| Commit message (Collapse) | Author | Age |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
They aren't used. They were briefly used as part of some other patches to
provide an alternative format for displaying some /proc and /sys cpumasks.
They probably should have been removed when those other patches were dropped,
in favor of a different solution.
Signed-off-by: Paul Jackson <pj@sgi.com>
Cc: "Mike Travis" <travis@sgi.com>
Cc: "Bert Wesarg" <bert.wesarg@googlemail.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: WANG Cong <xiyou.wangcong@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The following adds two more bitmap operators, bitmap_onto() and bitmap_fold(),
with the usual cpumask and nodemask wrappers.
The bitmap_onto() operator computes one bitmap relative to another. If the
n-th bit in the origin mask is set, then the m-th bit of the destination mask
will be set, where m is the position of the n-th set bit in the relative mask.
The bitmap_fold() operator folds a bitmap into a second that has bit m set iff
the input bitmap has some bit n set, where m == n mod sz, for the specified sz
value.
There are two substantive changes between this patch and its
predecessor bitmap_relative:
1) Renamed bitmap_relative() to be bitmap_onto().
2) Added bitmap_fold().
The essential motivation for bitmap_onto() is to provide a mechanism for
converting a cpuset-relative CPU or Node mask to an absolute mask. Cpuset
relative masks are written as if the current task were in a cpuset whose CPUs
or Nodes were just the consecutive ones numbered 0..N-1, for some N. The
bitmap_onto() operator is provided in anticipation of adding support for the
first such cpuset relative mask, by the mbind() and set_mempolicy() system
calls, using a planned flag of MPOL_F_RELATIVE_NODES. These bitmap operators
(and their nodemask wrappers, in particular) will be used in code that
converts the user specified cpuset relative memory policy to a specific system
node numbered policy, given the current mems_allowed of the tasks cpuset.
Such cpuset relative mempolicies will address two deficiencies
of the existing interface between cpusets and mempolicies:
1) A task cannot at present reliably establish a cpuset
relative mempolicy because there is an essential race
condition, in that the tasks cpuset may be changed in
between the time the task can query its cpuset placement,
and the time the task can issue the applicable mbind or
set_memplicy system call.
2) A task cannot at present establish what cpuset relative
mempolicy it would like to have, if it is in a smaller
cpuset than it might have mempolicy preferences for,
because the existing interface only allows specifying
mempolicies for nodes currently allowed by the cpuset.
Cpuset relative mempolicies are useful for tasks that don't distinguish
particularly between one CPU or Node and another, but only between how many of
each are allowed, and the proper placement of threads and memory pages on the
various CPUs and Nodes available.
The motivation for the added bitmap_fold() can be seen in the following
example.
Let's say an application has specified some mempolicies that presume 16 memory
nodes, including say a mempolicy that specified MPOL_F_RELATIVE_NODES (cpuset
relative) nodes 12-15. Then lets say that application is crammed into a
cpuset that only has 8 memory nodes, 0-7. If one just uses bitmap_onto(),
this mempolicy, mapped to that cpuset, would ignore the requested relative
nodes above 7, leaving it empty of nodes. That's not good; better to fold the
higher nodes down, so that some nodes are included in the resulting mapped
mempolicy. In this case, the mempolicy nodes 12-15 are taken modulo 8 (the
weight of the mems_allowed of the confining cpuset), resulting in a mempolicy
specifying nodes 4-7.
Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Andi Kleen <ak@suse.de>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: <kosaki.motohiro@jp.fujitsu.com>
Cc: <ray-lk@madrabbit.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add a new function cpumask_scnprintf_len() to return the number of
characters needed to display "len" cpumask bits. The current method
of allocating NR_CPUS bytes is incorrect as what's really needed is
9 characters per 32-bit word of cpumask bits (8 hex digits plus the
seperator [','] or the terminating NULL.) This function provides the
caller the means to allocate the correct string length.
Cc: Paul Jackson <pj@sgi.com>
Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When a bitmap is empty bitmap_scnlistprintf() would leave the buffer
uninitialized. Set it to an empty string in this case.
I didn't see any in normal kernel callers hitting this, but some custom
debug code of mine did.
Signed-off-by: Andi Kleen <ak@suse.de>
Acked-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
| |
Fix kernel-doc warnings in 2.6.20-git15 (lib/, mm/, kernel/, include/).
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A variety of (mostly) innocuous fixes to the embedded kernel-doc content in
source files, including:
* make multi-line initial descriptions single line
* denote some function names, constants and structs as such
* change erroneous opening '/*' to '/**' in a few places
* reword some text for clarity
Signed-off-by: Robert P. J. Day <rpjday@mindspring.com>
Cc: "Randy.Dunlap" <rdunlap@xenotime.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
lib/bitmap.c:bitmap_parse() is a library function that received as input a
user buffer. This seemed to have originated from the way the write_proc
function of the /proc filesystem operates.
This has been reworked to not use kmalloc and eliminates a lot of
get_user() overhead by performing one access_ok before using __get_user().
We need to test if we are in kernel or user space (is_user) and access the
buffer differently. We cannot use __get_user() to access kernel addresses
in all cases, for example in architectures with separate address space for
kernel and user.
This function will be useful for other uses as well; for example, taking
input for /sysfs instead of /proc, so it was changed to accept kernel
buffers. We have this use for the Linux UWB project, as part as the
upcoming bandwidth allocator code.
Only a few routines used this function and they were changed too.
Signed-off-by: Reinette Chatre <reinette.chatre@linux.intel.com>
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Joe Korty <joe.korty@ccur.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
| |
Make corrections/fixes to kernel-doc in lib/bitmap.c and include it in DocBook
template.
Signed-off-by: Randy Dunlap <rdunlap@xenotime.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
By defining generic hweight*() routines
- hweight64() will be defined on all architectures
- hweight_long() will use architecture optimized hweight32() or hweight64()
I found two possible cleanups by these reasons.
Signed-off-by: Akinobu Mita <mita@miraclelinux.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Restructure the bitmap_*_region() operations, to avoid code duplication.
Also reduces binary text size by about 100 bytes (ia64 arch). The original
Bottomley bitmap_*_region patch added about 1000 bytes of compiled kernel text
(ia64). The Mundt multiword extension added another 600 bytes, and this
restructuring patch gets back about 100 bytes.
But the real motivation was the reduced amount of duplicated code.
Tested by Paul Mundt using <= BITS_PER_LONG as well as power of
2 aligned multiword spanning allocations.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add support to the lib/bitmap.c bitmap_*_region() routines
For bitmap regions larger than one word (nbits > BITS_PER_LONG). This removes
a BUG_ON() in lib bitmap.
I have an updated store queue API for SH that is currently using this with
relative success, and at first glance, it seems like this could be useful for
x86 (arch/i386/kernel/pci-dma.c) as well. Particularly for anything using
dma_declare_coherent_memory() on large areas and that attempts to allocate
large buffers from that space.
Paul Jackson also did some cleanup to this patch.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Paul Mundt <lethal@linux-sh.org> says:
This patch set implements a number of patches to clean up and restructure the
bitmap region code, in addition to extending the interface to support
multiword spanning allocations.
The current implementation (before this patch set) is limited by only being
able to allocate pages <= BITS_PER_LONG, as noted by the strategically
positioned BUG_ON() at lib/bitmap.c:752:
/* We don't do regions of pages > BITS_PER_LONG. The
* algorithm would be a simple look for multiple zeros in the
* array, but there's no driver today that needs this. If you
* trip this BUG(), you get to code it... */
BUG_ON(pages > BITS_PER_LONG);
As I seem to have been the first person to trigger this, the result ends up
being the following patch set with the help of Paul Jackson.
The final patch in the series eliminates quite a bit of code duplication, so
the bitmap code size ends up being smaller than the current implementation as
an added bonus.
After these are applied, it should already be possible to do multiword
allocations with dma_alloc_coherent() out of ranges established by
dma_declare_coherent_memory() on x86 without having to change any of the code,
and the SH store queue API will follow up on this as the other user that needs
support for this.
This patch:
Some code cleanup on the lib/bitmap.c bitmap_*_region() routines:
* spacing
* variable names
* comments
Has no change to code function.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fix the default behaviour for the remap operators in bitmap, cpumask and
nodemask.
As previously submitted, the pair of masks <A, B> defined a map of the
positions of the set bits in A to the corresponding bits in B. This is still
true.
The issue is how to map the other positions, corresponding to the unset (0)
bits in A. As previously submitted, they were all mapped to the first set bit
position in B, a constant map.
When I tried to code per-vma mempolicy rebinding using these remap operators,
I realized this was wrong.
This patch changes the default to map all the unset bit positions in A to the
same positions in B, the identity map.
For example, if A has bits 4-7 set, and B has bits 9-12 set, then the map
defined by the pair <A, B> maps each bit position in the first 32 bits as
follows:
0 ==> 0
...
3 ==> 3
4 ==> 9
...
7 ==> 12
8 ==> 8
9 ==> 9
...
31 ==> 31
This now corresponds to the typical behaviour desired when migrating pages and
policies from one cpuset to another.
The pages on nodes within the original cpuset, and the references in memory
policies to nodes within the original cpuset, are migrated to the
corresponding cpuset-relative nodes in the destination cpuset. Other pages
and node references are left untouched.
Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In the forthcoming task migration support, a key calculation will be
mapping cpu and node numbers from the old set to the new set while
preserving cpuset-relative offset.
For example, if a task and its pages on nodes 8-11 are being migrated to
nodes 24-27, then pages on node 9 (the 2nd node in the old set) should be
moved to node 25 (the 2nd node in the new set.)
As with other bitmap operations, the proper way to code this is to provide
the underlying calculation in lib/bitmap.c, and then to provide the usual
cpumask and nodemask wrappers.
This patch provides that. These operations are termed 'remap' operations.
Both remapping a single bit and a set of bits is supported.
Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
| |
This patch makes use of ALIGN() to remove duplicate round-up code.
Signed-off-by: Nick Wilson <njw@osdl.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
|