| Commit message (Collapse) | Author | Age |
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
* 'gpio/next' of git://git.secretlab.ca/git/linux-2.6:
h8300: Move gpio.h to gpio-internal.h
gpio: pl061: add DT binding support
gpio: fix build error in include/asm-generic/gpio.h
gpiolib: Ensure struct gpio is always defined
irq: Add EXPORT_SYMBOL_GPL to function of irq generic-chip
gpio-ml-ioh: Use NUMA_NO_NODE not GFP_KERNEL
gpio-pch: Use NUMA_NO_NODE not GFP_KERNEL
gpio: langwell: ensure alternate function is cleared
gpio-pch: Support interrupt function
gpio-pch: Save register value in suspend()
gpio-pch: modify gpio_nums and mask
gpio-pch: support ML7223 IOH n-Bus
gpio-pch: add spinlock in suspend/resume processing
gpio-pch: Delete invalid "restore" code in suspend()
gpio-ml-ioh: Fix suspend/resume issue
gpio-ml-ioh: Support interrupt function
gpio-ml-ioh: Delete unnecessary code
gpio/mxc: add chained_irq_enter/exit() to mx3_gpio_irq_handler()
gpio/nomadik: use genirq core to track enablement
gpio/nomadik: disable clocks when unused
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Some functions of irq generic-chip is undefined, because
EXPORT_SYMBOL_GPL is not set to these.
ERROR: "irq_setup_generic_chip" [drivers/gpio/gpio-pch.ko] undefined!
ERROR: "irq_alloc_generic_chip" [drivers/gpio/gpio-pch.ko] undefined!
ERROR: "irq_setup_generic_chip" [drivers/gpio/gpio-ml-ioh.ko] undefined!
ERROR: "irq_alloc_generic_chip" [drivers/gpio/gpio-ml-ioh.ko] undefined!
This is revised that EXPORT_SYMBOL_GPL can be added and referred
to in functions.
Signed-off-by: Nobuhiro Iwamatsu <nobuhiro.iwamatsu.yj@renesas.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
http://ftp.arm.linux.org.uk/pub/linux/arm/kernel/git-cur/linux-2.6-arm
* 'devel-stable' of http://ftp.arm.linux.org.uk/pub/linux/arm/kernel/git-cur/linux-2.6-arm: (178 commits)
ARM: 7139/1: fix compilation with CONFIG_ARM_ATAG_DTB_COMPAT and large TEXT_OFFSET
ARM: gic, local timers: use the request_percpu_irq() interface
ARM: gic: consolidate PPI handling
ARM: switch from NO_MACH_MEMORY_H to NEED_MACH_MEMORY_H
ARM: mach-s5p64x0: remove mach/memory.h
ARM: mach-s3c64xx: remove mach/memory.h
ARM: plat-mxc: remove mach/memory.h
ARM: mach-prima2: remove mach/memory.h
ARM: mach-zynq: remove mach/memory.h
ARM: mach-bcmring: remove mach/memory.h
ARM: mach-davinci: remove mach/memory.h
ARM: mach-pxa: remove mach/memory.h
ARM: mach-ixp4xx: remove mach/memory.h
ARM: mach-h720x: remove mach/memory.h
ARM: mach-vt8500: remove mach/memory.h
ARM: mach-s5pc100: remove mach/memory.h
ARM: mach-tegra: remove mach/memory.h
ARM: plat-tcc: remove mach/memory.h
ARM: mach-mmp: remove mach/memory.h
ARM: mach-cns3xxx: remove mach/memory.h
...
Fix up mostly pretty trivial conflicts in:
- arch/arm/Kconfig
- arch/arm/include/asm/localtimer.h
- arch/arm/kernel/Makefile
- arch/arm/mach-shmobile/board-ap4evb.c
- arch/arm/mach-u300/core.c
- arch/arm/mm/dma-mapping.c
- arch/arm/mm/proc-v7.S
- arch/arm/plat-omap/Kconfig
largely due to some CONFIG option renaming (ie CONFIG_PM_SLEEP ->
CONFIG_ARM_CPU_SUSPEND for the arm-specific suspend code etc) and
addition of NEED_MACH_MEMORY_H next to HAVE_IDE.
|
| |\ \
| | | |
| | | |
| | | | |
git://github.com/mzyngier/arm-platforms into devel-stable
|
| |\ \ \
| | | | |
| | | | |
| | | | | |
git://gitorious.org/omap-sw-develoment/linux-omap-dev into devel-stable
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Implements syscore_ops in cpu_pm to call the cpu and
cpu cluster notifiers during suspend and resume,
allowing drivers receiving the notifications to
avoid implementing syscore_ops.
Signed-off-by: Colin Cross <ccross@android.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Reviewed-by: Kevin Hilman <khilman@ti.com>
Tested-and-Acked-by: Shawn Guo <shawn.guo@linaro.org>
Tested-by: Vishwanath BS <vishwanath.bs@ti.com>
|
| | | |/
| | |/|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
During some CPU power modes entered during idle, hotplug and
suspend, peripherals located in the CPU power domain, such as
the GIC, localtimers, and VFP, may be powered down. Add a
notifier chain that allows drivers for those peripherals to
be notified before and after they may be reset.
Notified drivers can include VFP co-processor, interrupt controller
and it's PM extensions, local CPU timers context save/restore which
shouldn't be interrupted. Hence CPU PM event APIs must be called
with interrupts disabled.
Signed-off-by: Colin Cross <ccross@android.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Reviewed-by: Kevin Hilman <khilman@ti.com>
Tested-and-Acked-by: Shawn Guo <shawn.guo@linaro.org>
Tested-by: Kevin Hilman <khilman@ti.com>
Tested-by: Vishwanath BS <vishwanath.bs@ti.com>
|
| |\| | |
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Currently, an event's 'pmu' field is set after pmu::event_init() is
called. This means that pmu::event_init() must figure out which struct
pmu the event was initialised from. This makes it difficult to
consolidate common event initialisation code for similar PMUs, and
very difficult to implement drivers for PMUs which can have multiple
instances (e.g. a USB controller PMU, a GPU PMU, etc).
This patch sets the 'pmu' field before initialising the event, allowing
event init code to identify the struct pmu instance easily. In the
event of failure to initialise an event, the event is destroyed via
kfree() without calling perf_event::destroy(), so this shouldn't
result in bad behaviour even if the destroy field was set before
failure to initialise was noted.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1313062280-19123-1-git-send-email-mark.rutland@arm.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|\ \ \ \
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
time, s390: Get rid of compile warning
dw_apb_timer: constify clocksource name
time: Cleanup old CONFIG_GENERIC_TIME references that snuck in
time: Change jiffies_to_clock_t() argument type to unsigned long
alarmtimers: Fix error handling
clocksource: Make watchdog reset lockless
posix-cpu-timers: Cure SMP accounting oddities
s390: Use direct ktime path for s390 clockevent device
clockevents: Add direct ktime programming function
clockevents: Make minimum delay adjustments configurable
nohz: Remove "Switched to NOHz mode" debugging messages
proc: Consider NO_HZ when printing idle and iowait times
nohz: Make idle/iowait counter update conditional
nohz: Fix update_ts_time_stat idle accounting
cputime: Clean up cputime_to_usecs and usecs_to_cputime macros
alarmtimers: Rework RTC device selection using class interface
alarmtimers: Add try_to_cancel functionality
alarmtimers: Add more refined alarm state tracking
alarmtimers: Remove period from alarm structure
alarmtimers: Remove interval cap limit hack
...
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
The parameter's origin type is long. On an i386 architecture, it can
easily be larger than 0x80000000, causing this function to convert it
to a sign-extended u64 type.
Change the type to unsigned long so we get the correct result.
Signed-off-by: hank <pyu@redhat.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: <stable@kernel.org>
[ build fix ]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
commit 8bc0daf (alarmtimers: Rework RTC device selection using class
interface) did not implement required error checks. Add them.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
KGDB needs to trylock watchdog_lock when trying to reset the
clocksource watchdog after the system has been stopped to avoid a
potential deadlock. When the trylock fails TSC usually becomes
unstable.
We can be more clever by using an atomic counter and checking it in
the clocksource_watchdog callback. We restart the watchdog whenever
the counter is > 0 and only decrement the counter when we ran through
a full update cycle.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <johnstul@us.ibm.com>
Acked-by: Jason Wessel <jason.wessel@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1109121326280.2723@ionos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
David reported:
Attached below is a watered-down version of rt/tst-cpuclock2.c from
GLIBC. Just build it with "gcc -o test test.c -lpthread -lrt" or
similar.
Run it several times, and you will see cases where the main thread
will measure a process clock difference before and after the nanosleep
which is smaller than the cpu-burner thread's individual thread clock
difference. This doesn't make any sense since the cpu-burner thread
is part of the top-level process's thread group.
I've reproduced this on both x86-64 and sparc64 (using both 32-bit and
64-bit binaries).
For example:
[davem@boricha build-x86_64-linux]$ ./test
process: before(0.001221967) after(0.498624371) diff(497402404)
thread: before(0.000081692) after(0.498316431) diff(498234739)
self: before(0.001223521) after(0.001240219) diff(16698)
[davem@boricha build-x86_64-linux]$
The diff of 'process' should always be >= the diff of 'thread'.
I make sure to wrap the 'thread' clock measurements the most tightly
around the nanosleep() call, and that the 'process' clock measurements
are the outer-most ones.
---
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <fcntl.h>
#include <string.h>
#include <errno.h>
#include <pthread.h>
static pthread_barrier_t barrier;
static void *chew_cpu(void *arg)
{
pthread_barrier_wait(&barrier);
while (1)
__asm__ __volatile__("" : : : "memory");
return NULL;
}
int main(void)
{
clockid_t process_clock, my_thread_clock, th_clock;
struct timespec process_before, process_after;
struct timespec me_before, me_after;
struct timespec th_before, th_after;
struct timespec sleeptime;
unsigned long diff;
pthread_t th;
int err;
err = clock_getcpuclockid(0, &process_clock);
if (err)
return 1;
err = pthread_getcpuclockid(pthread_self(), &my_thread_clock);
if (err)
return 1;
pthread_barrier_init(&barrier, NULL, 2);
err = pthread_create(&th, NULL, chew_cpu, NULL);
if (err)
return 1;
err = pthread_getcpuclockid(th, &th_clock);
if (err)
return 1;
pthread_barrier_wait(&barrier);
err = clock_gettime(process_clock, &process_before);
if (err)
return 1;
err = clock_gettime(my_thread_clock, &me_before);
if (err)
return 1;
err = clock_gettime(th_clock, &th_before);
if (err)
return 1;
sleeptime.tv_sec = 0;
sleeptime.tv_nsec = 500000000;
nanosleep(&sleeptime, NULL);
err = clock_gettime(th_clock, &th_after);
if (err)
return 1;
err = clock_gettime(my_thread_clock, &me_after);
if (err)
return 1;
err = clock_gettime(process_clock, &process_after);
if (err)
return 1;
diff = process_after.tv_nsec - process_before.tv_nsec;
printf("process: before(%lu.%.9lu) after(%lu.%.9lu) diff(%lu)\n",
process_before.tv_sec, process_before.tv_nsec,
process_after.tv_sec, process_after.tv_nsec, diff);
diff = th_after.tv_nsec - th_before.tv_nsec;
printf("thread: before(%lu.%.9lu) after(%lu.%.9lu) diff(%lu)\n",
th_before.tv_sec, th_before.tv_nsec,
th_after.tv_sec, th_after.tv_nsec, diff);
diff = me_after.tv_nsec - me_before.tv_nsec;
printf("self: before(%lu.%.9lu) after(%lu.%.9lu) diff(%lu)\n",
me_before.tv_sec, me_before.tv_nsec,
me_after.tv_sec, me_after.tv_nsec, diff);
return 0;
}
This is due to us using p->se.sum_exec_runtime in
thread_group_cputime() where we iterate the thread group and sum all
data. This does not take time since the last schedule operation (tick
or otherwise) into account. We can cure this by using
task_sched_runtime() at the cost of having to take locks.
This also means we can (and must) do away with
thread_group_sched_runtime() since the modified thread_group_cputime()
is now more accurate and would deadlock when called from
thread_group_sched_runtime().
Reported-by: David Miller <davem@davemloft.net>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1314874459.7945.22.camel@twins
Cc: stable@kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
There is at least one architecture (s390) with a sane clockevent device
that can be programmed with the equivalent of a ktime. No need to create
a delta against the current time, the ktime can be used directly.
A new clock device function 'set_next_ktime' is introduced that is called
with the unmodified ktime for the timer if the clock event device has the
CLOCK_EVT_FEAT_KTIME bit set.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: john stultz <johnstul@us.ibm.com>
Link: http://lkml.kernel.org/r/20110823133142.815350967@de.ibm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
The automatic increase of the min_delta_ns of a clockevents device
should be done in the clockevents code as the minimum delay is an
attribute of the clockevents device.
In addition not all architectures want the automatic adjustment, on a
massively virtualized system it can happen that the programming of a
clock event fails several times in a row because the virtual cpu has
been rescheduled quickly enough. In that case the minimum delay will
erroneously be increased with no way back. The new config symbol
GENERIC_CLOCKEVENTS_MIN_ADJUST is used to enable the automatic
adjustment. The config option is selected only for x86.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: john stultz <johnstul@us.ibm.com>
Link: http://lkml.kernel.org/r/20110823133142.494157493@de.ibm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
When performing cpu hotplug tests the kernel printk log buffer gets flooded
with pointless "Switched to NOHz mode..." messages. Especially when afterwards
analyzing a dump this might have removed more interesting stuff out of the
buffer.
Assuming that switching to NOHz mode simply works just remove the printk.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Link: http://lkml.kernel.org/r/20110823112046.GB2540@osiris.boeblingen.de.ibm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
get_cpu_{idle,iowait}_time_us update idle/iowait counters
unconditionally if the given CPU is in the idle loop.
This doesn't work well outside of CPU governors which are singletons
so nobody (except for IRQ) can race with them.
We will need to use both functions from /proc/stat handler to properly
handle nohz idle/iowait times.
Make the update depend on a non NULL last_update_time argument.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Dave Jones <davej@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Link: http://lkml.kernel.org/r/11f23179472635ce52e78921d47a20216b872f23.1314172057.git.mhocko@suse.cz
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
update_ts_time_stat currently updates idle time even if we are in
iowait loop at the moment. The only real users of the idle counter
(via get_cpu_idle_time_us) are CPU governors and they expect to get
cumulative time for both idle and iowait times.
The value (idle_sleeptime) is also printed to userspace by print_cpu
but it prints both idle and iowait times so the idle part is misleading.
Let's clean this up and fix update_ts_time_stat to account both counters
properly and update consumers of idle to consider iowait time as well.
If we do this we might use get_cpu_{idle,iowait}_time_us from other
contexts as well and we will get expected values.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Dave Jones <davej@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Link: http://lkml.kernel.org/r/e9c909c221a8da402c4da07e4cd968c3218f8eb1.1314172057.git.mhocko@suse.cz
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
This allows cleaner detection of the RTC device being registered, rather
then probing any time someone calls alarmtimer_get_rtcdev.
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
There's a number of edge cases when cancelling a alarm, so
to be sure we accurately do so, introduce try_to_cancel, which
returns proper failure errors if it cannot. Also modify cancel
to spin until the alarm is properly disabled.
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
In order to allow for functionality like try_to_cancel, add
more refined state tracking (similar to hrtimers).
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Now that periodic alarmtimers are managed by the handler function,
remove the period value from the alarm structure and let the handlers
manage the interval on their own.
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Now that the alarmtimers code has been refactored, the interval
cap limit can be removed.
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
In order to avoid wasting time expiring and re-adding very high freq
periodic alarmtimers, introduce alarm_forward() which is similar to
hrtimer_forward and moves the timer to the next future expiration time
and returns the number of overruns.
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
This patch pushes the periodic alarmtimer re-arming down into the alarmtimer
handler, mimicking how hrtimers handle this.
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
In order to properly fix the denial of service issue with high freq
periodic alarm timers, we need to push the re-arming logic into the
alarm timer handler, much as the hrtimer code does.
This patch introduces alarmtimer_restart enum and changes the
alarmtimer handler declarations to use it as a return value. Further,
to ease following changes, it extends the alarmtimer handler functions
to also take the time at expiration. No logic is yet modified.
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
|\ \ \ \ \
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (46 commits)
llist: Add back llist_add_batch() and llist_del_first() prototypes
sched: Don't use tasklist_lock for debug prints
sched: Warn on rt throttling
sched: Unify the ->cpus_allowed mask copy
sched: Wrap scheduler p->cpus_allowed access
sched: Request for idle balance during nohz idle load balance
sched: Use resched IPI to kick off the nohz idle balance
sched: Fix idle_cpu()
llist: Remove cpu_relax() usage in cmpxchg loops
sched: Convert to struct llist
llist: Add llist_next()
irq_work: Use llist in the struct irq_work logic
llist: Return whether list is empty before adding in llist_add()
llist: Move cpu_relax() to after the cmpxchg()
llist: Remove the platform-dependent NMI checks
llist: Make some llist functions inline
sched, tracing: Show PREEMPT_ACTIVE state in trace_sched_switch
sched: Remove redundant test in check_preempt_tick()
sched: Add documentation for bandwidth control
sched: Return unused runtime on group dequeue
...
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Avoid taking locks from debug prints, this avoids latencies on -rt,
and improves reliability of the debug code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
The default rt-throttling is a source of never ending questions. Warn
once when we go into throttling so folks have that info in dmesg.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1110051331480.18778@ionos
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Currently every sched_class::set_cpus_allowed() implementation has to
copy the cpumask into task_struct::cpus_allowed, this is pointless,
put this copy in the generic code.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/n/tip-jhl5s9fckd9ptw1fzbqqlrd3@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
This task is preparatory for the migrate_disable() implementation, but
stands on its own and provides a cleanup.
It currently only converts those sites required for task-placement.
Kosaki-san once mentioned replacing cpus_allowed with a proper
cpumask_t instead of the NR_CPUS sized array it currently is, that
would also require something like this.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Link: http://lkml.kernel.org/n/tip-e42skvaddos99psip0vce41o@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
rq's idle_at_tick is set to idle/busy during the timer tick
depending on the cpu was idle or not. This will be used later in the load
balance that will be done in the softirq context (which is a process
context in -RT kernels).
For nohz kernels, for the cpu doing nohz idle load balance on behalf of
all the idle cpu's, its rq->idle_at_tick might have a stale value (which is
recorded when it got the timer tick presumably when it is busy).
As the nohz idle load balancing is also being done at the same place
as the regular load balancing, nohz idle load balancing was bailing out
when it sees rq's idle_at_tick not set.
Thus leading to poor system utilization.
Rename rq's idle_at_tick to idle_balance and set it when someone requests
for nohz idle balance on an idle cpu.
Reported-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20111003220934.892350549@sbsiddha-desk.sc.intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Current use of smp call function to kick the nohz idle balance can deadlock
in this scenario.
1. cpu-A did a generic_exec_single() to cpu-B and after queuing its call single
data (csd) to the call single queue, cpu-A took a timer interrupt. Actual IPI
to cpu-B to process the call single queue is not yet sent.
2. As part of the timer interrupt handler, cpu-A decided to kick cpu-B
for the idle load balancing (sets cpu-B's rq->nohz_balance_kick to 1)
and __smp_call_function_single() with nowait will queue the csd to the
cpu-B's queue. But the generic_exec_single() won't send an IPI to cpu-B
as the call single queue was not empty.
3. cpu-A is busy with lot of interrupts
4. Meanwhile cpu-B is entering and exiting idle and noticed that it has
it's rq->nohz_balance_kick set to '1'. So it will go ahead and do the
idle load balancer and clear its rq->nohz_balance_kick.
5. At this point, csd queued as part of the step-2 above is still locked
and waiting to be serviced on cpu-B.
6. cpu-A is still busy with interrupt load and now it got another timer
interrupt and as part of it decided to kick cpu-B for another idle load
balancing (as it finds cpu-B's rq->nohz_balance_kick cleared in step-4
above) and does __smp_call_function_single() with the same csd that is
still locked.
7. And we get a deadlock waiting for the csd_lock() in the
__smp_call_function_single().
Main issue here is that cpu-B can service the idle load balancer kick
request from cpu-A even with out receiving the IPI and this lead to
doing multiple __smp_call_function_single() on the same csd leading to
deadlock.
To kick a cpu, scheduler already has the reschedule vector reserved. Use
that mechanism (kick_process()) instead of using the generic smp call function
mechanism to kick off the nohz idle load balancing and avoid the deadlock.
[ This issue is present from 2.6.35+ kernels, but marking it -stable
only from v3.0+ as the proposed fix depends on the scheduler_ipi()
that is introduced recently. ]
Reported-by: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: stable@kernel.org # v3.0+
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20111003220934.834943260@sbsiddha-desk.sc.intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
On -rt we observed hackbench waking all 400 tasks to a single cpu.
This is because of select_idle_sibling()'s interaction with the new
ipi based wakeup scheme.
The existing idle_cpu() test only checks to see if the current task on
that cpu is the idle task, it does not take already queued tasks into
account, nor does it take queued to be woken tasks into account.
If the remote wakeup IPIs come hard enough, there won't be time to
schedule away from the idle task, and would thus keep thinking the cpu
was in fact idle, regardless of the fact that there were already
several hundred tasks runnable.
We couldn't reproduce on mainline, but there's no reason it couldn't
happen.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-3o30p18b2paswpc9ohy2gltp@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Use the generic llist primitives.
We had a private lockless list implementation in the scheduler in the wake-list
code, now that we have a generic llist implementation that provides all required
operations, switch to it.
This patch is not expected to change any behavior.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/1315836353.26517.42.camel@twins
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
So we don't have to expose the struct list_node member.
Cc: Huang Ying <ying.huang@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1315836348.26517.41.camel@twins
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Use llist in irq_work instead of the lock-less linked list
implementation in irq_work to avoid the code duplication.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1315461646-1379-6-git-send-email-ying.huang@intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| |\ \ \ \ \
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
Merge reason: pick up the latest fixes.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
The caller already checks for nr_running > 1, therefore we don't have
to do so again.
Signed-off-by: Wang Xingchao <xingchao.wang@intel.com>
Reviewed-by: Paul Turner <pjt@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1316194552-12019-1-git-send-email-xingchao.wang@intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| |\ \ \ \ \ \
| | | |_|_|/ /
| | |/| | | |
| | | | | | |
| | | | | | |
| | | | | | | |
Merge reason: We are queueing up a dependent patch.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
When a local cfs_rq blocks we return the majority of its remaining quota to the
global bandwidth pool for use by other runqueues.
We do this only when the quota is current and there is more than
min_cfs_rq_quota [1ms by default] of runtime remaining on the rq.
In the case where there are throttled runqueues and we have sufficient
bandwidth to meter out a slice, a second timer is kicked off to handle this
delivery, unthrottling where appropriate.
Using a 'worst case' antagonist which executes on each cpu
for 1ms before moving onto the next on a fairly large machine:
no quota generations:
197.47 ms /cgroup/a/cpuacct.usage
199.46 ms /cgroup/a/cpuacct.usage
205.46 ms /cgroup/a/cpuacct.usage
198.46 ms /cgroup/a/cpuacct.usage
208.39 ms /cgroup/a/cpuacct.usage
Since we are allowed to use "stale" quota our usage is effectively bounded by
the rate of input into the global pool and performance is relatively stable.
with quota generations [1s increments]:
119.58 ms /cgroup/a/cpuacct.usage
119.65 ms /cgroup/a/cpuacct.usage
119.64 ms /cgroup/a/cpuacct.usage
119.63 ms /cgroup/a/cpuacct.usage
119.60 ms /cgroup/a/cpuacct.usage
The large deficit here is due to quota generations (/intentionally/) preventing
us from now using previously stranded slack quota. The cost is that this quota
becomes unavailable.
with quota generations and quota return:
200.09 ms /cgroup/a/cpuacct.usage
200.09 ms /cgroup/a/cpuacct.usage
198.09 ms /cgroup/a/cpuacct.usage
200.09 ms /cgroup/a/cpuacct.usage
200.06 ms /cgroup/a/cpuacct.usage
By returning unused quota we're able to both stably consume our desired quota
and prevent unintentional overages due to the abuse of slack quota from
previous quota periods (especially on a large machine).
Signed-off-by: Paul Turner <pjt@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110721184758.306848658@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
This change introduces statistics exports for the cpu sub-system, these are
added through the use of a stat file similar to that exported by other
subsystems.
The following exports are included:
nr_periods: number of periods in which execution occurred
nr_throttled: the number of periods above in which execution was throttle
throttled_time: cumulative wall-time that any cpus have been throttled for
this group
Signed-off-by: Paul Turner <pjt@google.com>
Signed-off-by: Nikhil Rao <ncrao@google.com>
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110721184758.198901931@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
With the machinery in place to throttle and unthrottle entities, as well as
handle their participation (or lack there of) we can now enable throttling.
There are 2 points that we must check whether it's time to set throttled state:
put_prev_entity() and enqueue_entity().
- put_prev_entity() is the typical throttle path, we reach it by exceeding our
allocated run-time within update_curr()->account_cfs_rq_runtime() and going
through a reschedule.
- enqueue_entity() covers the case of a wake-up into an already throttled
group. In this case we know the group cannot be on_rq and can throttle
immediately. Checks are added at time of put_prev_entity() and
enqueue_entity()
Signed-off-by: Paul Turner <pjt@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110721184758.091415417@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
Throttled tasks are invisisble to cpu-offline since they are not eligible for
selection by pick_next_task(). The regular 'escape' path for a thread that is
blocked at offline is via ttwu->select_task_rq, however this will not handle a
throttled group since there are no individual thread wakeups on an unthrottle.
Resolve this by unthrottling offline cpus so that threads can be migrated.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110721184757.989000590@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
Buddies allow us to select "on-rq" entities without actually selecting them
from a cfs_rq's rb_tree. As a result we must ensure that throttled entities
are not falsely nominated as buddies. The fact that entities are dequeued
within throttle_entity is not sufficient for clearing buddy status as the
nomination may occur after throttling.
Signed-off-by: Paul Turner <pjt@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110721184757.886850167@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
From the perspective of load-balance and shares distribution, throttled
entities should be invisible.
However, both of these operations work on 'active' lists and are not
inherently aware of what group hierarchies may be present. In some cases this
may be side-stepped (e.g. we could sideload via tg_load_down in load balance)
while in others (e.g. update_shares()) it is more difficult to compute without
incurring some O(n^2) costs.
Instead, track hierarchicaal throttled state at time of transition. This
allows us to easily identify whether an entity belongs to a throttled hierarchy
and avoid incorrect interactions with it.
Also, when an entity leaves a throttled hierarchy we need to advance its
time averaging for shares averaging so that the elapsed throttled time is not
considered as part of the cfs_rq's operation.
We also use this information to prevent buddy interactions in the wakeup and
yield_to() paths.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110721184757.777916795@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
Extend walk_tg_tree to accept a positional argument
static int walk_tg_tree_from(struct task_group *from,
tg_visitor down, tg_visitor up, void *data)
Existing semantics are preserved, caller must hold rcu_lock() or sufficient
analogue.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110721184757.677889157@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
At the start of each period we refresh the global bandwidth pool. At this time
we must also unthrottle any cfs_rq entities who are now within bandwidth once
more (as quota permits).
Unthrottled entities have their corresponding cfs_rq->throttled flag cleared
and their entities re-enqueued.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110721184757.574628950@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
Now that consumption is tracked (via update_curr()) we add support to throttle
group entities (and their corresponding cfs_rqs) in the case where this is no
run-time remaining.
Throttled entities are dequeued to prevent scheduling, additionally we mark
them as throttled (using cfs_rq->throttled) to prevent them from becoming
re-enqueued until they are unthrottled. A list of a task_group's throttled
entities are maintained on the cfs_bandwidth structure.
Note: While the machinery for throttling is added in this patch the act of
throttling an entity exceeding its bandwidth is deferred until later within
the series.
Signed-off-by: Paul Turner <pjt@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110721184757.480608533@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|