
| | | |
Currently SLUB doesn't warn about __GFP_WAIT. Add it into slab_alloc().
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
|
|/ /
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
cpulist_scnprintf to take pointers.
Impact: change calling convention of existing cpumask APIs
Most cpumask functions started with cpus_: these have been replaced by
cpumask_ ones which take struct cpumask pointers as expected.
These four functions don't have good replacement names; fortunately
they're rarely used, so we just change them over.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Mike Travis <travis@sgi.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: paulus@samba.org
Cc: mingo@redhat.com
Cc: tony.luck@intel.com
Cc: ralf@linux-mips.org
Cc: Greg Kroah-Hartman <gregkh@suse.de>
Cc: cl@linux-foundation.org
Cc: srostedt@redhat.com
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Miles Lane tailing /sys files hit a BUG which Pekka Enberg has tracked
to my 966c8c12dc9e77f931e2281ba25d2f0244b06949 sprint_symbol(): use
less stack exposing a bug in slub's list_locations() -
kallsyms_lookup() writes a 0 to namebuf[KSYM_NAME_LEN-1], but that was
beyond the end of page provided.
The 100 slop which list_locations() allows at end of page looks roughly
enough for all the other stuff it might print after the symbol before
it checks again: break out KSYM_SYMBOL_LEN earlier than before.
Latencytop and ftrace and are using KSYM_NAME_LEN buffers where they
need KSYM_SYMBOL_LEN buffers, and vmallocinfo a 2*KSYM_NAME_LEN buffer
where it wants a KSYM_SYMBOL_LEN buffer: fix those before anyone copies
them.
[akpm@linux-foundation.org: ftrace.h needs module.h]
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc Miles Lane <miles.lane@gmail.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: Steven Rostedt <srostedt@redhat.com>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fixes for memcg/memory hotplug.
While memory hotplug allocate/free memmap, page_cgroup doesn't free
page_cgroup at OFFLINE when page_cgroup is allocated via bootomem.
(Because freeing bootmem requires special care.)
Then, if page_cgroup is allocated by bootmem and memmap is freed/allocated
by memory hotplug, page_cgroup->page == page is no longer true.
But current MEM_ONLINE handler doesn't check it and update
page_cgroup->page if it's not necessary to allocate page_cgroup. (This
was not found because memmap is not freed if SPARSEMEM_VMEMMAP is y.)
And I noticed that MEM_ONLINE can be called against "part of section".
So, freeing page_cgroup at CANCEL_ONLINE will cause trouble. (freeing
used page_cgroup) Don't rollback at CANCEL.
One more, current memory hotplug notifier is stopped by slub because it
sets NOTIFY_STOP_MASK to return vaule. So, page_cgroup's callback never
be called. (low priority than slub now.)
I think this slub's behavior is not intentional(BUG). and fixes it.
Another way to be considered about page_cgroup allocation:
- free page_cgroup at OFFLINE even if it's from bootmem
and remove specieal handler. But it requires more changes.
Addresses http://bugzilla.kernel.org/show_bug.cgi?id=12041
Signed-off-by: KAMEZAWA Hiruyoki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Tested-by: Badari Pulavarty <pbadari@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
| |
Lose dummy ->write hook in case of SLUB, it's possible now.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
|
|
|
|
|
|
|
|
|
| |
Initialized total objects atomic for the node in init_kmem_cache_node. The
uninitialized value was ruining the stats in /proc/slabinfo.
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Salman Qazi <sqazi@google.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Switch remote node defragmentation off by default. The current settings can
cause excessive node local allocations with hackbench:
SLAB:
% cat /proc/meminfo
MemTotal: 7701760 kB
MemFree: 5940096 kB
Slab: 123840 kB
SLUB:
% cat /proc/meminfo
MemTotal: 7701376 kB
MemFree: 4740928 kB
Slab: 1591680 kB
[Note: this feature is not related to slab defragmentation.]
You can find the original discussion here:
http://lkml.org/lkml/2008/8/4/308
Reported-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Tested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch changes the static MIN_PARTIAL to a dynamic per-cache ->min_partial
value that is calculated from object size. The bigger the object size, the more
pages we keep on the partial list.
I tested SLAB, SLUB, and SLUB with this patch on Jens Axboe's 'netio' example
script of the fio benchmarking tool. The script stresses the networking
subsystem which should also give a fairly good beating of kmalloc() et al.
To run the test yourself, first clone the fio repository:
git clone git://git.kernel.dk/fio.git
and then run the following command n times on your machine:
time ./fio examples/netio
The results on my 2-way 64-bit x86 machine are as follows:
[ the minimum, maximum, and average are captured from 50 individual runs ]
real time (seconds)
min max avg sd
SLAB 22.76 23.38 22.98 0.17
SLUB 22.80 25.78 23.46 0.72
SLUB (dynamic) 22.74 23.54 23.00 0.20
sys time (seconds)
min max avg sd
SLAB 6.90 8.28 7.70 0.28
SLUB 7.42 16.95 8.89 2.28
SLUB (dynamic) 7.17 8.64 7.73 0.29
user time (seconds)
min max avg sd
SLAB 36.89 38.11 37.50 0.29
SLUB 30.85 37.99 37.06 1.67
SLUB (dynamic) 36.75 38.07 37.59 0.32
As you can see from the above numbers, this patch brings SLUB to the same level
as SLAB for this particular workload fixing a ~2% regression. I'd expect this
change to help similar workloads that allocate a lot of objects that are close
to the size of a page.
Cc: Matthew Wilcox <matthew@wil.cx>
Cc: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
|
|
|
|
|
|
|
| |
This patch removes the obsolete and no longer used exports of ksize.
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Kmem cache passed to constructor is only needed for constructors that are
themselves multiplexeres. Nobody uses this "feature", nor does anybody uses
passed kmem cache in non-trivial way, so pass only pointer to object.
Non-trivial places are:
arch/powerpc/mm/init_64.c
arch/powerpc/mm/hugetlbpage.c
This is flag day, yes.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jon Tollefson <kniht@linux.vnet.ibm.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Matt Mackall <mpm@selenic.com>
[akpm@linux-foundation.org: fix arch/powerpc/mm/hugetlbpage.c]
[akpm@linux-foundation.org: fix mm/slab.c]
[akpm@linux-foundation.org: fix ubifs]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
SLUB reuses two page bits for internal purposes, it overlays PG_active and
PG_error. This is hidden away in slub.c. Document these overlays
explicitly in the main page-flags enum along with all the others.
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Tested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
| |
The limit of 128 bytes is too small when debugging slab corruption of the skb
cache, for example. So increase the limit to PAGE_SIZE to make debugging
corruptions easier.
Acked-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
|
|
|
|
|
|
|
|
| |
on_each_cpu() expands to function call on UP, too.
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Conflicts:
arch/powerpc/Kconfig
arch/s390/kernel/time.c
arch/x86/kernel/apic_32.c
arch/x86/kernel/cpu/perfctr-watchdog.c
arch/x86/kernel/i8259_64.c
arch/x86/kernel/ldt.c
arch/x86/kernel/nmi_64.c
arch/x86/kernel/smpboot.c
arch/x86/xen/smp.c
include/asm-x86/hw_irq_32.h
include/asm-x86/hw_irq_64.h
include/asm-x86/mach-default/irq_vectors.h
include/asm-x86/mach-voyager/irq_vectors.h
include/asm-x86/smp.h
kernel/Makefile
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
It's not even passed on to smp_call_function() anymore, since that
was removed. So kill it.
Acked-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
|
| |
| |
| |
| |
| |
| | |
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
We can detect kfree()s on non slab objects by checking for PageCompound().
Works in the same way as for ksize. This helped me catch an invalid
kfree().
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
|
| |
| |
| |
| |
| |
| |
| | |
This simplifies the code significantly, and was the whole point of the
exercise.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Vegard Nossum reported a crash in kmem_cache_alloc():
BUG: unable to handle kernel paging request at da87d000
IP: [<c01991c7>] kmem_cache_alloc+0xc7/0xe0
*pde = 28180163 *pte = 1a87d160
Oops: 0002 [#1] PREEMPT SMP DEBUG_PAGEALLOC
Pid: 3850, comm: grep Not tainted (2.6.26-rc9-00059-gb190333 #5)
EIP: 0060:[<c01991c7>] EFLAGS: 00210203 CPU: 0
EIP is at kmem_cache_alloc+0xc7/0xe0
EAX: 00000000 EBX: da87c100 ECX: 1adad71a EDX: 6b6b6b6b
ESI: 00200282 EDI: da87d000 EBP: f60bfe74 ESP: f60bfe54
DS: 007b ES: 007b FS: 00d8 GS: 0033 SS: 0068
and analyzed it:
"The register %ecx looks innocent but is very important here. The disassembly:
mov %edx,%ecx
shr $0x2,%ecx
rep stos %eax,%es:(%edi) <-- the fault
So %ecx has been loaded from %edx... which is 0x6b6b6b6b/POISON_FREE.
(0x6b6b6b6b >> 2 == 0x1adadada.)
%ecx is the counter for the memset, from here:
memset(object, 0, c->objsize);
i.e. %ecx was loaded from c->objsize, so "c" must have been freed.
Where did "c" come from? Uh-oh...
c = get_cpu_slab(s, smp_processor_id());
This looks like it has very much to do with CPU hotplug/unplug. Is
there a race between SLUB/hotplug since the CPU slab is used after it
has been freed?"
Good analysis.
Yeah, it's possible that a caller of kmem_cache_alloc() -> slab_alloc()
can be migrated on another CPU right after local_irq_restore() and
before memset(). The inital cpu can become offline in the mean time (or
a migration is a consequence of the CPU going offline) so its
'kmem_cache_cpu' structure gets freed ( slab_cpuup_callback).
At some point of time the caller continues on another CPU having an
obsolete pointer...
Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com>
Reported-by: Vegard Nossum <vegard.nossum@gmail.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Remove all clameter@sgi.com addresses from the kernel tree since they will
become invalid on June 27th. Change my maintainer email address for the
slab allocators to cl@linux-foundation.org (which will be the new email
address for the future).
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|/
|
|
|
|
|
|
|
|
|
|
|
| |
The 192 byte cache is not necessary if we have a basic alignment of 128
byte. If it would be used then the 192 would be aligned to the next 128 byte
boundary which would result in another 256 byte cache. Two 256 kmalloc caches
cause sysfs to complain about a duplicate entry.
MIPS needs 128 byte aligned kmalloc caches and spits out warnings on boot without
this patch.
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
|
|
|
|
|
|
|
|
|
| |
Add a WARN_ON for pages that don't have PageSlab nor PageCompound set to catch
the worst abusers of ksize() in the kernel.
Acked-by: Christoph Lameter <clameter@sgi.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
|
|
|
|
|
|
|
|
|
|
|
| |
any_slab_objects() does an atomic_read on an atomic_long_t, this
fixes it to use atomic_long_read instead.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
| |
If we make SLUB_DEBUG depend on SYSFS then we can simplify some
#ifdefs and avoid others.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
|
|
|
|
|
|
|
|
| |
Fix some issues with wrapping and use strict_strtoul to make parameter
passing from sysfs safer.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
x86 is the only arch right now, which provides an optimized for
div_long_long_rem and it has the downside that one has to be very careful that
the divide doesn't overflow.
The API is a little akward, as the arguments for the unsigned divide are
signed. The signed version also doesn't handle a negative divisor and
produces worse code on 64bit archs.
There is little incentive to keep this API alive, so this converts the few
users to the new API.
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We can see an ever repeating problem pattern with objects of any kind in the
kernel:
1) freeing of active objects
2) reinitialization of active objects
Both problems can be hard to debug because the crash happens at a point where
we have no chance to decode the root cause anymore. One problem spot are
kernel timers, where the detection of the problem often happens in interrupt
context and usually causes the machine to panic.
While working on a timer related bug report I had to hack specialized code
into the timer subsystem to get a reasonable hint for the root cause. This
debug hack was fine for temporary use, but far from a mergeable solution due
to the intrusiveness into the timer code.
The code further lacked the ability to detect and report the root cause
instantly and keep the system operational.
Keeping the system operational is important to get hold of the debug
information without special debugging aids like serial consoles and special
knowledge of the bug reporter.
The problems described above are not restricted to timers, but timers tend to
expose it usually in a full system crash. Other objects are less explosive,
but the symptoms caused by such mistakes can be even harder to debug.
Instead of creating specialized debugging code for the timer subsystem a
generic infrastructure is created which allows developers to verify their code
and provides an easy to enable debug facility for users in case of trouble.
The debugobjects core code keeps track of operations on static and dynamic
objects by inserting them into a hashed list and sanity checking them on
object operations and provides additional checks whenever kernel memory is
freed.
The tracked object operations are:
- initializing an object
- adding an object to a subsystem list
- deleting an object from a subsystem list
Each operation is sanity checked before the operation is executed and the
subsystem specific code can provide a fixup function which allows to prevent
the damage of the operation. When the sanity check triggers a warning message
and a stack trace is printed.
The list of operations can be extended if the need arises. For now it's
limited to the requirements of the first user (timers).
The core code enqueues the objects into hash buckets. The hash index is
generated from the address of the object to simplify the lookup for the check
on kfree/vfree. Each bucket has it's own spinlock to avoid contention on a
global lock.
The debug code can be compiled in without being active. The runtime overhead
is minimal and could be optimized by asm alternatives. A kernel command line
option enables the debugging code.
Thanks to Ingo Molnar for review, suggestions and cleanup patches.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: Greg KH <greg@kroah.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Kay Sievers <kay.sievers@vrfy.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a trivial patch that defines the priority of slab_memory_callback in
the callback chain as a constant. This is to prepare for next patch in the
series.
Signed-off-by: Nadia Derbey <Nadia.Derbey@bull.net>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Mingming Cao <cmm@us.ibm.com>
Cc: Pierre Peiffer <pierre.peiffer@bull.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/penberg/slab-2.6
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/slab-2.6:
slub: pack objects denser
slub: Calculate min_objects based on number of processors.
slub: Drop DEFAULT_MAX_ORDER / DEFAULT_MIN_OBJECTS
slub: Simplify any_slab_object checks
slub: Make the order configurable for each slab cache
slub: Drop fallback to page allocator method
slub: Fallback to minimal order during slab page allocation
slub: Update statistics handling for variable order slabs
slub: Add kmem_cache_order_objects struct
slub: for_each_object must be passed the number of objects in a slab
slub: Store max number of objects in the page struct.
slub: Dump list of objects not freed on kmem_cache_close()
slub: free_list() cleanup
slub: improve kmem_cache_destroy() error message
slob: fix bug - when slob allocates "struct kmem_cache", it does not force alignment.
|
| |
| |
| |
| |
| |
| |
| |
| | |
Since we now have more orders available use a denser packing.
Increase slab order if more than 1/16th of a slab would be wasted.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The mininum objects per slab is calculated based on the number of processors
that may come online.
Processors min_objects
---------------------------
1 8
2 12
4 16
8 20
16 24
32 28
64 32
1024 48
4096 56
The higher the number of processors the large the order sizes used for various
slab caches will become. This has been shown to address the performance issues
in hackbench on 16p etc.
The calculation is only performed if slub_min_objects is zero (default). If one
specifies a slub_min_objects on boot then that setting is taken.
As suggested by Zhang Yanmin's performance tests on 16-core Tigerton, use the
formula '4 * (fls(nr_cpu_ids) + 1)':
./hackbench 100 process 2000:
1) 2.6.25-rc6slab: 23.5 seconds
2) 2.6.25-rc7SLUB+slub_min_objects=20: 31 seconds
3) 2.6.25-rc7SLUB+slub_min_objects=24: 23.5 seconds
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Zhang Yanmin <yanmin.zhang@intel.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
We can now fallback to order 0 slabs. So set the slub_max_order to
PAGE_CACHE_ORDER_COSTLY but keep the slub_min_objects at 4. This
will mostly preserve the orders used in 2.6.25. F.e. The 2k kmalloc slab
will use order 1 allocs and the 4k kmalloc slab order 2.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Since we now have total_objects counter per node use that to
check for the presence of any objects. The loop over all cpu slabs
is not that useful since any cpu slab would require an object allocation
first. So drop that.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Makes /sys/kernel/slab/<slabname>/order writable. The allocation
order of a slab cache can then be changed dynamically during runtime.
This can be used to override the objects per slabs value establisheed
with the slub_min_objects setting that was manually specified or
calculated on bootup.
The changes of the slab order can occur while allocate_slab() runs.
Allocate slab needs the order and the number of slab objects that
are both changed by the change of order. Both are put into
a single word (struct kmem_cache_order_objects). They can then
be atomically updated and retrieved.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
|
| |
| |
| |
| |
| |
| |
| |
| | |
There is now a generic method of falling back to a slab page of minimal
order. No need anymore for the fallback to kmalloc_large().
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
If any higher order allocation fails then fall back the smallest order
necessary to contain at least one object. This enables fallback for all
allocations to order 0 pages. The fallback will waste more memory (objects
will not fit neatly) and the fallback slabs will be not as efficient as larger
slabs since they contain less objects.
Note that SLAB also depends on order 1 allocations for some slabs that waste
too much memory if forced into PAGE_SIZE'd page. SLUB now can now deal with
failing order 1 allocs which SLAB cannot do.
Add a new field min that will contain the objects for the smallest possible order
for a slab cache.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Change the statistics to consider that slabs of the same slabcache
can have different number of objects in them since they may be of
different order.
Provide a new sysfs field
total_objects
which shows the total objects that the allocated slabs of a slabcache
could hold.
Add a max field that holds the largest slab order that was ever used
for a slab cache.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Pack the order and the number of objects into a single word.
This saves some memory in the kmem_cache_structure and more importantly
allows us to fetch both values atomically.
Later the slab orders become runtime configurable and we need to fetch these
two items together in order to properly allocate a slab and initialize its
objects.
Fix the race by fetching the order and the number of objects in one word.
[penberg@cs.helsinki.fi: fix memset() page order in new_slab()]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
|