aboutsummaryrefslogtreecommitdiffstats
path: root/lib/hweight.c
Commit message (Expand)AuthorAge
* [PATCH] bitops: hweight() speedupAkinobu Mita2006-03-26
* [PATCH] bitops: generic hweight{64,32,16,8}()Akinobu Mita2006-03-26
193'>193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
/*
 * mm/percpu.c - percpu memory allocator
 *
 * Copyright (C) 2009		SUSE Linux Products GmbH
 * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
 *
 * Copyright (C) 2017		Facebook Inc.
 * Copyright (C) 2017		Dennis Zhou <dennisszhou@gmail.com>
 *
 * This file is released under the GPLv2 license.
 *
 * The percpu allocator handles both static and dynamic areas.  Percpu
 * areas are allocated in chunks which are divided into units.  There is
 * a 1-to-1 mapping for units to possible cpus.  These units are grouped
 * based on NUMA properties of the machine.
 *
 *  c0                           c1                         c2
 *  -------------------          -------------------        ------------
 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
 *  -------------------  ......  -------------------  ....  ------------
 *
 * Allocation is done by offsets into a unit's address space.  Ie., an
 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
 * c1:u1, c1:u2, etc.  On NUMA machines, the mapping may be non-linear
 * and even sparse.  Access is handled by configuring percpu base
 * registers according to the cpu to unit mappings and offsetting the
 * base address using pcpu_unit_size.
 *
 * There is special consideration for the first chunk which must handle
 * the static percpu variables in the kernel image as allocation services
 * are not online yet.  In short, the first chunk is structured like so:
 *
 *                  <Static | [Reserved] | Dynamic>
 *
 * The static data is copied from the original section managed by the
 * linker.  The reserved section, if non-zero, primarily manages static
 * percpu variables from kernel modules.  Finally, the dynamic section
 * takes care of normal allocations.
 *
 * The allocator organizes chunks into lists according to free size and
 * tries to allocate from the fullest chunk first.  Each chunk is managed
 * by a bitmap with metadata blocks.  The allocation map is updated on
 * every allocation and free to reflect the current state while the boundary
 * map is only updated on allocation.  Each metadata block contains
 * information to help mitigate the need to iterate over large portions
 * of the bitmap.  The reverse mapping from page to chunk is stored in
 * the page's index.  Lastly, units are lazily backed and grow in unison.
 *
 * There is a unique conversion that goes on here between bytes and bits.
 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE.  The chunk
 * tracks the number of pages it is responsible for in nr_pages.  Helper
 * functions are used to convert from between the bytes, bits, and blocks.
 * All hints are managed in bits unless explicitly stated.
 *
 * To use this allocator, arch code should do the following:
 *
 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
 *   regular address to percpu pointer and back if they need to be
 *   different from the default
 *
 * - use pcpu_setup_first_chunk() during percpu area initialization to
 *   setup the first chunk containing the kernel static percpu area
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/bitmap.h>
#include <linux/memblock.h>
#include <linux/err.h>
#include <linux/lcm.h>
#include <linux/list.h>
#include <linux/log2.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/percpu.h>
#include <linux/pfn.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/vmalloc.h>
#include <linux/workqueue.h>
#include <linux/kmemleak.h>
#include <linux/sched.h>

#include <asm/cacheflush.h>
#include <asm/sections.h>
#include <asm/tlbflush.h>
#include <asm/io.h>

#define CREATE_TRACE_POINTS
#include <trace/events/percpu.h>

#include "percpu-internal.h"

/* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
#define PCPU_SLOT_BASE_SHIFT		5

#define PCPU_EMPTY_POP_PAGES_LOW	2
#define PCPU_EMPTY_POP_PAGES_HIGH	4

#ifdef CONFIG_SMP
/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
#ifndef __addr_to_pcpu_ptr
#define __addr_to_pcpu_ptr(addr)					\
	(void __percpu *)((unsigned long)(addr) -			\
			  (unsigned long)pcpu_base_addr	+		\
			  (unsigned long)__per_cpu_start)
#endif
#ifndef __pcpu_ptr_to_addr
#define __pcpu_ptr_to_addr(ptr)						\
	(void __force *)((unsigned long)(ptr) +				\
			 (unsigned long)pcpu_base_addr -		\
			 (unsigned long)__per_cpu_start)
#endif
#else	/* CONFIG_SMP */
/* on UP, it's always identity mapped */
#define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
#define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
#endif	/* CONFIG_SMP */

static int pcpu_unit_pages __ro_after_init;
static int pcpu_unit_size __ro_after_init;
static int pcpu_nr_units __ro_after_init;
static int pcpu_atom_size __ro_after_init;
int pcpu_nr_slots __ro_after_init;
static size_t pcpu_chunk_struct_size __ro_after_init;

/* cpus with the lowest and highest unit addresses */
static unsigned int pcpu_low_unit_cpu __ro_after_init;
static unsigned int pcpu_high_unit_cpu __ro_after_init;

/* the address of the first chunk which starts with the kernel static area */
void *pcpu_base_addr __ro_after_init;
EXPORT_SYMBOL_GPL(pcpu_base_addr);

static const int *pcpu_unit_map __ro_after_init;		/* cpu -> unit */
const unsigned long *pcpu_unit_offsets __ro_after_init;	/* cpu -> unit offset */

/* group information, used for vm allocation */
static int pcpu_nr_groups __ro_after_init;
static const unsigned long *pcpu_group_offsets __ro_after_init;
static const size_t *pcpu_group_sizes __ro_after_init;

/*
 * The first chunk which always exists.  Note that unlike other
 * chunks, this one can be allocated and mapped in several different
 * ways and thus often doesn't live in the vmalloc area.
 */
struct pcpu_chunk *pcpu_first_chunk __ro_after_init;

/*
 * Optional reserved chunk.  This chunk reserves part of the first
 * chunk and serves it for reserved allocations.  When the reserved
 * region doesn't exist, the following variable is NULL.
 */
struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;

DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */
static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop, map ext */

struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */

/* chunks which need their map areas extended, protected by pcpu_lock */
static LIST_HEAD(pcpu_map_extend_chunks);

/*
 * The number of empty populated pages, protected by pcpu_lock.  The
 * reserved chunk doesn't contribute to the count.
 */
int pcpu_nr_empty_pop_pages;

/*
 * The number of populated pages in use by the allocator, protected by
 * pcpu_lock.  This number is kept per a unit per chunk (i.e. when a page gets
 * allocated/deallocated, it is allocated/deallocated in all units of a chunk
 * and increments/decrements this count by 1).
 */
static unsigned long pcpu_nr_populated;

/*
 * Balance work is used to populate or destroy chunks asynchronously.  We
 * try to keep the number of populated free pages between
 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
 * empty chunk.
 */
static void pcpu_balance_workfn(struct work_struct *work);
static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
static bool pcpu_async_enabled __read_mostly;
static bool pcpu_atomic_alloc_failed;

static void pcpu_schedule_balance_work(void)
{
	if (pcpu_async_enabled)
		schedule_work(&pcpu_balance_work);
}

/**
 * pcpu_addr_in_chunk - check if the address is served from this chunk
 * @chunk: chunk of interest
 * @addr: percpu address
 *
 * RETURNS:
 * True if the address is served from this chunk.
 */
static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
{
	void *start_addr, *end_addr;

	if (!chunk)
		return false;

	start_addr = chunk->base_addr + chunk->start_offset;
	end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
		   chunk->end_offset;

	return addr >= start_addr && addr < end_addr;
}

static int __pcpu_size_to_slot(int size)
{
	int highbit = fls(size);	/* size is in bytes */
	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
}

static int pcpu_size_to_slot(int size)
{
	if (size == pcpu_unit_size)
		return pcpu_nr_slots - 1;
	return __pcpu_size_to_slot(size);
}

static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
{
	if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk->contig_bits == 0)
		return 0;

	return pcpu_size_to_slot(chunk->free_bytes);
}

/* set the pointer to a chunk in a page struct */
static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
{
	page->index = (unsigned long)pcpu;
}

/* obtain pointer to a chunk from a page struct */
static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
{
	return (struct pcpu_chunk *)page->index;
}

static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
{
	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
}

static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
{
	return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
}

static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
				     unsigned int cpu, int page_idx)
{
	return (unsigned long)chunk->base_addr +
	       pcpu_unit_page_offset(cpu, page_idx);
}

static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end)
{
	*rs = find_next_zero_bit(bitmap, end, *rs);
	*re = find_next_bit(bitmap, end, *rs + 1);
}

static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end)
{
	*rs = find_next_bit(bitmap, end, *rs);
	*re = find_next_zero_bit(bitmap, end, *rs + 1);
}

/*
 * Bitmap region iterators.  Iterates over the bitmap between
 * [@start, @end) in @chunk.  @rs and @re should be integer variables
 * and will be set to start and end index of the current free region.
 */
#define pcpu_for_each_unpop_region(bitmap, rs, re, start, end)		     \
	for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \
	     (rs) < (re);						     \
	     (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end)))

#define pcpu_for_each_pop_region(bitmap, rs, re, start, end)		     \
	for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end));   \
	     (rs) < (re);						     \
	     (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end)))

/*
 * The following are helper functions to help access bitmaps and convert
 * between bitmap offsets to address offsets.
 */
static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
{
	return chunk->alloc_map +
	       (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
}

static unsigned long pcpu_off_to_block_index(int off)
{
	return off / PCPU_BITMAP_BLOCK_BITS;
}

static unsigned long pcpu_off_to_block_off(int off)
{
	return off & (PCPU_BITMAP_BLOCK_BITS - 1);
}

static unsigned long pcpu_block_off_to_off(int index, int off)
{
	return index * PCPU_BITMAP_BLOCK_BITS + off;
}

/**
 * pcpu_next_md_free_region - finds the next hint free area
 * @chunk: chunk of interest
 * @bit_off: chunk offset
 * @bits: size of free area
 *
 * Helper function for pcpu_for_each_md_free_region.  It checks
 * block->contig_hint and performs aggregation across blocks to find the
 * next hint.  It modifies bit_off and bits in-place to be consumed in the
 * loop.
 */
static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
				     int *bits)
{
	int i = pcpu_off_to_block_index(*bit_off);
	int block_off = pcpu_off_to_block_off(*bit_off);
	struct pcpu_block_md *block;

	*bits = 0;
	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
	     block++, i++) {
		/* handles contig area across blocks */
		if (*bits) {
			*bits += block->left_free;
			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
				continue;
			return;
		}

		/*
		 * This checks three things.  First is there a contig_hint to
		 * check.  Second, have we checked this hint before by
		 * comparing the block_off.  Third, is this the same as the
		 * right contig hint.  In the last case, it spills over into
		 * the next block and should be handled by the contig area
		 * across blocks code.
		 */
		*bits = block->contig_hint;
		if (*bits && block->contig_hint_start >= block_off &&
		    *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
			*bit_off = pcpu_block_off_to_off(i,
					block->contig_hint_start);
			return;
		}
		/* reset to satisfy the second predicate above */
		block_off = 0;

		*bits = block->right_free;
		*bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
	}
}

/**
 * pcpu_next_fit_region - finds fit areas for a given allocation request
 * @chunk: chunk of interest
 * @alloc_bits: size of allocation
 * @align: alignment of area (max PAGE_SIZE)
 * @bit_off: chunk offset
 * @bits: size of free area
 *
 * Finds the next free region that is viable for use with a given size and
 * alignment.  This only returns if there is a valid area to be used for this
 * allocation.  block->first_free is returned if the allocation request fits
 * within the block to see if the request can be fulfilled prior to the contig
 * hint.
 */
static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
				 int align, int *bit_off, int *bits)
{
	int i = pcpu_off_to_block_index(*bit_off);
	int block_off = pcpu_off_to_block_off(*bit_off);
	struct pcpu_block_md *block;

	*bits = 0;
	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
	     block++, i++) {
		/* handles contig area across blocks */
		if (*bits) {
			*bits += block->left_free;
			if (*bits >= alloc_bits)
				return;
			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
				continue;
		}

		/* check block->contig_hint */
		*bits = ALIGN(block->contig_hint_start, align) -
			block->contig_hint_start;
		/*
		 * This uses the block offset to determine if this has been
		 * checked in the prior iteration.
		 */
		if (block->contig_hint &&
		    block->contig_hint_start >= block_off &&
		    block->contig_hint >= *bits + alloc_bits) {
			*bits += alloc_bits + block->contig_hint_start -
				 block->first_free;
			*bit_off = pcpu_block_off_to_off(i, block->first_free);
			return;
		}
		/* reset to satisfy the second predicate above */
		block_off = 0;

		*bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
				 align);
		*bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
		*bit_off = pcpu_block_off_to_off(i, *bit_off);
		if (*bits >= alloc_bits)
			return;
	}

	/* no valid offsets were found - fail condition */
	*bit_off = pcpu_chunk_map_bits(chunk);
}

/*
 * Metadata free area iterators.  These perform aggregation of free areas
 * based on the metadata blocks and return the offset @bit_off and size in
 * bits of the free area @bits.  pcpu_for_each_fit_region only returns when
 * a fit is found for the allocation request.
 */
#define pcpu_for_each_md_free_region(chunk, bit_off, bits)		\
	for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits));	\
	     (bit_off) < pcpu_chunk_map_bits((chunk));			\
	     (bit_off) += (bits) + 1,					\
	     pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))

#define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits)     \
	for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
				  &(bits));				      \
	     (bit_off) < pcpu_chunk_map_bits((chunk));			      \
	     (bit_off) += (bits),					      \
	     pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
				  &(bits)))

/**
 * pcpu_mem_zalloc - allocate memory
 * @size: bytes to allocate
 * @gfp: allocation flags
 *
 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
 * This is to facilitate passing through whitelisted flags.  The
 * returned memory is always zeroed.
 *
 * RETURNS:
 * Pointer to the allocated area on success, NULL on failure.
 */
static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
{
	if (WARN_ON_ONCE(!slab_is_available()))
		return NULL;

	if (size <= PAGE_SIZE)
		return kzalloc(size, gfp);
	else
		return __vmalloc(size, gfp | __GFP_ZERO, PAGE_KERNEL);
}

/**
 * pcpu_mem_free - free memory
 * @ptr: memory to free
 *
 * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
 */
static void pcpu_mem_free(void *ptr)
{
	kvfree(ptr);
}

/**
 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
 * @chunk: chunk of interest
 * @oslot: the previous slot it was on
 *
 * This function is called after an allocation or free changed @chunk.
 * New slot according to the changed state is determined and @chunk is
 * moved to the slot.  Note that the reserved chunk is never put on
 * chunk slots.
 *
 * CONTEXT:
 * pcpu_lock.
 */
static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
{
	int nslot = pcpu_chunk_slot(chunk);

	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
		if (oslot < nslot)
			list_move(&chunk->list, &pcpu_slot[nslot]);
		else
			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
	}
}

/**
 * pcpu_cnt_pop_pages- counts populated backing pages in range
 * @chunk: chunk of interest
 * @bit_off: start offset
 * @bits: size of area to check
 *
 * Calculates the number of populated pages in the region
 * [page_start, page_end).  This keeps track of how many empty populated
 * pages are available and decide if async work should be scheduled.
 *
 * RETURNS:
 * The nr of populated pages.
 */
static inline int pcpu_cnt_pop_pages(struct pcpu_chunk *chunk, int bit_off,
				     int bits)
{
	int page_start = PFN_UP(bit_off * PCPU_MIN_ALLOC_SIZE);
	int page_end = PFN_DOWN((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);

	if (page_start >= page_end)
		return 0;

	/*
	 * bitmap_weight counts the number of bits set in a bitmap up to
	 * the specified number of bits.  This is counting the populated
	 * pages up to page_end and then subtracting the populated pages
	 * up to page_start to count the populated pages in
	 * [page_start, page_end).
	 */
	return bitmap_weight(chunk->populated, page_end) -
	       bitmap_weight(chunk->populated, page_start);
}

/**
 * pcpu_chunk_update - updates the chunk metadata given a free area
 * @chunk: chunk of interest
 * @bit_off: chunk offset
 * @bits: size of free area
 *
 * This updates the chunk's contig hint and starting offset given a free area.
 * Choose the best starting offset if the contig hint is equal.
 */
static void pcpu_chunk_update(struct pcpu_chunk *chunk, int bit_off, int bits)
{
	if (bits > chunk->contig_bits) {
		chunk->contig_bits_start = bit_off;
		chunk->contig_bits = bits;
	} else if (bits == chunk->contig_bits && chunk->contig_bits_start &&
		   (!bit_off ||
		    __ffs(bit_off) > __ffs(chunk->contig_bits_start))) {
		/* use the start with the best alignment */
		chunk->contig_bits_start = bit_off;
	}
}

/**
 * pcpu_chunk_refresh_hint - updates metadata about a chunk
 * @chunk: chunk of interest
 *
 * Iterates over the metadata blocks to find the largest contig area.
 * It also counts the populated pages and uses the delta to update the
 * global count.
 *
 * Updates:
 *      chunk->contig_bits
 *      chunk->contig_bits_start
 *      nr_empty_pop_pages (chunk and global)
 */
static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk)
{
	int bit_off, bits, nr_empty_pop_pages;

	/* clear metadata */
	chunk->contig_bits = 0;

	bit_off = chunk->first_bit;
	bits = nr_empty_pop_pages = 0;
	pcpu_for_each_md_free_region(chunk, bit_off, bits) {
		pcpu_chunk_update(chunk, bit_off, bits);

		nr_empty_pop_pages += pcpu_cnt_pop_pages(chunk, bit_off, bits);
	}

	/*
	 * Keep track of nr_empty_pop_pages.
	 *
	 * The chunk maintains the previous number of free pages it held,
	 * so the delta is used to update the global counter.  The reserved
	 * chunk is not part of the free page count as they are populated
	 * at init and are special to serving reserved allocations.
	 */
	if (chunk != pcpu_reserved_chunk)
		pcpu_nr_empty_pop_pages +=
			(nr_empty_pop_pages - chunk->nr_empty_pop_pages);

	chunk->nr_empty_pop_pages = nr_empty_pop_pages;
}

/**
 * pcpu_block_update - updates a block given a free area
 * @block: block of interest
 * @start: start offset in block
 * @end: end offset in block
 *
 * Updates a block given a known free area.  The region [start, end) is
 * expected to be the entirety of the free area within a block.  Chooses
 * the best starting offset if the contig hints are equal.
 */
static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
{
	int contig = end - start;

	block->first_free = min(block->first_free, start);
	if (start == 0)
		block->left_free = contig;

	if (end == PCPU_BITMAP_BLOCK_BITS)
		block->right_free = contig;

	if (contig > block->contig_hint) {
		block->contig_hint_start = start;
		block->contig_hint = contig;
	} else if (block->contig_hint_start && contig == block->contig_hint &&
		   (!start || __ffs(start) > __ffs(block->contig_hint_start))) {
		/* use the start with the best alignment */
		block->contig_hint_start = start;
	}
}

/**
 * pcpu_block_refresh_hint
 * @chunk: chunk of interest
 * @index: index of the metadata block
 *
 * Scans over the block beginning at first_free and updates the block
 * metadata accordingly.
 */
static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
{
	struct pcpu_block_md *block = chunk->md_blocks + index;
	unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
	int rs, re;	/* region start, region end */

	/* clear hints */
	block->contig_hint = 0;
	block->left_free = block->right_free = 0;

	/* iterate over free areas and update the contig hints */
	pcpu_for_each_unpop_region(alloc_map, rs, re, block->first_free,
				   PCPU_BITMAP_BLOCK_BITS) {
		pcpu_block_update(block, rs, re);
	}
}

/**
 * pcpu_block_update_hint_alloc - update hint on allocation path
 * @chunk: chunk of interest
 * @bit_off: chunk offset
 * @bits: size of request
 *
 * Updates metadata for the allocation path.  The metadata only has to be
 * refreshed by a full scan iff the chunk's contig hint is broken.  Block level
 * scans are required if the block's contig hint is broken.
 */
static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
					 int bits)
{
	struct pcpu_block_md *s_block, *e_block, *block;
	int s_index, e_index;	/* block indexes of the freed allocation */
	int s_off, e_off;	/* block offsets of the freed allocation */

	/*
	 * Calculate per block offsets.
	 * The calculation uses an inclusive range, but the resulting offsets
	 * are [start, end).  e_index always points to the last block in the
	 * range.
	 */
	s_index = pcpu_off_to_block_index(bit_off);
	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
	s_off = pcpu_off_to_block_off(bit_off);
	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;

	s_block = chunk->md_blocks + s_index;
	e_block = chunk->md_blocks + e_index;

	/*
	 * Update s_block.
	 * block->first_free must be updated if the allocation takes its place.
	 * If the allocation breaks the contig_hint, a scan is required to
	 * restore this hint.
	 */
	if (s_off == s_block->first_free)
		s_block->first_free = find_next_zero_bit(
					pcpu_index_alloc_map(chunk, s_index),
					PCPU_BITMAP_BLOCK_BITS,
					s_off + bits);

	if (s_off >= s_block->contig_hint_start &&
	    s_off < s_block->contig_hint_start + s_block->contig_hint) {
		/* block contig hint is broken - scan to fix it */
		pcpu_block_refresh_hint(chunk, s_index);
	} else {
		/* update left and right contig manually */
		s_block->left_free = min(s_block->left_free, s_off);
		if (s_index == e_index)
			s_block->right_free = min_t(int, s_block->right_free,
					PCPU_BITMAP_BLOCK_BITS - e_off);
		else
			s_block->right_free = 0;
	}

	/*
	 * Update e_block.
	 */
	if (s_index != e_index) {
		/*
		 * When the allocation is across blocks, the end is along
		 * the left part of the e_block.
		 */
		e_block->first_free = find_next_zero_bit(
				pcpu_index_alloc_map(chunk, e_index),
				PCPU_BITMAP_BLOCK_BITS, e_off);

		if (e_off == PCPU_BITMAP_BLOCK_BITS) {
			/* reset the block */
			e_block++;
		} else {
			if (e_off > e_block->contig_hint_start) {
				/* contig hint is broken - scan to fix it */
				pcpu_block_refresh_hint(chunk, e_index);
			} else {
				e_block->left_free = 0;
				e_block->right_free =
					min_t(int, e_block->right_free,
					      PCPU_BITMAP_BLOCK_BITS - e_off);
			}
		}

		/* update in-between md_blocks */
		for (block = s_block + 1; block < e_block; block++) {
			block->contig_hint = 0;
			block->left_free = 0;
			block->right_free = 0;
		}
	}

	/*
	 * The only time a full chunk scan is required is if the chunk
	 * contig hint is broken.  Otherwise, it means a smaller space
	 * was used and therefore the chunk contig hint is still correct.
	 */
	if (bit_off >= chunk->contig_bits_start  &&
	    bit_off < chunk->contig_bits_start + chunk->contig_bits)
		pcpu_chunk_refresh_hint(chunk);
}

/**
 * pcpu_block_update_hint_free - updates the block hints on the free path
 * @chunk: chunk of interest
 * @bit_off: chunk offset
 * @bits: size of request
 *
 * Updates metadata for the allocation path.  This avoids a blind block
 * refresh by making use of the block contig hints.  If this fails, it scans
 * forward and backward to determine the extent of the free area.  This is
 * capped at the boundary of blocks.
 *
 * A chunk update is triggered if a page becomes free, a block becomes free,
 * or the free spans across blocks.  This tradeoff is to minimize iterating
 * over the block metadata to update chunk->contig_bits.  chunk->contig_bits
 * may be off by up to a page, but it will never be more than the available
 * space.  If the contig hint is contained in one block, it will be accurate.
 */
static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
					int bits)
{
	struct pcpu_block_md *s_block, *e_block, *block;
	int s_index, e_index;	/* block indexes of the freed allocation */
	int s_off, e_off;	/* block offsets of the freed allocation */
	int start, end;		/* start and end of the whole free area */

	/*
	 * Calculate per block offsets.
	 * The calculation uses an inclusive range, but the resulting offsets
	 * are [start, end).  e_index always points to the last block in the
	 * range.
	 */
	s_index = pcpu_off_to_block_index(bit_off);
	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
	s_off = pcpu_off_to_block_off(bit_off);
	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;

	s_block = chunk->md_blocks + s_index;
	e_block = chunk->md_blocks + e_index;

	/*
	 * Check if the freed area aligns with the block->contig_hint.
	 * If it does, then the scan to find the beginning/end of the
	 * larger free area can be avoided.
	 *
	 * start and end refer to beginning and end of the free area
	 * within each their respective blocks.  This is not necessarily
	 * the entire free area as it may span blocks past the beginning
	 * or end of the block.
	 */
	start = s_off;
	if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
		start = s_block->contig_hint_start;
	} else {
		/*
		 * Scan backwards to find the extent of the free area.
		 * find_last_bit returns the starting bit, so if the start bit
		 * is returned, that means there was no last bit and the
		 * remainder of the chunk is free.
		 */
		int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
					  start);
		start = (start == l_bit) ? 0 : l_bit + 1;
	}

	end = e_off;
	if (e_off == e_block->contig_hint_start)
		end = e_block->contig_hint_start + e_block->contig_hint;
	else
		end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
				    PCPU_BITMAP_BLOCK_BITS, end);

	/* update s_block */
	e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
	pcpu_block_update(s_block, start, e_off);

	/* freeing in the same block */
	if (s_index != e_index) {
		/* update e_block */
		pcpu_block_update(e_block, 0, end);

		/* reset md_blocks in the middle */
		for (block = s_block + 1; block < e_block; block++) {
			block->first_free = 0;
			block->contig_hint_start = 0;
			block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
			block->left_free = PCPU_BITMAP_BLOCK_BITS;
			block->right_free = PCPU_BITMAP_BLOCK_BITS;
		}
	}

	/*
	 * Refresh chunk metadata when the free makes a page free, a block
	 * free, or spans across blocks.  The contig hint may be off by up to
	 * a page, but if the hint is contained in a block, it will be accurate
	 * with the else condition below.
	 */
	if ((ALIGN_DOWN(end, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS)) >
	     ALIGN(start, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS))) ||
	    s_index != e_index)
		pcpu_chunk_refresh_hint(chunk);
	else
		pcpu_chunk_update(chunk, pcpu_block_off_to_off(s_index, start),
				  s_block->contig_hint);
}

/**
 * pcpu_is_populated - determines if the region is populated
 * @chunk: chunk of interest
 * @bit_off: chunk offset
 * @bits: size of area
 * @next_off: return value for the next offset to start searching
 *
 * For atomic allocations, check if the backing pages are populated.
 *
 * RETURNS:
 * Bool if the backing pages are populated.
 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
 */
static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
			      int *next_off)
{
	int page_start, page_end, rs, re;

	page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
	page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);

	rs = page_start;
	pcpu_next_unpop(chunk->populated, &rs, &re, page_end);
	if (rs >= page_end)
		return true;

	*next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
	return false;
}

/**
 * pcpu_find_block_fit - finds the block index to start searching
 * @chunk: chunk of interest
 * @alloc_bits: size of request in allocation units
 * @align: alignment of area (max PAGE_SIZE bytes)
 * @pop_only: use populated regions only
 *
 * Given a chunk and an allocation spec, find the offset to begin searching
 * for a free region.  This iterates over the bitmap metadata blocks to
 * find an offset that will be guaranteed to fit the requirements.  It is
 * not quite first fit as if the allocation does not fit in the contig hint
 * of a block or chunk, it is skipped.  This errs on the side of caution
 * to prevent excess iteration.  Poor alignment can cause the allocator to
 * skip over blocks and chunks that have valid free areas.
 *
 * RETURNS:
 * The offset in the bitmap to begin searching.
 * -1 if no offset is found.
 */
static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
			       size_t align, bool pop_only)
{
	int bit_off, bits, next_off;

	/*
	 * Check to see if the allocation can fit in the chunk's contig hint.
	 * This is an optimization to prevent scanning by assuming if it
	 * cannot fit in the global hint, there is memory pressure and creating
	 * a new chunk would happen soon.
	 */
	bit_off = ALIGN(chunk->contig_bits_start, align) -
		  chunk->contig_bits_start;
	if (bit_off + alloc_bits > chunk->contig_bits)
		return -1;

	bit_off = chunk->first_bit;
	bits = 0;
	pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
		if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
						   &next_off))
			break;

		bit_off = next_off;
		bits = 0;
	}

	if (bit_off == pcpu_chunk_map_bits(chunk))
		return -1;

	return bit_off;
}

/**
 * pcpu_alloc_area - allocates an area from a pcpu_chunk
 * @chunk: chunk of interest
 * @alloc_bits: size of request in allocation units
 * @align: alignment of area (max PAGE_SIZE)
 * @start: bit_off to start searching
 *
 * This function takes in a @start offset to begin searching to fit an
 * allocation of @alloc_bits with alignment @align.  It needs to scan
 * the allocation map because if it fits within the block's contig hint,
 * @start will be block->first_free. This is an attempt to fill the
 * allocation prior to breaking the contig hint.  The allocation and
 * boundary maps are updated accordingly if it confirms a valid
 * free area.
 *
 * RETURNS:
 * Allocated addr offset in @chunk on success.
 * -1 if no matching area is found.
 */
static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
			   size_t align, int start)
{
	size_t align_mask = (align) ? (align - 1) : 0;
	int bit_off, end, oslot;

	lockdep_assert_held(&pcpu_lock);

	oslot = pcpu_chunk_slot(chunk);

	/*
	 * Search to find a fit.
	 */
	end = start + alloc_bits + PCPU_BITMAP_BLOCK_BITS;
	bit_off = bitmap_find_next_zero_area(chunk->alloc_map, end, start,
					     alloc_bits, align_mask);
	if (bit_off >= end)
		return -1;

	/* update alloc map */
	bitmap_set(chunk->alloc_map, bit_off, alloc_bits);

	/* update boundary map */
	set_bit(bit_off, chunk->bound_map);
	bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
	set_bit(bit_off + alloc_bits, chunk->bound_map);

	chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;

	/* update first free bit */
	if (bit_off == chunk->first_bit)
		chunk->first_bit = find_next_zero_bit(
					chunk->alloc_map,
					pcpu_chunk_map_bits(chunk),
					bit_off + alloc_bits);

	pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);

	pcpu_chunk_relocate(chunk, oslot);

	return bit_off * PCPU_MIN_ALLOC_SIZE;
}

/**
 * pcpu_free_area - frees the corresponding offset
 * @chunk: chunk of interest
 * @off: addr offset into chunk
 *
 * This function determines the size of an allocation to free using
 * the boundary bitmap and clears the allocation map.
 */
static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
{
	int bit_off, bits, end, oslot;

	lockdep_assert_held(&pcpu_lock);
	pcpu_stats_area_dealloc(chunk);

	oslot = pcpu_chunk_slot(chunk);

	bit_off = off / PCPU_MIN_ALLOC_SIZE;

	/* find end index */
	end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
			    bit_off + 1);
	bits = end - bit_off;
	bitmap_clear(chunk->alloc_map, bit_off, bits);

	/* update metadata */
	chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;

	/* update first free bit */
	chunk->first_bit = min(chunk->first_bit, bit_off);

	pcpu_block_update_hint_free(chunk, bit_off, bits);

	pcpu_chunk_relocate(chunk, oslot);
}

static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
{
	struct pcpu_block_md *md_block;

	for (md_block = chunk->md_blocks;
	     md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
	     md_block++) {
		md_block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
		md_block->left_free = PCPU_BITMAP_BLOCK_BITS;
		md_block->right_free = PCPU_BITMAP_BLOCK_BITS;
	}
}

/**
 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
 * @tmp_addr: the start of the region served
 * @map_size: size of the region served
 *
 * This is responsible for creating the chunks that serve the first chunk.  The
 * base_addr is page aligned down of @tmp_addr while the region end is page
 * aligned up.  Offsets are kept track of to determine the region served. All
 * this is done to appease the bitmap allocator in avoiding partial blocks.
 *
 * RETURNS:
 * Chunk serving the region at @tmp_addr of @map_size.
 */
static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
							 int map_size)
{
	struct pcpu_chunk *chunk;
	unsigned long aligned_addr, lcm_align;
	int start_offset, offset_bits, region_size, region_bits;

	/* region calculations */
	aligned_addr = tmp_addr & PAGE_MASK;

	start_offset = tmp_addr - aligned_addr;

	/*
	 * Align the end of the region with the LCM of PAGE_SIZE and
	 * PCPU_BITMAP_BLOCK_SIZE.  One of these constants is a multiple of
	 * the other.
	 */
	lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
	region_size = ALIGN(start_offset + map_size, lcm_align);

	/* allocate chunk */
	chunk = memblock_alloc(sizeof(struct pcpu_chunk) +
			       BITS_TO_LONGS(region_size >> PAGE_SHIFT),
			       SMP_CACHE_BYTES);

	INIT_LIST_HEAD(&chunk->list);

	chunk->base_addr = (void *)aligned_addr;
	chunk->start_offset = start_offset;
	chunk->end_offset = region_size - chunk->start_offset - map_size;

	chunk->nr_pages = region_size >> PAGE_SHIFT;
	region_bits = pcpu_chunk_map_bits(chunk);

	chunk->alloc_map = memblock_alloc(BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]),
					  SMP_CACHE_BYTES);
	chunk->bound_map = memblock_alloc(BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]),
					  SMP_CACHE_BYTES);
	chunk->md_blocks = memblock_alloc(pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]),
					  SMP_CACHE_BYTES);
	pcpu_init_md_blocks(chunk);

	/* manage populated page bitmap */
	chunk->immutable = true;
	bitmap_fill(chunk->populated, chunk->nr_pages);
	chunk->nr_populated = chunk->nr_pages;
	chunk->nr_empty_pop_pages =
		pcpu_cnt_pop_pages(chunk, start_offset / PCPU_MIN_ALLOC_SIZE,
				   map_size / PCPU_MIN_ALLOC_SIZE);

	chunk->contig_bits = map_size / PCPU_MIN_ALLOC_SIZE;
	chunk->free_bytes = map_size;

	if (chunk->start_offset) {
		/* hide the beginning of the bitmap */
		offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
		bitmap_set(chunk->alloc_map, 0, offset_bits);
		set_bit(0, chunk->bound_map);
		set_bit(offset_bits, chunk->bound_map);

		chunk->first_bit = offset_bits;

		pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
	}

	if (chunk->end_offset) {
		/* hide the end of the bitmap */
		offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
		bitmap_set(chunk->alloc_map,
			   pcpu_chunk_map_bits(chunk) - offset_bits,
			   offset_bits);
		set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
			chunk->bound_map);
		set_bit(region_bits, chunk->bound_map);

		pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
					     - offset_bits, offset_bits);
	}

	return chunk;
}

static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
{
	struct pcpu_chunk *chunk;
	int region_bits;

	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
	if (!chunk)
		return NULL;

	INIT_LIST_HEAD(&chunk->list);
	chunk->nr_pages = pcpu_unit_pages;
	region_bits = pcpu_chunk_map_bits(chunk);

	chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
					   sizeof(chunk->alloc_map[0]), gfp);
	if (!chunk->alloc_map)
		goto alloc_map_fail;

	chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
					   sizeof(chunk->bound_map[0]), gfp);
	if (!chunk->bound_map)
		goto bound_map_fail;

	chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
					   sizeof(chunk->md_blocks[0]), gfp);
	if (!chunk->md_blocks)
		goto md_blocks_fail;

	pcpu_init_md_blocks(chunk);

	/* init metadata */
	chunk->contig_bits = region_bits;
	chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;

	return chunk;

md_blocks_fail:
	pcpu_mem_free(chunk->bound_map);
bound_map_fail:
	pcpu_mem_free(chunk->alloc_map);
alloc_map_fail:
	pcpu_mem_free(chunk);

	return NULL;
}

static void pcpu_free_chunk(struct pcpu_chunk *chunk)
{
	if (!chunk)
		return;
	pcpu_mem_free(chunk->md_blocks);
	pcpu_mem_free(chunk->bound_map);
	pcpu_mem_free(chunk->alloc_map);
	pcpu_mem_free(chunk);
}

/**
 * pcpu_chunk_populated - post-population bookkeeping
 * @chunk: pcpu_chunk which got populated
 * @page_start: the start page
 * @page_end: the end page
 * @for_alloc: if this is to populate for allocation
 *
 * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
 * the bookkeeping information accordingly.  Must be called after each
 * successful population.
 *
 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
 * is to serve an allocation in that area.
 */
static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
				 int page_end, bool for_alloc)
{
	int nr = page_end - page_start;

	lockdep_assert_held(&pcpu_lock);

	bitmap_set(chunk->populated, page_start, nr);
	chunk->nr_populated += nr;
	pcpu_nr_populated += nr;

	if (!for_alloc) {
		chunk->nr_empty_pop_pages += nr;
		pcpu_nr_empty_pop_pages += nr;
	}
}

/**
 * pcpu_chunk_depopulated - post-depopulation bookkeeping
 * @chunk: pcpu_chunk which got depopulated
 * @page_start: the start page
 * @page_end: the end page
 *
 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
 * Update the bookkeeping information accordingly.  Must be called after
 * each successful depopulation.
 */
static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
				   int page_start, int page_end)
{
	int nr = page_end - page_start;

	lockdep_assert_held(&pcpu_lock);

	bitmap_clear(chunk->populated, page_start, nr);
	chunk->nr_populated -= nr;
	chunk->nr_empty_pop_pages -= nr;
	pcpu_nr_empty_pop_pages -= nr;
	pcpu_nr_populated -= nr;
}

/*
 * Chunk management implementation.
 *
 * To allow different implementations, chunk alloc/free and
 * [de]population are implemented in a separate file which is pulled
 * into this file and compiled together.  The following functions
 * should be implemented.
 *
 * pcpu_populate_chunk		- populate the specified range of a chunk
 * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
 * pcpu_create_chunk		- create a new chunk
 * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
 * pcpu_addr_to_page		- translate address to physical address
 * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
 */
static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
			       int page_start, int page_end, gfp_t gfp);
static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
				  int page_start, int page_end);
static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
static struct page *pcpu_addr_to_page(void *addr);
static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);

#ifdef CONFIG_NEED_PER_CPU_KM
#include "percpu-km.c"
#else
#include "percpu-vm.c"
#endif

/**
 * pcpu_chunk_addr_search - determine chunk containing specified address
 * @addr: address for which the chunk needs to be determined.
 *
 * This is an internal function that handles all but static allocations.
 * Static percpu address values should never be passed into the allocator.
 *
 * RETURNS:
 * The address of the found chunk.
 */
static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
{
	/* is it in the dynamic region (first chunk)? */
	if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
		return pcpu_first_chunk;

	/* is it in the reserved region? */
	if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
		return pcpu_reserved_chunk;

	/*
	 * The address is relative to unit0 which might be unused and
	 * thus unmapped.  Offset the address to the unit space of the
	 * current processor before looking it up in the vmalloc
	 * space.  Note that any possible cpu id can be used here, so
	 * there's no need to worry about preemption or cpu hotplug.
	 */
	addr += pcpu_unit_offsets[raw_smp_processor_id()];
	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
}

/**
 * pcpu_alloc - the percpu allocator
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 * @reserved: allocate from the reserved chunk if available
 * @gfp: allocation flags
 *
 * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
 * then no warning will be triggered on invalid or failed allocation
 * requests.
 *
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
				 gfp_t gfp)
{
	/* whitelisted flags that can be passed to the backing allocators */
	gfp_t pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
	bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
	bool do_warn = !(gfp & __GFP_NOWARN);
	static int warn_limit = 10;
	struct pcpu_chunk *chunk;
	const char *err;
	int slot, off, cpu, ret;
	unsigned long flags;
	void __percpu *ptr;
	size_t bits, bit_align;

	/*
	 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
	 * therefore alignment must be a minimum of that many bytes.
	 * An allocation may have internal fragmentation from rounding up
	 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
	 */
	if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
		align = PCPU_MIN_ALLOC_SIZE;

	size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
	bits = size >> PCPU_MIN_ALLOC_SHIFT;
	bit_align = align >> PCPU_MIN_ALLOC_SHIFT;

	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
		     !is_power_of_2(align))) {
		WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
		     size, align);
		return NULL;
	}

	if (!is_atomic) {
		/*
		 * pcpu_balance_workfn() allocates memory under this mutex,
		 * and it may wait for memory reclaim. Allow current task
		 * to become OOM victim, in case of memory pressure.
		 */
		if (gfp & __GFP_NOFAIL)
			mutex_lock(&pcpu_alloc_mutex);
		else if (mutex_lock_killable(&pcpu_alloc_mutex))
			return NULL;
	}

	spin_lock_irqsave(&pcpu_lock, flags);

	/* serve reserved allocations from the reserved chunk if available */
	if (reserved && pcpu_reserved_chunk) {
		chunk = pcpu_reserved_chunk;

		off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
		if (off < 0) {
			err = "alloc from reserved chunk failed";
			goto fail_unlock;
		}

		off = pcpu_alloc_area(chunk, bits, bit_align, off);
		if (off >= 0)
			goto area_found;

		err = "alloc from reserved chunk failed";
		goto fail_unlock;
	}

restart:
	/* search through normal chunks */
	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
			off = pcpu_find_block_fit(chunk, bits, bit_align,
						  is_atomic);
			if (off < 0)
				continue;

			off = pcpu_alloc_area(chunk, bits, bit_align, off);
			if (off >= 0)
				goto area_found;

		}
	}

	spin_unlock_irqrestore(&pcpu_lock, flags);

	/*
	 * No space left.  Create a new chunk.  We don't want multiple
	 * tasks to create chunks simultaneously.  Serialize and create iff
	 * there's still no empty chunk after grabbing the mutex.
	 */
	if (is_atomic) {
		err = "atomic alloc failed, no space left";
		goto fail;
	}

	if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
		chunk = pcpu_create_chunk(pcpu_gfp);
		if (!chunk) {
			err = "failed to allocate new chunk";
			goto fail;
		}

		spin_lock_irqsave(&pcpu_lock, flags);
		pcpu_chunk_relocate(chunk, -1);
	} else {
		spin_lock_irqsave(&pcpu_lock, flags);
	}

	goto restart;

area_found:
	pcpu_stats_area_alloc(chunk, size);
	spin_unlock_irqrestore(&pcpu_lock, flags);

	/* populate if not all pages are already there */
	if (!is_atomic) {
		int page_start, page_end, rs, re;

		page_start = PFN_DOWN(off);
		page_end = PFN_UP(off + size);

		pcpu_for_each_unpop_region(chunk->populated, rs, re,
					   page_start, page_end) {
			WARN_ON(chunk->immutable);

			ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);

			spin_lock_irqsave(&pcpu_lock, flags);
			if (ret) {
				pcpu_free_area(chunk, off);
				err = "failed to populate";
				goto fail_unlock;
			}
			pcpu_chunk_populated(chunk, rs, re, true);
			spin_unlock_irqrestore(&pcpu_lock, flags);
		}

		mutex_unlock(&pcpu_alloc_mutex);
	}

	if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
		pcpu_schedule_balance_work();

	/* clear the areas and return address relative to base address */
	for_each_possible_cpu(cpu)
		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);

	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
	kmemleak_alloc_percpu(ptr, size, gfp);

	trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
			chunk->base_addr, off, ptr);

	return ptr;

fail_unlock:
	spin_unlock_irqrestore(&pcpu_lock, flags);
fail:
	trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);

	if (!is_atomic && do_warn && warn_limit) {
		pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
			size, align, is_atomic, err);
		dump_stack();
		if (!--warn_limit)
			pr_info("limit reached, disable warning\n");
	}
	if (is_atomic) {
		/* see the flag handling in pcpu_blance_workfn() */
		pcpu_atomic_alloc_failed = true;
		pcpu_schedule_balance_work();
	} else {
		mutex_unlock(&pcpu_alloc_mutex);
	}
	return NULL;
}

/**
 * __alloc_percpu_gfp - allocate dynamic percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 * @gfp: allocation flags
 *
 * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
 * be called from any context but is a lot more likely to fail. If @gfp
 * has __GFP_NOWARN then no warning will be triggered on invalid or failed
 * allocation requests.
 *
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
{
	return pcpu_alloc(size, align, false, gfp);
}
EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);

/**
 * __alloc_percpu - allocate dynamic percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 *
 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
 */
void __percpu *__alloc_percpu(size_t size, size_t align)
{
	return pcpu_alloc(size, align, false, GFP_KERNEL);
}
EXPORT_SYMBOL_GPL(__alloc_percpu);

/**
 * __alloc_reserved_percpu - allocate reserved percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 *
 * Allocate zero-filled percpu area of @size bytes aligned at @align
 * from reserved percpu area if arch has set it up; otherwise,
 * allocation is served from the same dynamic area.  Might sleep.
 * Might trigger writeouts.
 *
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
{
	return pcpu_alloc(size, align, true, GFP_KERNEL);
}

/**
 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
 * @work: unused
 *
 * Reclaim all fully free chunks except for the first one.  This is also
 * responsible for maintaining the pool of empty populated pages.  However,
 * it is possible that this is called when physical memory is scarce causing
 * OOM killer to be triggered.  We should avoid doing so until an actual
 * allocation causes the failure as it is possible that requests can be
 * serviced from already backed regions.
 */
static void pcpu_balance_workfn(struct work_struct *work)
{
	/* gfp flags passed to underlying allocators */
	const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
	LIST_HEAD(to_free);
	struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
	struct pcpu_chunk *chunk, *next;
	int slot, nr_to_pop, ret;

	/*
	 * There's no reason to keep around multiple unused chunks and VM
	 * areas can be scarce.  Destroy all free chunks except for one.
	 */
	mutex_lock(&pcpu_alloc_mutex);
	spin_lock_irq(&pcpu_lock);

	list_for_each_entry_safe(chunk, next, free_head, list) {
		WARN_ON(chunk->immutable);

		/* spare the first one */
		if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
			continue;

		list_move(&chunk->list, &to_free);
	}

	spin_unlock_irq(&pcpu_lock);

	list_for_each_entry_safe(chunk, next, &to_free, list) {
		int rs, re;

		pcpu_for_each_pop_region(chunk->populated, rs, re, 0,
					 chunk->nr_pages) {
			pcpu_depopulate_chunk(chunk, rs, re);
			spin_lock_irq(&pcpu_lock);
			pcpu_chunk_depopulated(chunk, rs, re);
			spin_unlock_irq(&pcpu_lock);
		}
		pcpu_destroy_chunk(chunk);
		cond_resched();
	}

	/*
	 * Ensure there are certain number of free populated pages for
	 * atomic allocs.  Fill up from the most packed so that atomic
	 * allocs don't increase fragmentation.  If atomic allocation
	 * failed previously, always populate the maximum amount.  This
	 * should prevent atomic allocs larger than PAGE_SIZE from keeping
	 * failing indefinitely; however, large atomic allocs are not
	 * something we support properly and can be highly unreliable and
	 * inefficient.
	 */
retry_pop:
	if (pcpu_atomic_alloc_failed) {
		nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
		/* best effort anyway, don't worry about synchronization */
		pcpu_atomic_alloc_failed = false;
	} else {
		nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
				  pcpu_nr_empty_pop_pages,
				  0, PCPU_EMPTY_POP_PAGES_HIGH);
	}

	for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
		int nr_unpop = 0, rs, re;

		if (!nr_to_pop)
			break;

		spin_lock_irq(&pcpu_lock);
		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
			nr_unpop = chunk->nr_pages - chunk->nr_populated;
			if (nr_unpop)
				break;
		}
		spin_unlock_irq(&pcpu_lock);

		if (!nr_unpop)
			continue;

		/* @chunk can't go away while pcpu_alloc_mutex is held */
		pcpu_for_each_unpop_region(chunk->populated, rs, re, 0,
					   chunk->nr_pages) {
			int nr = min(re - rs, nr_to_pop);

			ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
			if (!ret) {
				nr_to_pop -= nr;
				spin_lock_irq(&pcpu_lock);
				pcpu_chunk_populated(chunk, rs, rs + nr, false);
				spin_unlock_irq(&pcpu_lock);
			} else {
				nr_to_pop = 0;
			}

			if (!nr_to_pop)
				break;
		}
	}

	if (nr_to_pop) {
		/* ran out of chunks to populate, create a new one and retry */
		chunk = pcpu_create_chunk(gfp);
		if (chunk) {
			spin_lock_irq(&pcpu_lock);
			pcpu_chunk_relocate(chunk, -1);
			spin_unlock_irq(&pcpu_lock);
			goto retry_pop;
		}
	}

	mutex_unlock(&pcpu_alloc_mutex);
}

/**
 * free_percpu - free percpu area
 * @ptr: pointer to area to free
 *
 * Free percpu area @ptr.
 *
 * CONTEXT:
 * Can be called from atomic context.
 */
void free_percpu(void __percpu *ptr)
{
	void *addr;
	struct pcpu_chunk *chunk;
	unsigned long flags;
	int off;

	if (!ptr)
		return;

	kmemleak_free_percpu(ptr);

	addr = __pcpu_ptr_to_addr(ptr);

	spin_lock_irqsave(&pcpu_lock, flags);

	chunk = pcpu_chunk_addr_search(addr);
	off = addr - chunk->base_addr;

	pcpu_free_area(chunk, off);

	/* if there are more than one fully free chunks, wake up grim reaper */
	if (chunk->free_bytes == pcpu_unit_size) {
		struct pcpu_chunk *pos;

		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
			if (pos != chunk) {
				pcpu_schedule_balance_work();
				break;
			}
	}

	trace_percpu_free_percpu(chunk->base_addr, off, ptr);

	spin_unlock_irqrestore(&pcpu_lock, flags);
}
EXPORT_SYMBOL_GPL(free_percpu);

bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
{
#ifdef CONFIG_SMP
	const size_t static_size = __per_cpu_end - __per_cpu_start;
	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
	unsigned int cpu;

	for_each_possible_cpu(cpu) {
		void *start = per_cpu_ptr(base, cpu);
		void *va = (void *)addr;

		if (va >= start && va < start + static_size) {
			if (can_addr) {
				*can_addr = (unsigned long) (va - start);
				*can_addr += (unsigned long)
					per_cpu_ptr(base, get_boot_cpu_id());
			}
			return true;
		}
	}
#endif
	/* on UP, can't distinguish from other static vars, always false */
	return false;
}

/**
 * is_kernel_percpu_address - test whether address is from static percpu area
 * @addr: address to test
 *
 * Test whether @addr belongs to in-kernel static percpu area.  Module
 * static percpu areas are not considered.  For those, use
 * is_module_percpu_address().
 *
 * RETURNS:
 * %true if @addr is from in-kernel static percpu area, %false otherwise.
 */
bool is_kernel_percpu_address(unsigned long addr)
{
	return __is_kernel_percpu_address(addr, NULL);
}

/**
 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
 * @addr: the address to be converted to physical address
 *
 * Given @addr which is dereferenceable address obtained via one of
 * percpu access macros, this function translates it into its physical
 * address.  The caller is responsible for ensuring @addr stays valid
 * until this function finishes.
 *
 * percpu allocator has special setup for the first chunk, which currently
 * supports either embedding in linear address space or vmalloc mapping,
 * and, from the second one, the backing allocator (currently either vm or
 * km) provides translation.
 *
 * The addr can be translated simply without checking if it falls into the
 * first chunk. But the current code reflects better how percpu allocator
 * actually works, and the verification can discover both bugs in percpu
 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
 * code.
 *
 * RETURNS:
 * The physical address for @addr.
 */
phys_addr_t per_cpu_ptr_to_phys(void *addr)
{
	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
	bool in_first_chunk = false;
	unsigned long first_low, first_high;
	unsigned int cpu;

	/*
	 * The following test on unit_low/high isn't strictly
	 * necessary but will speed up lookups of addresses which
	 * aren't in the first chunk.
	 *
	 * The address check is against full chunk sizes.  pcpu_base_addr
	 * points to the beginning of the first chunk including the
	 * static region.  Assumes good intent as the first chunk may
	 * not be full (ie. < pcpu_unit_pages in size).
	 */
	first_low = (unsigned long)pcpu_base_addr +
		    pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
	first_high = (unsigned long)pcpu_base_addr +
		     pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
	if ((unsigned long)addr >= first_low &&
	    (unsigned long)addr < first_high) {
		for_each_possible_cpu(cpu) {
			void *start = per_cpu_ptr(base, cpu);

			if (addr >= start && addr < start + pcpu_unit_size) {
				in_first_chunk = true;
				break;
			}
		}
	}

	if (in_first_chunk) {
		if (!is_vmalloc_addr(addr))
			return __pa(addr);
		else
			return page_to_phys(vmalloc_to_page(addr)) +
			       offset_in_page(addr);
	} else
		return page_to_phys(pcpu_addr_to_page(addr)) +
		       offset_in_page(addr);
}

/**
 * pcpu_alloc_alloc_info - allocate percpu allocation info
 * @nr_groups: the number of groups
 * @nr_units: the number of units
 *
 * Allocate ai which is large enough for @nr_groups groups containing
 * @nr_units units.  The returned ai's groups[0].cpu_map points to the
 * cpu_map array which is long enough for @nr_units and filled with
 * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
 * pointer of other groups.
 *
 * RETURNS:
 * Pointer to the allocated pcpu_alloc_info on success, NULL on
 * failure.
 */
struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
						      int nr_units)
{
	struct pcpu_alloc_info *ai;
	size_t base_size, ai_size;
	void *ptr;
	int unit;

	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
			  __alignof__(ai->groups[0].cpu_map[0]));
	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);

	ptr = memblock_alloc_nopanic(PFN_ALIGN(ai_size), PAGE_SIZE);
	if (!ptr)
		return NULL;
	ai = ptr;
	ptr += base_size;

	ai->groups[0].cpu_map = ptr;

	for (unit = 0; unit < nr_units; unit++)
		ai->groups[0].cpu_map[unit] = NR_CPUS;

	ai->nr_groups = nr_groups;
	ai->__ai_size = PFN_ALIGN(ai_size);

	return ai;
}

/**
 * pcpu_free_alloc_info - free percpu allocation info
 * @ai: pcpu_alloc_info to free
 *
 * Free @ai which was allocated by pcpu_alloc_alloc_info().
 */
void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
{
	memblock_free_early(__pa(ai), ai->__ai_size);
}

/**
 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
 * @lvl: loglevel
 * @ai: allocation info to dump
 *
 * Print out information about @ai using loglevel @lvl.
 */
static void pcpu_dump_alloc_info(const char *lvl,
				 const struct pcpu_alloc_info *ai)
{
	int group_width = 1, cpu_width = 1, width;
	char empty_str[] = "--------";
	int alloc = 0, alloc_end = 0;
	int group, v;
	int upa, apl;	/* units per alloc, allocs per line */

	v = ai->nr_groups;
	while (v /= 10)
		group_width++;

	v = num_possible_cpus();
	while (v /= 10)
		cpu_width++;
	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';

	upa = ai->alloc_size / ai->unit_size;
	width = upa * (cpu_width + 1) + group_width + 3;
	apl = rounddown_pow_of_two(max(60 / width, 1));

	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);

	for (group = 0; group < ai->nr_groups; group++) {
		const struct pcpu_group_info *gi = &ai->groups[group];
		int unit = 0, unit_end = 0;

		BUG_ON(gi->nr_units % upa);
		for (alloc_end += gi->nr_units / upa;
		     alloc < alloc_end; alloc++) {
			if (!(alloc % apl)) {
				pr_cont("\n");
				printk("%spcpu-alloc: ", lvl);
			}
			pr_cont("[%0*d] ", group_width, group);

			for (unit_end += upa; unit < unit_end; unit++)
				if (gi->cpu_map[unit] != NR_CPUS)
					pr_cont("%0*d ",
						cpu_width, gi->cpu_map[unit]);
				else
					pr_cont("%s ", empty_str);
		}
	}
	pr_cont("\n");
}

/**
 * pcpu_setup_first_chunk - initialize the first percpu chunk
 * @ai: pcpu_alloc_info describing how to percpu area is shaped
 * @base_addr: mapped address
 *
 * Initialize the first percpu chunk which contains the kernel static
 * perpcu area.  This function is to be called from arch percpu area
 * setup path.
 *
 * @ai contains all information necessary to initialize the first
 * chunk and prime the dynamic percpu allocator.
 *
 * @ai->static_size is the size of static percpu area.
 *
 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
 * reserve after the static area in the first chunk.  This reserves
 * the first chunk such that it's available only through reserved
 * percpu allocation.  This is primarily used to serve module percpu
 * static areas on architectures where the addressing model has
 * limited offset range for symbol relocations to guarantee module
 * percpu symbols fall inside the relocatable range.
 *
 * @ai->dyn_size determines the number of bytes available for dynamic
 * allocation in the first chunk.  The area between @ai->static_size +
 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
 *
 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
 * and equal to or larger than @ai->static_size + @ai->reserved_size +
 * @ai->dyn_size.
 *
 * @ai->atom_size is the allocation atom size and used as alignment
 * for vm areas.
 *
 * @ai->alloc_size is the allocation size and always multiple of
 * @ai->atom_size.  This is larger than @ai->atom_size if
 * @ai->unit_size is larger than @ai->atom_size.
 *
 * @ai->nr_groups and @ai->groups describe virtual memory layout of
 * percpu areas.  Units which should be colocated are put into the
 * same group.  Dynamic VM areas will be allocated according to these
 * groupings.  If @ai->nr_groups is zero, a single group containing
 * all units is assumed.
 *
 * The caller should have mapped the first chunk at @base_addr and
 * copied static data to each unit.
 *
 * The first chunk will always contain a static and a dynamic region.
 * However, the static region is not managed by any chunk.  If the first
 * chunk also contains a reserved region, it is served by two chunks -
 * one for the reserved region and one for the dynamic region.  They
 * share the same vm, but use offset regions in the area allocation map.
 * The chunk serving the dynamic region is circulated in the chunk slots
 * and available for dynamic allocation like any other chunk.
 *
 * RETURNS:
 * 0 on success, -errno on failure.
 */
int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
				  void *base_addr)
{
	size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
	size_t static_size, dyn_size;
	struct pcpu_chunk *chunk;
	unsigned long *group_offsets;
	size_t *group_sizes;
	unsigned long *unit_off;
	unsigned int cpu;
	int *unit_map;
	int group, unit, i;
	int map_size;
	unsigned long tmp_addr;

#define PCPU_SETUP_BUG_ON(cond)	do {					\
	if (unlikely(cond)) {						\
		pr_emerg("failed to initialize, %s\n", #cond);		\
		pr_emerg("cpu_possible_mask=%*pb\n",			\
			 cpumask_pr_args(cpu_possible_mask));		\
		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
		BUG();							\
	}								\
} while (0)

	/* sanity checks */
	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
#ifdef CONFIG_SMP
	PCPU_SETUP_BUG_ON(!ai->static_size);
	PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
#endif
	PCPU_SETUP_BUG_ON(!base_addr);
	PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
	PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
	PCPU_SETUP_BUG_ON(!ai->dyn_size);
	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
	PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
			    IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);

	/* process group information and build config tables accordingly */
	group_offsets = memblock_alloc(ai->nr_groups * sizeof(group_offsets[0]),
				       SMP_CACHE_BYTES);
	group_sizes = memblock_alloc(ai->nr_groups * sizeof(group_sizes[0]),
				     SMP_CACHE_BYTES);
	unit_map = memblock_alloc(nr_cpu_ids * sizeof(unit_map[0]),
				  SMP_CACHE_BYTES);
	unit_off = memblock_alloc(nr_cpu_ids * sizeof(unit_off[0]),
				  SMP_CACHE_BYTES);

	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
		unit_map[cpu] = UINT_MAX;

	pcpu_low_unit_cpu = NR_CPUS;
	pcpu_high_unit_cpu = NR_CPUS;

	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
		const struct pcpu_group_info *gi = &ai->groups[group];

		group_offsets[group] = gi->base_offset;
		group_sizes[group] = gi->nr_units * ai->unit_size;

		for (i = 0; i < gi->nr_units; i++) {
			cpu = gi->cpu_map[i];
			if (cpu == NR_CPUS)
				continue;

			PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);

			unit_map[cpu] = unit + i;
			unit_off[cpu] = gi->base_offset + i * ai->unit_size;

			/* determine low/high unit_cpu */
			if (pcpu_low_unit_cpu == NR_CPUS ||
			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
				pcpu_low_unit_cpu = cpu;
			if (pcpu_high_unit_cpu == NR_CPUS ||
			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
				pcpu_high_unit_cpu = cpu;
		}
	}
	pcpu_nr_units = unit;

	for_each_possible_cpu(cpu)
		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);

	/* we're done parsing the input, undefine BUG macro and dump config */
#undef PCPU_SETUP_BUG_ON
	pcpu_dump_alloc_info(KERN_DEBUG, ai);

	pcpu_nr_groups = ai->nr_groups;
	pcpu_group_offsets = group_offsets;
	pcpu_group_sizes = group_sizes;
	pcpu_unit_map = unit_map;
	pcpu_unit_offsets = unit_off;

	/* determine basic parameters */
	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
	pcpu_atom_size = ai->atom_size;
	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);

	pcpu_stats_save_ai(ai);

	/*
	 * Allocate chunk slots.  The additional last slot is for
	 * empty chunks.
	 */
	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
	pcpu_slot = memblock_alloc(pcpu_nr_slots * sizeof(pcpu_slot[0]),
				   SMP_CACHE_BYTES);
	for (i = 0; i < pcpu_nr_slots; i++)
		INIT_LIST_HEAD(&pcpu_slot[i]);

	/*
	 * The end of the static region needs to be aligned with the
	 * minimum allocation size as this offsets the reserved and
	 * dynamic region.  The first chunk ends page aligned by
	 * expanding the dynamic region, therefore the dynamic region
	 * can be shrunk to compensate while still staying above the
	 * configured sizes.
	 */
	static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
	dyn_size = ai->dyn_size - (static_size - ai->static_size);

	/*
	 * Initialize first chunk.
	 * If the reserved_size is non-zero, this initializes the reserved
	 * chunk.  If the reserved_size is zero, the reserved chunk is NULL
	 * and the dynamic region is initialized here.  The first chunk,
	 * pcpu_first_chunk, will always point to the chunk that serves
	 * the dynamic region.
	 */
	tmp_addr = (unsigned long)base_addr + static_size;
	map_size = ai->reserved_size ?: dyn_size;
	chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);

	/* init dynamic chunk if necessary */
	if (ai->reserved_size) {
		pcpu_reserved_chunk = chunk;

		tmp_addr = (unsigned long)base_addr + static_size +
			   ai->reserved_size;
		map_size = dyn_size;
		chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
	}

	/* link the first chunk in */
	pcpu_first_chunk = chunk;
	pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
	pcpu_chunk_relocate(pcpu_first_chunk, -1);

	/* include all regions of the first chunk */
	pcpu_nr_populated += PFN_DOWN(size_sum);

	pcpu_stats_chunk_alloc();
	trace_percpu_create_chunk(base_addr);

	/* we're done */
	pcpu_base_addr = base_addr;
	return 0;
}

#ifdef CONFIG_SMP

const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
	[PCPU_FC_AUTO]	= "auto",
	[PCPU_FC_EMBED]	= "embed",
	[PCPU_FC_PAGE]	= "page",
};

enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;

static int __init percpu_alloc_setup(char *str)
{
	if (!str)
		return -EINVAL;

	if (0)
		/* nada */;
#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
	else if (!strcmp(str, "embed"))
		pcpu_chosen_fc = PCPU_FC_EMBED;
#endif
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
	else if (!strcmp(str, "page"))
		pcpu_chosen_fc = PCPU_FC_PAGE;
#endif
	else
		pr_warn("unknown allocator %s specified\n", str);

	return 0;
}
early_param("percpu_alloc", percpu_alloc_setup);

/*
 * pcpu_embed_first_chunk() is used by the generic percpu setup.
 * Build it if needed by the arch config or the generic setup is going
 * to be used.
 */
#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
#define BUILD_EMBED_FIRST_CHUNK
#endif

/* build pcpu_page_first_chunk() iff needed by the arch config */
#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
#define BUILD_PAGE_FIRST_CHUNK
#endif

/* pcpu_build_alloc_info() is used by both embed and page first chunk */
#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
/**
 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
 * @reserved_size: the size of reserved percpu area in bytes
 * @dyn_size: minimum free size for dynamic allocation in bytes
 * @atom_size: allocation atom size
 * @cpu_distance_fn: callback to determine distance between cpus, optional
 *
 * This function determines grouping of units, their mappings to cpus
 * and other parameters considering needed percpu size, allocation
 * atom size and distances between CPUs.
 *
 * Groups are always multiples of atom size and CPUs which are of
 * LOCAL_DISTANCE both ways are grouped together and share space for
 * units in the same group.  The returned configuration is guaranteed
 * to have CPUs on different nodes on different groups and >=75% usage
 * of allocated virtual address space.
 *
 * RETURNS:
 * On success, pointer to the new allocation_info is returned.  On
 * failure, ERR_PTR value is returned.
 */
static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
				size_t reserved_size, size_t dyn_size,
				size_t atom_size,
				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
{
	static int group_map[NR_CPUS] __initdata;
	static int group_cnt[NR_CPUS] __initdata;
	const size_t static_size = __per_cpu_end - __per_cpu_start;
	int nr_groups = 1, nr_units = 0;
	size_t size_sum, min_unit_size, alloc_size;
	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
	int last_allocs, group, unit;
	unsigned int cpu, tcpu;
	struct pcpu_alloc_info *ai;
	unsigned int *cpu_map;

	/* this function may be called multiple times */
	memset(group_map, 0, sizeof(group_map));
	memset(group_cnt, 0, sizeof(group_cnt));

	/* calculate size_sum and ensure dyn_size is enough for early alloc */
	size_sum = PFN_ALIGN(static_size + reserved_size +
			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
	dyn_size = size_sum - static_size - reserved_size;

	/*
	 * Determine min_unit_size, alloc_size and max_upa such that
	 * alloc_size is multiple of atom_size and is the smallest
	 * which can accommodate 4k aligned segments which are equal to
	 * or larger than min_unit_size.
	 */
	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);

	/* determine the maximum # of units that can fit in an allocation */
	alloc_size = roundup(min_unit_size, atom_size);
	upa = alloc_size / min_unit_size;
	while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
		upa--;
	max_upa = upa;

	/* group cpus according to their proximity */
	for_each_possible_cpu(cpu) {
		group = 0;
	next_group:
		for_each_possible_cpu(tcpu) {
			if (cpu == tcpu)
				break;
			if (group_map[tcpu] == group && cpu_distance_fn &&
			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
				group++;
				nr_groups = max(nr_groups, group + 1);
				goto next_group;
			}
		}
		group_map[cpu] = group;
		group_cnt[group]++;
	}

	/*
	 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
	 * Expand the unit_size until we use >= 75% of the units allocated.
	 * Related to atom_size, which could be much larger than the unit_size.
	 */
	last_allocs = INT_MAX;
	for (upa = max_upa; upa; upa--) {
		int allocs = 0, wasted = 0;

		if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
			continue;

		for (group = 0; group < nr_groups; group++) {
			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
			allocs += this_allocs;
			wasted += this_allocs * upa - group_cnt[group];
		}

		/*
		 * Don't accept if wastage is over 1/3.  The
		 * greater-than comparison ensures upa==1 always
		 * passes the following check.
		 */
		if (wasted > num_possible_cpus() / 3)
			continue;

		/* and then don't consume more memory */
		if (allocs > last_allocs)
			break;
		last_allocs = allocs;
		best_upa = upa;
	}
	upa = best_upa;

	/* allocate and fill alloc_info */
	for (group = 0; group < nr_groups; group++)
		nr_units += roundup(group_cnt[group], upa);

	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
	if (!ai)
		return ERR_PTR(-ENOMEM);
	cpu_map = ai->groups[0].cpu_map;

	for (group = 0; group < nr_groups; group++) {
		ai->groups[group].cpu_map = cpu_map;
		cpu_map += roundup(group_cnt[group], upa);
	}

	ai->static_size = static_size;
	ai->reserved_size = reserved_size;
	ai->dyn_size = dyn_size;
	ai->unit_size = alloc_size / upa;
	ai->atom_size = atom_size;
	ai->alloc_size = alloc_size;

	for (group = 0, unit = 0; group_cnt[group]; group++) {
		struct pcpu_group_info *gi = &ai->groups[group];

		/*
		 * Initialize base_offset as if all groups are located
		 * back-to-back.  The caller should update this to
		 * reflect actual allocation.
		 */
		gi->base_offset = unit * ai->unit_size;

		for_each_possible_cpu(cpu)
			if (group_map[cpu] == group)
				gi->cpu_map[gi->nr_units++] = cpu;
		gi->nr_units = roundup(gi->nr_units, upa);
		unit += gi->nr_units;
	}
	BUG_ON(unit != nr_units);

	return ai;
}
#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */

#if defined(BUILD_EMBED_FIRST_CHUNK)
/**
 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
 * @reserved_size: the size of reserved percpu area in bytes
 * @dyn_size: minimum free size for dynamic allocation in bytes
 * @atom_size: allocation atom size
 * @cpu_distance_fn: callback to determine distance between cpus, optional
 * @alloc_fn: function to allocate percpu page
 * @free_fn: function to free percpu page
 *
 * This is a helper to ease setting up embedded first percpu chunk and
 * can be called where pcpu_setup_first_chunk() is expected.
 *
 * If this function is used to setup the first chunk, it is allocated
 * by calling @alloc_fn and used as-is without being mapped into
 * vmalloc area.  Allocations are always whole multiples of @atom_size
 * aligned to @atom_size.
 *
 * This enables the first chunk to piggy back on the linear physical
 * mapping which often uses larger page size.  Please note that this
 * can result in very sparse cpu->unit mapping on NUMA machines thus
 * requiring large vmalloc address space.  Don't use this allocator if
 * vmalloc space is not orders of magnitude larger than distances
 * between node memory addresses (ie. 32bit NUMA machines).
 *
 * @dyn_size specifies the minimum dynamic area size.
 *
 * If the needed size is smaller than the minimum or specified unit
 * size, the leftover is returned using @free_fn.
 *
 * RETURNS:
 * 0 on success, -errno on failure.
 */
int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
				  size_t atom_size,
				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
				  pcpu_fc_alloc_fn_t alloc_fn,
				  pcpu_fc_free_fn_t free_fn)
{
	void *base = (void *)ULONG_MAX;
	void **areas = NULL;
	struct pcpu_alloc_info *ai;
	size_t size_sum, areas_size;
	unsigned long max_distance;
	int group, i, highest_group, rc;

	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
				   cpu_distance_fn);
	if (IS_ERR(ai))
		return PTR_ERR(ai);

	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));

	areas = memblock_alloc_nopanic(areas_size, SMP_CACHE_BYTES);
	if (!areas) {
		rc = -ENOMEM;
		goto out_free;
	}

	/* allocate, copy and determine base address & max_distance */
	highest_group = 0;
	for (group = 0; group < ai->nr_groups; group++) {
		struct pcpu_group_info *gi = &ai->groups[group];
		unsigned int cpu = NR_CPUS;
		void *ptr;

		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
			cpu = gi->cpu_map[i];
		BUG_ON(cpu == NR_CPUS);

		/* allocate space for the whole group */
		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
		if (!ptr) {
			rc = -ENOMEM;
			goto out_free_areas;
		}
		/* kmemleak tracks the percpu allocations separately */
		kmemleak_free(ptr);
		areas[group] = ptr;

		base = min(ptr, base);
		if (ptr > areas[highest_group])
			highest_group = group;
	}
	max_distance = areas[highest_group] - base;
	max_distance += ai->unit_size * ai->groups[highest_group].nr_units;

	/* warn if maximum distance is further than 75% of vmalloc space */
	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
		pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
				max_distance, VMALLOC_TOTAL);
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
		/* and fail if we have fallback */
		rc = -EINVAL;
		goto out_free_areas;
#endif
	}

	/*
	 * Copy data and free unused parts.  This should happen after all
	 * allocations are complete; otherwise, we may end up with
	 * overlapping groups.
	 */
	for (group = 0; group < ai->nr_groups; group++) {
		struct pcpu_group_info *gi = &ai->groups[group];
		void *ptr = areas[group];

		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
			if (gi->cpu_map[i] == NR_CPUS) {
				/* unused unit, free whole */
				free_fn(ptr, ai->unit_size);
				continue;
			}
			/* copy and return the unused part */
			memcpy(ptr, __per_cpu_load, ai->static_size);
			free_fn(ptr + size_sum, ai->unit_size - size_sum);
		}
	}

	/* base address is now known, determine group base offsets */
	for (group = 0; group < ai->nr_groups; group++) {
		ai->groups[group].base_offset = areas[group] - base;
	}

	pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
		ai->dyn_size, ai->unit_size);

	rc = pcpu_setup_first_chunk(ai, base);
	goto out_free;

out_free_areas:
	for (group = 0; group < ai->nr_groups; group++)
		if (areas[group])
			free_fn(areas[group],
				ai->groups[group].nr_units * ai->unit_size);
out_free:
	pcpu_free_alloc_info(ai);
	if (areas)
		memblock_free_early(__pa(areas), areas_size);
	return rc;
}
#endif /* BUILD_EMBED_FIRST_CHUNK */

#ifdef BUILD_PAGE_FIRST_CHUNK
/**
 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
 * @reserved_size: the size of reserved percpu area in bytes
 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
 * @free_fn: function to free percpu page, always called with PAGE_SIZE
 * @populate_pte_fn: function to populate pte
 *
 * This is a helper to ease setting up page-remapped first percpu
 * chunk and can be called where pcpu_setup_first_chunk() is expected.
 *
 * This is the basic allocator.  Static percpu area is allocated
 * page-by-page into vmalloc area.
 *
 * RETURNS:
 * 0 on success, -errno on failure.
 */
int __init pcpu_page_first_chunk(size_t reserved_size,
				 pcpu_fc_alloc_fn_t alloc_fn,
				 pcpu_fc_free_fn_t free_fn,
				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
{
	static struct vm_struct vm;
	struct pcpu_alloc_info *ai;
	char psize_str[16];
	int unit_pages;
	size_t pages_size;
	struct page **pages;
	int unit, i, j, rc;
	int upa;
	int nr_g0_units;

	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);

	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
	if (IS_ERR(ai))
		return PTR_ERR(ai);
	BUG_ON(ai->nr_groups != 1);
	upa = ai->alloc_size/ai->unit_size;
	nr_g0_units = roundup(num_possible_cpus(), upa);
	if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) {
		pcpu_free_alloc_info(ai);
		return -EINVAL;
	}

	unit_pages = ai->unit_size >> PAGE_SHIFT;

	/* unaligned allocations can't be freed, round up to page size */
	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
			       sizeof(pages[0]));
	pages = memblock_alloc(pages_size, SMP_CACHE_BYTES);

	/* allocate pages */
	j = 0;
	for (unit = 0; unit < num_possible_cpus(); unit++) {
		unsigned int cpu = ai->groups[0].cpu_map[unit];
		for (i = 0; i < unit_pages; i++) {
			void *ptr;

			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
			if (!ptr) {
				pr_warn("failed to allocate %s page for cpu%u\n",
						psize_str, cpu);
				goto enomem;
			}
			/* kmemleak tracks the percpu allocations separately */
			kmemleak_free(ptr);
			pages[j++] = virt_to_page(ptr);
		}
	}

	/* allocate vm area, map the pages and copy static data */
	vm.flags = VM_ALLOC;
	vm.size = num_possible_cpus() * ai->unit_size;
	vm_area_register_early(&vm, PAGE_SIZE);

	for (unit = 0; unit < num_possible_cpus(); unit++) {
		unsigned long unit_addr =
			(unsigned long)vm.addr + unit * ai->unit_size;

		for (i = 0; i < unit_pages; i++)
			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));

		/* pte already populated, the following shouldn't fail */
		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
				      unit_pages);
		if (rc < 0)
			panic("failed to map percpu area, err=%d\n", rc);

		/*
		 * FIXME: Archs with virtual cache should flush local
		 * cache for the linear mapping here - something
		 * equivalent to flush_cache_vmap() on the local cpu.
		 * flush_cache_vmap() can't be used as most supporting
		 * data structures are not set up yet.
		 */

		/* copy static data */
		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
	}

	/* we're ready, commit */
	pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
		unit_pages, psize_str, vm.addr, ai->static_size,
		ai->reserved_size, ai->dyn_size);

	rc = pcpu_setup_first_chunk(ai, vm.addr);
	goto out_free_ar;

enomem:
	while (--j >= 0)
		free_fn(page_address(pages[j]), PAGE_SIZE);
	rc = -ENOMEM;
out_free_ar:
	memblock_free_early(__pa(pages), pages_size);
	pcpu_free_alloc_info(ai);
	return rc;
}
#endif /* BUILD_PAGE_FIRST_CHUNK */

#ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
/*
 * Generic SMP percpu area setup.
 *
 * The embedding helper is used because its behavior closely resembles
 * the original non-dynamic generic percpu area setup.  This is
 * important because many archs have addressing restrictions and might
 * fail if the percpu area is located far away from the previous
 * location.  As an added bonus, in non-NUMA cases, embedding is
 * generally a good idea TLB-wise because percpu area can piggy back
 * on the physical linear memory mapping which uses large page
 * mappings on applicable archs.
 */
unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(__per_cpu_offset);

static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
				       size_t align)
{
	return  memblock_alloc_from_nopanic(
			size, align, __pa(MAX_DMA_ADDRESS));
}

static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
{
	memblock_free_early(__pa(ptr), size);
}

void __init setup_per_cpu_areas(void)
{
	unsigned long delta;
	unsigned int cpu;
	int rc;

	/*
	 * Always reserve area for module percpu variables.  That's
	 * what the legacy allocator did.
	 */
	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
	if (rc < 0)
		panic("Failed to initialize percpu areas.");

	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
	for_each_possible_cpu(cpu)
		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
}
#endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */

#else	/* CONFIG_SMP */

/*
 * UP percpu area setup.
 *
 * UP always uses km-based percpu allocator with identity mapping.
 * Static percpu variables are indistinguishable from the usual static
 * variables and don't require any special preparation.
 */
void __init setup_per_cpu_areas(void)
{
	const size_t unit_size =
		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
					 PERCPU_DYNAMIC_RESERVE));
	struct pcpu_alloc_info *ai;
	void *fc;

	ai = pcpu_alloc_alloc_info(1, 1);
	fc = memblock_alloc_from_nopanic(unit_size,
					      PAGE_SIZE,
					      __pa(MAX_DMA_ADDRESS));
	if (!ai || !fc)
		panic("Failed to allocate memory for percpu areas.");
	/* kmemleak tracks the percpu allocations separately */
	kmemleak_free(fc);

	ai->dyn_size = unit_size;
	ai->unit_size = unit_size;
	ai->atom_size = unit_size;
	ai->alloc_size = unit_size;
	ai->groups[0].nr_units = 1;
	ai->groups[0].cpu_map[0] = 0;

	if (pcpu_setup_first_chunk(ai, fc) < 0)
		panic("Failed to initialize percpu areas.");
	pcpu_free_alloc_info(ai);
}

#endif	/* CONFIG_SMP */

/*
 * pcpu_nr_pages - calculate total number of populated backing pages
 *
 * This reflects the number of pages populated to back chunks.  Metadata is
 * excluded in the number exposed in meminfo as the number of backing pages
 * scales with the number of cpus and can quickly outweigh the memory used for
 * metadata.  It also keeps this calculation nice and simple.
 *
 * RETURNS:
 * Total number of populated backing pages in use by the allocator.
 */
unsigned long pcpu_nr_pages(void)
{
	return pcpu_nr_populated * pcpu_nr_units;
}

/*
 * Percpu allocator is initialized early during boot when neither slab or
 * workqueue is available.  Plug async management until everything is up
 * and running.
 */
static int __init percpu_enable_async(void)
{
	pcpu_async_enabled = true;
	return 0;
}
subsys_initcall(percpu_enable_async);