aboutsummaryrefslogtreecommitdiffstats
path: root/mm/hugetlb.c
Commit message (Collapse)AuthorAge
* Fix common misspellingsLucas De Marchi2011-03-31
| | | | | | Fixes generated by 'codespell' and manually reviewed. Signed-off-by: Lucas De Marchi <lucas.demarchi@profusion.mobi>
* hugetlbfs: correct handling of negative input to /proc/sys/vm/nr_hugepagesPetr Holasek2011-03-22
| | | | | | | | | | | | | | | | | | When the user inserts a negative value into /proc/sys/vm/nr_hugepages it will cause the kernel to allocate as many hugepages as possible and to then update /proc/meminfo to reflect this. This changes the behavior so that the negative input will result in nr_hugepages value being unchanged. Signed-off-by: Petr Holasek <pholasek@redhat.com> Signed-off-by: Anton Arapov <anton@redhat.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Eric B Munson <emunson@mgebm.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* hugetlb: fix handling of parse errors in sysfsEric B Munson2011-01-13
| | | | | | | | | | | | | | | | | | When parsing changes to the huge page pool sizes made from userspace via the sysfs interface, bogus input values are being covered up by nr_hugepages_store_common and nr_overcommit_hugepages_store returning 0 when strict_strtoul returns an error. This can cause an infinite loop in the nr_hugepages_store code. This patch changes the return value for these functions to -EINVAL when strict_strtoul returns an error. Signed-off-by: Eric B Munson <emunson@mgebm.net> Reported-by: CAI Qian <caiqian@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Eric B Munson <emunson@mgebm.net> Cc: Michal Hocko <mhocko@suse.cz> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* hugetlb: do not allow pagesize >= MAX_ORDER pool adjustmentEric B Munson2011-01-13
| | | | | | | | | | | | | | | | | | | Huge pages with order >= MAX_ORDER must be allocated at boot via the kernel command line, they cannot be allocated or freed once the kernel is up and running. Currently we allow values to be written to the sysfs and sysctl files controling pool size for these huge page sizes. This patch makes the store functions for nr_hugepages and nr_overcommit_hugepages return -EINVAL when the pool for a page size >= MAX_ORDER is changed. [akpm@linux-foundation.org: avoid multiple return paths in nr_hugepages_store_common()] [caiqian@redhat.com: add checking in hugetlb_overcommit_handler()] Signed-off-by: Eric B Munson <emunson@mgebm.net> Reported-by: CAI Qian <caiqian@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* hugetlb: check the return value of string conversion in sysctl handlerMichal Hocko2011-01-13
| | | | | | | | | | | | | | | | | | | | | proc_doulongvec_minmax may fail if the given buffer doesn't represent a valid number. If we provide something invalid we will initialize the resulting value (nr_overcommit_huge_pages in this case) to a random value from the stack. The issue was introduced by a3d0c6aa when the default handler has been replaced by the helper function where we do not check the return value. Reproducer: echo "" > /proc/sys/vm/nr_overcommit_hugepages [akpm@linux-foundation.org: correctly propagate proc_doulongvec_minmax return code] Signed-off-by: Michal Hocko <mhocko@suse.cz> Cc: CAI Qian <caiqian@redhat.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/hugetlb.c: fix error-path memory leak in nr_hugepages_store_common()Jesper Juhl2011-01-13
| | | | | | | | | | | | | | | | | The NODEMASK_ALLOC macro may dynamically allocate memory for its second argument ('nodes_allowed' in this context). In nr_hugepages_store_common() we may abort early if strict_strtoul() fails, but in that case we do not free the memory already allocated to 'nodes_allowed', causing a memory leak. This patch closes the leak by freeing the memory in the error path. [akpm@linux-foundation.org: use NODEMASK_FREE, per Minchan Kim] Signed-off-by: Jesper Juhl <jj@chaosbits.net> Cc: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* thp: clear_copy_huge_pageAndrea Arcangeli2011-01-13
| | | | | | | | | | | Move the copy/clear_huge_page functions to common code to share between hugetlb.c and huge_memory.c. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/hugetlb.c: avoid double unlock_page() in hugetlb_fault()Dean Nelson2010-12-02
| | | | | | | | | | | | | | | Have hugetlb_fault() call unlock_page(page) only if it had previously called lock_page(page). Setting CONFIG_DEBUG_VM=y and then running the libhugetlbfs test suite, resulted in the tripping of VM_BUG_ON(!PageLocked(page)) in unlock_page() having been called by hugetlb_fault() when page == pagecache_page. This patch remedied the problem. Signed-off-by: Dean Nelson <dnelson@redhat.com> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/hugetlb.c: add missing spin_lock() to hugetlb_cow()Dean Nelson2010-10-26
| | | | | | | | | | | Add missing spin_lock() of the page_table_lock before an error return in hugetlb_cow(). Callers of hugtelb_cow() expect it to be held upon return. Signed-off-by: Dean Nelson <dnelson@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Encode huge page size for VM_FAULT_HWPOISON errorsAndi Kleen2010-10-08
| | | | | | | | | | | | | | | | | | | | | | | | | This fixes a problem introduced with the hugetlb hwpoison handling The user space SIGBUS signalling wants to know the size of the hugepage that caused a HWPOISON fault. Unfortunately the architecture page fault handlers do not have easy access to the struct page. Pass the information out in the fault error code instead. I added a separate VM_FAULT_HWPOISON_LARGE bit for this case and encode the hpage index in some free upper bits of the fault code. The small page hwpoison keeps stays with the VM_FAULT_HWPOISON name to minimize changes. Also add code to hugetlb.h to convert that index into a page shift. Will be used in a further patch. Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: fengguang.wu@intel.com Signed-off-by: Andi Kleen <ak@linux.intel.com>
* hugepage: move is_hugepage_on_freelist inside ifdef to avoid warningAndi Kleen2010-10-08
| | | | | | | | | | Fixes warning reported by Stephen Rothwell mm/hugetlb.c:2950: warning: 'is_hugepage_on_freelist' defined but not used for the !CONFIG_MEMORY_FAILURE case. Signed-off-by: Andi Kleen <ak@linux.intel.com>
* HWPOSION, hugetlb: recover from free hugepage error when !MF_COUNT_INCREASEDNaoya Horiguchi2010-10-08
| | | | | | | | | | | | | | | | | | | | | Currently error recovery for free hugepage works only for MF_COUNT_INCREASED. This patch enables !MF_COUNT_INCREASED case. Free hugepages can be handled directly by alloc_huge_page() and dequeue_hwpoisoned_huge_page(), and both of them are protected by hugetlb_lock, so there is no race between them. Note that this patch defines the refcount of HWPoisoned hugepage dequeued from freelist is 1, deviated from present 0, thereby we can avoid race between unpoison and memory failure on free hugepage. This is reasonable because unlikely to free buddy pages, free hugepage is governed by hugetlbfs even after error handling finishes. And it also makes unpoison code added in the later patch cleaner. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andi Kleen <ak@linux.intel.com>
* hugetlb: move refcounting in hugepage allocation inside hugetlb_lockNaoya Horiguchi2010-10-08
| | | | | | | | | | | | | Currently alloc_huge_page() raises page refcount outside hugetlb_lock. but it causes race when dequeue_hwpoison_huge_page() runs concurrently with alloc_huge_page(). To avoid it, this patch moves set_page_refcounted() in hugetlb_lock. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Christoph Lameter <cl@linux.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
* HWPOISON, hugetlb: add free check to dequeue_hwpoison_huge_page()Naoya Horiguchi2010-10-08
| | | | | | | | | | | This check is necessary to avoid race between dequeue and allocation, which can cause a free hugepage to be dequeued twice and get kernel unstable. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Christoph Lameter <cl@linux.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
* hugetlb: hugepage migration coreNaoya Horiguchi2010-10-08
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch extends page migration code to support hugepage migration. One of the potential users of this feature is soft offlining which is triggered by memory corrected errors (added by the next patch.) Todo: - there are other users of page migration such as memory policy, memory hotplug and memocy compaction. They are not ready for hugepage support for now. ChangeLog since v4: - define migrate_huge_pages() - remove changes on isolation/putback_lru_page() ChangeLog since v2: - refactor isolate/putback_lru_page() to handle hugepage - add comment about race on unmap_and_move_huge_page() ChangeLog since v1: - divide migration code path for hugepage - define routine checking migration swap entry for hugetlb - replace "goto" with "if/else" in remove_migration_pte() Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andi Kleen <ak@linux.intel.com>
* hugetlb: redefine hugepage copy functionsNaoya Horiguchi2010-10-08
| | | | | | | | | | | | | | | | | | | | | | This patch modifies hugepage copy functions to have only destination and source hugepages as arguments for later use. The old ones are renamed from copy_{gigantic,huge}_page() to copy_user_{gigantic,huge}_page(). This naming convention is consistent with that between copy_highpage() and copy_user_highpage(). ChangeLog since v4: - add blank line between local declaration and code - remove unnecessary might_sleep() ChangeLog since v2: - change copy_huge_page() from macro to inline dummy function to avoid compile warning when !CONFIG_HUGETLB_PAGE. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Christoph Lameter <cl@linux.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
* hugetlb: add allocate function for hugepage migrationNaoya Horiguchi2010-10-08
| | | | | | | | | | | | | | | | | | | | | | We can't use existing hugepage allocation functions to allocate hugepage for page migration, because page migration can happen asynchronously with the running processes and page migration users should call the allocation function with physical addresses (not virtual addresses) as arguments. ChangeLog since v3: - unify alloc_buddy_huge_page() and alloc_buddy_huge_page_node() ChangeLog since v2: - remove unnecessary get/put_mems_allowed() (thanks to David Rientjes) ChangeLog since v1: - add comment on top of alloc_huge_page_no_vma() Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com> Reviewed-by: Christoph Lameter <cl@linux.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
* hugetlb: fix metadata corruption in hugetlb_fault()Naoya Horiguchi2010-10-08
| | | | | | | | | | | | | | | | | | | | | | | Since the PageHWPoison() check is for avoiding hwpoisoned page remained in pagecache mapping to the process, it should be done in "found in pagecache" branch, not in the common path. Otherwise, metadata corruption occurs if memory failure happens between alloc_huge_page() and lock_page() because page fault fails with metadata changes remained (such as refcount, mapcount, etc.) This patch moves the check to "found in pagecache" branch and fix the problem. ChangeLog since v2: - remove retry check in "new allocation" path. - make description more detailed - change patch name from "HWPOISON, hugetlb: move PG_HWPoison bit check" Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Wu Fengguang <fengguang.wu@intel.com> Reviewed-by: Christoph Lameter <cl@linux.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
* hugetlb, rmap: fix confusing page locking in hugetlb_cow()Naoya Horiguchi2010-09-23
| | | | | | | | | | | | | The "if (!trylock_page)" block in the avoidcopy path of hugetlb_cow() looks confusing and is buggy. Originally this trylock_page() was intended to make sure that old_page is locked even when old_page != pagecache_page, because then only pagecache_page is locked. This patch fixes it by moving page locking into hugetlb_fault(). Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* hugetlb, rmap: use hugepage_add_new_anon_rmap() in hugetlb_cow()Naoya Horiguchi2010-09-23
| | | | | | | | | | | Obviously, setting anon_vma for COWed hugepage should be done by hugepage_add_new_anon_rmap() to scan vmas faster. This patch fixes it. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Rik van Riel <riel@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge branch 'hwpoison' of ↵Linus Torvalds2010-08-12
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6 * 'hwpoison' of git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6: hugetlb: add missing unlock in avoidcopy path in hugetlb_cow() hwpoison: rename CONFIG HWPOISON, hugetlb: support hwpoison injection for hugepage HWPOISON, hugetlb: detect hwpoison in hugetlb code HWPOISON, hugetlb: isolate corrupted hugepage HWPOISON, hugetlb: maintain mce_bad_pages in handling hugepage error HWPOISON, hugetlb: set/clear PG_hwpoison bits on hugepage HWPOISON, hugetlb: enable error handling path for hugepage hugetlb, rmap: add reverse mapping for hugepage hugetlb: move definition of is_vm_hugetlb_page() to hugepage_inline.h Fix up trivial conflicts in mm/memory-failure.c
| * hugetlb: add missing unlock in avoidcopy path in hugetlb_cow()Naoya Horiguchi2010-08-11
| | | | | | | | | | | | | | | | | | | | | | | | | | This patch fixes possible deadlock in hugepage lock_page() by adding missing unlock_page(). libhugetlbfs test will hit this bug when the next patch in this patchset ("hugetlb, HWPOISON: move PG_HWPoison bit check") is applied. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com> Acked-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
| * HWPOISON, hugetlb: support hwpoison injection for hugepageNaoya Horiguchi2010-08-11
| | | | | | | | | | | | | | | | | | | | | | | | This patch enables hwpoison injection through debug/hwpoison interfaces, with which we can test memory error handling for free or reserved hugepages (which cannot be tested by madvise() injector). [AK: Export PageHuge too for the injection module] Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andrew Morton <akpm@linux-foundation.org> Acked-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
| * HWPOISON, hugetlb: detect hwpoison in hugetlb codeNaoya Horiguchi2010-08-11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch enables to block access to hwpoisoned hugepage and also enables to block unmapping for it. Dependency: "HWPOISON, hugetlb: enable error handling path for hugepage" Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andrew Morton <akpm@linux-foundation.org> Acked-by: Fengguang Wu <fengguang.wu@intel.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andi Kleen <ak@linux.intel.com>
| * HWPOISON, hugetlb: isolate corrupted hugepageNaoya Horiguchi2010-08-11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If error hugepage is not in-use, we can fully recovery from error by dequeuing it from freelist, so return RECOVERY. Otherwise whether or not we can recovery depends on user processes, so return DELAYED. Dependency: "HWPOISON, hugetlb: enable error handling path for hugepage" Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andrew Morton <akpm@linux-foundation.org> Acked-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
| * hugetlb, rmap: add reverse mapping for hugepageNaoya Horiguchi2010-08-11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds reverse mapping feature for hugepage by introducing mapcount for shared/private-mapped hugepage and anon_vma for private-mapped hugepage. While hugepage is not currently swappable, reverse mapping can be useful for memory error handler. Without this patch, memory error handler cannot identify processes using the bad hugepage nor unmap it from them. That is: - for shared hugepage: we can collect processes using a hugepage through pagecache, but can not unmap the hugepage because of the lack of mapcount. - for privately mapped hugepage: we can neither collect processes nor unmap the hugepage. This patch solves these problems. This patch include the bug fix given by commit 23be7468e8, so reverts it. Dependency: "hugetlb: move definition of is_vm_hugetlb_page() to hugepage_inline.h" ChangeLog since May 24. - create hugetlb_inline.h and move is_vm_hugetlb_index() in it. - move functions setting up anon_vma for hugepage into mm/rmap.c. ChangeLog since May 13. - rebased to 2.6.34 - fix logic error (in case that private mapping and shared mapping coexist) - move is_vm_hugetlb_page() into include/linux/mm.h to use this function from linear_page_index() - define and use linear_hugepage_index() instead of compound_order() - use page_move_anon_rmap() in hugetlb_cow() - copy exclusive switch of __set_page_anon_rmap() into hugepage counterpart. - revert commit 24be7468 completely Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Acked-by: Fengguang Wu <fengguang.wu@intel.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andi Kleen <ak@linux.intel.com>
* | hugetlb: call mmu notifiers on hugepage cowDoug Doan2010-08-09
|/ | | | | | | | | | | | | | | | When a copy-on-write occurs, we take one of two paths in handle_mm_fault: through handle_pte_fault for normal pages, or through hugetlb_fault for huge pages. In the normal page case, we eventually get to do_wp_page and call mmu notifiers via ptep_clear_flush_notify. There is no callout to the mmmu notifiers in the huge page case. This patch fixes that. Signed-off-by: Doug Doan <dougd@cray.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* cpuset,mm: fix no node to alloc memory when changing cpuset's memsMiao Xie2010-05-25
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Before applying this patch, cpuset updates task->mems_allowed and mempolicy by setting all new bits in the nodemask first, and clearing all old unallowed bits later. But in the way, the allocator may find that there is no node to alloc memory. The reason is that cpuset rebinds the task's mempolicy, it cleans the nodes which the allocater can alloc pages on, for example: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom This patch fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. [akpm@linux-foundation.org: fix spello] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* hugetlbfs: kill applications that use MAP_NORESERVE with SIGBUS instead of ↵Mel Gorman2010-05-11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | OOM-killer Ordinarily, application using hugetlbfs will create mappings with reserves. For shared mappings, these pages are reserved before mmap() returns success and for private mappings, the caller process is guaranteed and a child process that cannot get the pages gets killed with sigbus. An application that uses MAP_NORESERVE gets no reservations and mmap() will always succeed at the risk the page will not be available at fault time. This might be used for example on very large sparse mappings where the developer is confident the necessary huge pages exist to satisfy all faults even though the whole mapping cannot be backed by huge pages. Unfortunately, if an allocation does fail, VM_FAULT_OOM is returned to the fault handler which proceeds to trigger the OOM-killer. This is unhelpful. Even without hugetlbfs mounted, a user using mmap() can trivially trigger the OOM-killer because VM_FAULT_OOM is returned (will provide example program if desired - it's a whopping 24 lines long). It could be considered a DOS available to an unprivileged user. This patch alters hugetlbfs to kill a process that uses MAP_NORESERVE where huge pages were not available with SIGBUS instead of triggering the OOM killer. This change affects hugetlb_cow() as well. I feel there is a failure case in there, but I didn't create one. It would need a fairly specific target in terms of the faulting application and the hugepage pool size. The hugetlb_no_page() path is much easier to hit but both might as well be closed. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: David Rientjes <rientjes@google.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* hugetlb: fix infinite loop in get_futex_key() when backed by huge pagesMel Gorman2010-04-24
| | | | | | | | | | | | | | | | | | | | | | | | | | If a futex key happens to be located within a huge page mapped MAP_PRIVATE, get_futex_key() can go into an infinite loop waiting for a page->mapping that will never exist. See https://bugzilla.redhat.com/show_bug.cgi?id=552257 for more details about the problem. This patch makes page->mapping a poisoned value that includes PAGE_MAPPING_ANON mapped MAP_PRIVATE. This is enough for futex to continue but because of PAGE_MAPPING_ANON, the poisoned value is not dereferenced or used by futex. No other part of the VM should be dereferencing the page->mapping of a hugetlbfs page as its page cache is not on the LRU. This patch fixes the problem with the test case described in the bugzilla. [akpm@linux-foundation.org: mel cant spel] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Darren Hart <darren@dvhart.com> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* include cleanup: Update gfp.h and slab.h includes to prepare for breaking ↵Tejun Heo2010-03-30
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
* Merge branch 'for-linus' of master.kernel.org:/home/rmk/linux-2.6-armLinus Torvalds2010-03-01
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | * 'for-linus' of master.kernel.org:/home/rmk/linux-2.6-arm: (100 commits) ARM: Eliminate decompressor -Dstatic= PIC hack ARM: 5958/1: ARM: U300: fix inverted clk round rate ARM: 5956/1: misplaced parentheses ARM: 5955/1: ep93xx: move timer defines into core.c and document ARM: 5954/1: ep93xx: move gpio interrupt support to gpio.c ARM: 5953/1: ep93xx: fix broken build of clock.c ARM: 5952/1: ARM: MM: Add ARM_L1_CACHE_SHIFT_6 for handle inside each ARCH Kconfig ARM: 5949/1: NUC900 add gpio virtual memory map ARM: 5948/1: Enable timer0 to time4 clock support for nuc910 ARM: 5940/2: ARM: MMCI: remove custom DBG macro and printk ARM: make_coherent(): fix problems with highpte, part 2 MM: Pass a PTE pointer to update_mmu_cache() rather than the PTE itself ARM: 5945/1: ep93xx: include correct irq.h in core.c ARM: 5933/1: amba-pl011: support hardware flow control ARM: 5930/1: Add PKMAP area description to memory.txt. ARM: 5929/1: Add checks to detect overlap of memory regions. ARM: 5928/1: Change type of VMALLOC_END to unsigned long. ARM: 5927/1: Make delimiters of DMA area globally visibly. ARM: 5926/1: Add "Virtual kernel memory..." printout. ARM: 5920/1: OMAP4: Enable L2 Cache ... Fix up trivial conflict in arch/arm/mach-mx25/clock.c
| * MM: Pass a PTE pointer to update_mmu_cache() rather than the PTE itselfRussell King2010-02-20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | On VIVT ARM, when we have multiple shared mappings of the same file in the same MM, we need to ensure that we have coherency across all copies. We do this via make_coherent() by making the pages uncacheable. This used to work fine, until we allowed highmem with highpte - we now have a page table which is mapped as required, and is not available for modification via update_mmu_cache(). Ralf Beache suggested getting rid of the PTE value passed to update_mmu_cache(): On MIPS update_mmu_cache() calls __update_tlb() which walks pagetables to construct a pointer to the pte again. Passing a pte_t * is much more elegant. Maybe we might even replace the pte argument with the pte_t? Ben Herrenschmidt would also like the pte pointer for PowerPC: Passing the ptep in there is exactly what I want. I want that -instead- of the PTE value, because I have issue on some ppc cases, for I$/D$ coherency, where set_pte_at() may decide to mask out the _PAGE_EXEC. So, pass in the mapped page table pointer into update_mmu_cache(), and remove the PTE value, updating all implementations and call sites to suit. Includes a fix from Stephen Rothwell: sparc: fix fallout from update_mmu_cache API change Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
* | hugetlb: fix section mismatchesJeff Mahoney2010-02-02
|/ | | | | | | | | | | | hugetlb_sysfs_add_hstate is called by hugetlb_register_node directly during init and also indirectly via sysfs after init. This patch removes the __init tag from hugetlb_sysfs_add_hstate. Signed-off-by: Jeff Mahoney <jeffm@suse.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: hugetlb: fix clear_huge_page()Andrea Arcangeli2010-01-11
| | | | | | | | | | | | sz is in bytes, MAX_ORDER_NR_PAGES is in pages. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: David Gibson <dwg@au1.ibm.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: David Rientjes <rientjes@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* hugetlb: abort a hugepage pool resize if a signal is pendingMel Gorman2009-12-15
| | | | | | | | | | | | | | | If a user asks for a hugepage pool resize but specified a large number, the machine can begin trashing. In response, they might hit ctrl-c but signals are ignored and the pool resize continues until it fails an allocation. This can take a considerable amount of time so this patch aborts a pool resize if a signal is pending. Suggested by Dave Hansen. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* hugetlb: acquire the i_mmap_lock before walking the prio_tree to unmap a pageMel Gorman2009-12-15
| | | | | | | | | | | | | | | When the owner of a mapping fails COW because a child process is holding a reference, the children VMAs are walked and the page is unmapped. The i_mmap_lock is taken for the unmapping of the page but not the walking of the prio_tree. In theory, that tree could be changing if the lock is not held. This patch takes the i_mmap_lock properly for the duration of the prio_tree walk. [hugh.dickins@tiscali.co.uk: Spotted the problem in the first place] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* hugetlb: prevent deadlock in __unmap_hugepage_range() when alloc_huge_page() ↵Larry Woodman2009-12-15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | fails hugetlb_fault() takes the mm->page_table_lock spinlock then calls hugetlb_cow(). If the alloc_huge_page() in hugetlb_cow() fails due to an insufficient huge page pool it calls unmap_ref_private() with the mm->page_table_lock held. unmap_ref_private() then calls unmap_hugepage_range() which tries to acquire the mm->page_table_lock. [<ffffffff810928c3>] print_circular_bug_tail+0x80/0x9f [<ffffffff8109280b>] ? check_noncircular+0xb0/0xe8 [<ffffffff810935e0>] __lock_acquire+0x956/0xc0e [<ffffffff81093986>] lock_acquire+0xee/0x12e [<ffffffff8111a7a6>] ? unmap_hugepage_range+0x3e/0x84 [<ffffffff8111a7a6>] ? unmap_hugepage_range+0x3e/0x84 [<ffffffff814c348d>] _spin_lock+0x40/0x89 [<ffffffff8111a7a6>] ? unmap_hugepage_range+0x3e/0x84 [<ffffffff8111afee>] ? alloc_huge_page+0x218/0x318 [<ffffffff8111a7a6>] unmap_hugepage_range+0x3e/0x84 [<ffffffff8111b2d0>] hugetlb_cow+0x1e2/0x3f4 [<ffffffff8111b935>] ? hugetlb_fault+0x453/0x4f6 [<ffffffff8111b962>] hugetlb_fault+0x480/0x4f6 [<ffffffff8111baee>] follow_hugetlb_page+0x116/0x2d9 [<ffffffff814c31a7>] ? _spin_unlock_irq+0x3a/0x5c [<ffffffff81107b4d>] __get_user_pages+0x2a3/0x427 [<ffffffff81107d0f>] get_user_pages+0x3e/0x54 [<ffffffff81040b8b>] get_user_pages_fast+0x170/0x1b5 [<ffffffff81160352>] dio_get_page+0x64/0x14a [<ffffffff8116112a>] __blockdev_direct_IO+0x4b7/0xb31 [<ffffffff8115ef91>] blkdev_direct_IO+0x58/0x6e [<ffffffff8115e0a4>] ? blkdev_get_blocks+0x0/0xb8 [<ffffffff810ed2c5>] generic_file_aio_read+0xdd/0x528 [<ffffffff81219da3>] ? avc_has_perm+0x66/0x8c [<ffffffff81132842>] do_sync_read+0xf5/0x146 [<ffffffff8107da00>] ? autoremove_wake_function+0x0/0x5a [<ffffffff81211857>] ? security_file_permission+0x24/0x3a [<ffffffff81132fd8>] vfs_read+0xb5/0x126 [<ffffffff81133f6b>] ? fget_light+0x5e/0xf8 [<ffffffff81133131>] sys_read+0x54/0x8c [<ffffffff81011e42>] system_call_fastpath+0x16/0x1b This can be fixed by dropping the mm->page_table_lock around the call to unmap_ref_private() if alloc_huge_page() fails, its dropped right below in the normal path anyway. However, earlier in the that function, it's also possible to call into the page allocator with the same spinlock held. What this patch does is drop the spinlock before the page allocator is potentially entered. The check for page allocation failure can be made without the page_table_lock as well as the copy of the huge page. Even if the PTE changed while the spinlock was held, the consequence is that a huge page is copied unnecessarily. This resolves both the double taking of the lock and sleeping with the spinlock held. [mel@csn.ul.ie: Cover also the case where process can sleep with spinlock] Signed-off-by: Larry Woodman <lwooman@redhat.com> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: add gfp flags for NODEMASK_ALLOC slab allocationsDavid Rientjes2009-12-15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Objects passed to NODEMASK_ALLOC() are relatively small in size and are backed by slab caches that are not of large order, traditionally never greater than PAGE_ALLOC_COSTLY_ORDER. Thus, using GFP_KERNEL for these allocations on large machines when CONFIG_NODES_SHIFT > 8 will cause the page allocator to loop endlessly in the allocation attempt, each time invoking both direct reclaim or the oom killer. This is of particular interest when using NODEMASK_ALLOC() from a mempolicy context (either directly in mm/mempolicy.c or the mempolicy constrained hugetlb allocations) since the oom killer always kills current when allocations are constrained by mempolicies. So for all present use cases in the kernel, current would end up being oom killed when direct reclaim fails. That would allow the NODEMASK_ALLOC() to succeed but current would have sacrificed itself upon returning. This patch adds gfp flags to NODEMASK_ALLOC() to pass to kmalloc() on CONFIG_NODES_SHIFT > 8; this parameter is a nop on other configurations. All current use cases either directly from hugetlb code or indirectly via NODEMASK_SCRATCH() union __GFP_NORETRY to avoid direct reclaim and the oom killer when the slab allocator needs to allocate additional pages. The side-effect of this change is that all current use cases of either NODEMASK_ALLOC() or NODEMASK_SCRATCH() need appropriate -ENOMEM handling when the allocation fails (never for CONFIG_NODES_SHIFT <= 8). All current use cases were audited and do have appropriate error handling at this time. Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* hugetlb: use only nodes with memory for huge pagesLee Schermerhorn2009-12-15
| | | | | | | | | | | | | | | | | | | | | | | | | | Register per node hstate sysfs attributes only for nodes with memory. Global replacement of 'all online nodes" with "all nodes with memory" in mm/hugetlb.c. Suggested by David Rientjes. A subsequent patch will handle adding/removing of per node hstate sysfs attributes when nodes transition to/from memoryless state via memory hotplug. NOTE: this patch has not been tested with memoryless nodes. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* hugetlb: add per node hstate attributesLee Schermerhorn2009-12-15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add the per huge page size control/query attributes to the per node sysdevs: /sys/devices/system/node/node<ID>/hugepages/hugepages-<size>/ nr_hugepages - r/w free_huge_pages - r/o surplus_huge_pages - r/o The patch attempts to re-use/share as much of the existing global hstate attribute initialization and handling, and the "nodes_allowed" constraint processing as possible. Calling set_max_huge_pages() with no node indicates a change to global hstate parameters. In this case, any non-default task mempolicy will be used to generate the nodes_allowed mask. A valid node id indicates an update to that node's hstate parameters, and the count argument specifies the target count for the specified node. From this info, we compute the target global count for the hstate and construct a nodes_allowed node mask contain only the specified node. Setting the node specific nr_hugepages via the per node attribute effectively ignores any task mempolicy or cpuset constraints. With this patch: (me):ls /sys/devices/system/node/node0/hugepages/hugepages-2048kB ./ ../ free_hugepages nr_hugepages surplus_hugepages Starting from: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 0 Node 2 HugePages_Free: 0 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 0 Allocate 16 persistent huge pages on node 2: (me):echo 16 >/sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages [Note that this is equivalent to: numactl -m 2 hugeadmin --pool-pages-min 2M:+16 ] Yields: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 16 Node 2 HugePages_Free: 16 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 16 Global controls work as expected--reduce pool to 8 persistent huge pages: (me):echo 8 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 8 Node 2 HugePages_Free: 8 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* hugetlb: derive huge pages nodes allowed from task mempolicyLee Schermerhorn2009-12-15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch derives a "nodes_allowed" node mask from the numa mempolicy of the task modifying the number of persistent huge pages to control the allocation, freeing and adjusting of surplus huge pages when the pool page count is modified via the new sysctl or sysfs attribute "nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows: * For "default" [NULL] task mempolicy, a NULL nodemask_t pointer is produced. This will cause the hugetlb subsystem to use node_online_map as the "nodes_allowed". This preserves the behavior before this patch. * For "preferred" mempolicy, including explicit local allocation, a nodemask with the single preferred node will be produced. "local" policy will NOT track any internode migrations of the task adjusting nr_hugepages. * For "bind" and "interleave" policy, the mempolicy's nodemask will be used. * Other than to inform the construction of the nodes_allowed node mask, the actual mempolicy mode is ignored. That is, all modes behave like interleave over the resulting nodes_allowed mask with no "fallback". See the updated documentation [next patch] for more information about the implications of this patch. Examples: Starting with: Node 0 HugePages_Total: 0 Node 1 HugePages_Total: 0 Node 2 HugePages_Total: 0 Node 3 HugePages_Total: 0 Default behavior [with or without this patch] balances persistent hugepage allocation across nodes [with sufficient contiguous memory]: sysctl vm.nr_hugepages[_mempolicy]=32 yields: Node 0 HugePages_Total: 8 Node 1 HugePages_Total: 8 Node 2 HugePages_Total: 8 Node 3 HugePages_Total: 8 Of course, we only have nr_hugepages_mempolicy with the patch, but with default mempolicy, nr_hugepages_mempolicy behaves the same as nr_hugepages. Applying mempolicy--e.g., with numactl [using '-m' a.k.a. '--membind' because it allows multiple nodes to be specified and it's easy to type]--we can allocate huge pages on individual nodes or sets of nodes. So, starting from the condition above, with 8 huge pages per node, add 8 more to node 2 using: numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40 This yields: Node 0 HugePages_Total: 8 Node 1 HugePages_Total: 8 Node 2 HugePages_Total: 16 Node 3 HugePages_Total: 8 The incremental 8 huge pages were restricted to node 2 by the specified mempolicy. Similarly, we can use mempolicy to free persistent huge pages from specified nodes: numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32 yields: Node 0 HugePages_Total: 4 Node 1 HugePages_Total: 4 Node 2 HugePages_Total: 16 Node 3 HugePages_Total: 8 The 8 huge pages freed were balanced over nodes 0 and 1. [rientjes@google.com: accomodate reworked NODEMASK_ALLOC] Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* hugetlb: add nodemask arg to huge page alloc, free and surplus adjust functionsLee Schermerhorn2009-12-15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In preparation for constraining huge page allocation and freeing by the controlling task's numa mempolicy, add a "nodes_allowed" nodemask pointer to the allocate, free and surplus adjustment functions. For now, pass NULL to indicate default behavior--i.e., use node_online_map. A subsqeuent patch will derive a non-default mask from the controlling task's numa mempolicy. Note that this method of updating the global hstate nr_hugepages under the constraint of a nodemask simplifies keeping the global state consistent--especially the number of persistent and surplus pages relative to reservations and overcommit limits. There are undoubtedly other ways to do this, but this works for both interfaces: mempolicy and per node attributes. [rientjes@google.com: fix HIGHMEM compile error] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* hugetlb: rework hstate_next_node_* functionsLee Schermerhorn2009-12-15
| | | | | | | | | | | | | | | | | | | | | | | | | | | Modify the hstate_next_node* functions to allow them to be called to obtain the "start_nid". Then, whereas prior to this patch we unconditionally called hstate_next_node_to_{alloc|free}(), whether or not we successfully allocated/freed a huge page on the node, now we only call these functions on failure to alloc/free to advance to next allowed node. Factor out the next_node_allowed() function to handle wrap at end of node_online_map. In this version, the allowed nodes include all of the online nodes. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* const: mark struct vm_struct_operationsAlexey Dobriyan2009-09-27
| | | | | | | | | | | * mark struct vm_area_struct::vm_ops as const * mark vm_ops in AGP code But leave TTM code alone, something is fishy there with global vm_ops being used. Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* sysctl: remove "struct file *" argument of ->proc_handlerAlexey Dobriyan2009-09-24
| | | | | | | | | | | | | | | | | | | | | It's unused. It isn't needed -- read or write flag is already passed and sysctl shouldn't care about the rest. It _was_ used in two places at arch/frv for some reason. Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Cc: David Howells <dhowells@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "David S. Miller" <davem@davemloft.net> Cc: James Morris <jmorris@namei.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: hugetlbfs_pagecache_presentHugh Dickins2009-09-22
| | | | | | | | | | | | | | | Rename hugetlbfs_backed() to hugetlbfs_pagecache_present() and add more comments, as suggested by Mel Gorman. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Rik van Riel <riel@redhat.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: follow_hugetlb_page flagsHugh Dickins2009-09-22
| | | | | | | | | | | | | | | | | | | | | | | | | follow_hugetlb_page() shouldn't be guessing about the coredump case either: pass the foll_flags down to it, instead of just the write bit. Remove that obscure huge_zeropage_ok() test. The decision is easy, though unlike the non-huge case - here vm_ops->fault is always set. But we know that a fault would serve up zeroes, unless there's already a hugetlbfs pagecache page to back the range. (Alternatively, since hugetlb pages aren't swapped out under pressure, you could save more dump space by arguing that a page not yet faulted into this process cannot be relevant to the dump; but that would be more surprising.) Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Acked-by: Rik van Riel <riel@redhat.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* hugetlb: restore interleaving of bootmem huge pagesLee Schermerhorn2009-09-22
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | I noticed that alloc_bootmem_huge_page() will only advance to the next node on failure to allocate a huge page, potentially filling nodes with huge-pages. I asked about this on linux-mm and linux-numa, cc'ing the usual huge page suspects. Mel Gorman responded: I strongly suspect that the same node being used until allocation failure instead of round-robin is an oversight and not deliberate at all. It appears to be a side-effect of a fix made way back in commit 63b4613c3f0d4b724ba259dc6c201bb68b884e1a ["hugetlb: fix hugepage allocation with memoryless nodes"]. Prior to that patch it looked like allocations would always round-robin even when allocation was successful. This patch--factored out of my "hugetlb mempolicy" series--moves the advance of the hstate next node from which to allocate up before the test for success of the attempted allocation. Note that alloc_bootmem_huge_page() is only used for order > MAX_ORDER huge pages. I'll post a separate patch for mainline/stable, as the above mentioned "balance freeing" series renamed the next node to alloc function. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andy Whitcroft <apw@canonical.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* hugetlb: use free_pool_huge_page() to return unused surplus pagesLee Schermerhorn2009-09-22
| | | | | | | | | | | | | | | | | | Use the [modified] free_pool_huge_page() function to return unused surplus pages. This will help keep huge pages balanced across nodes between freeing of unused surplus pages and freeing of persistent huge pages [from set_max_huge_pages] by using the same node id "cursor". It also eliminates some code duplication. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>