aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/time/timekeeping.c
Commit message (Collapse)AuthorAge
* Merge branch 'master' of ↵Paul Mundt2009-06-11
|\ | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
| * sched, timers: move calc_load() to schedulerThomas Gleixner2009-05-15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Dimitri Sivanich noticed that xtime_lock is held write locked across calc_load() which iterates over all online CPUs. That can cause long latencies for xtime_lock readers on large SMP systems. The load average calculation is an rough estimate anyway so there is no real need to protect the readers vs. the update. It's not a problem when the avenrun array is updated while a reader copies the values. Instead of iterating over all online CPUs let the scheduler_tick code update the number of active tasks shortly before the avenrun update happens. The avenrun update itself is handled by the CPU which calls do_timer(). [ Impact: reduce xtime_lock write locked section ] Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra <peterz@infradead.org>
* | timekeeping: create arch_gettimeoffset infrastructurejohn stultz2009-05-02
|/ | | | | | | | | | | | | | | | Some arches don't supply their own clocksource. This is mainly the case in architectures that get their inter-tick times by reading the counter on their interval timer. Since these timers wrap every tick, they're not really useful as clocksources. Wrapping them to act like one is possible but not very efficient. So we provide a callout these arches can implement for use with the jiffies clocksource to provide finer then tick granular time. [ Impact: ease the migration to generic time keeping ] Signed-off-by: John Stultz <johnstul@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* clocksource: add enable() and disable() callbacksMagnus Damm2009-04-21
| | | | | | | | | | | | | | | Add enable() and disable() callbacks for clocksources. This allows us to put unused clocksources in power save mode. The functions clocksource_enable() and clocksource_disable() wrap the callbacks and are inserted in the timekeeping code to enable before use and disable after switching to a new clocksource. Signed-off-by: Magnus Damm <damm@igel.co.jp> Acked-by: John Stultz <johnstul@us.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* sched_clock: prevent scd->clock from moving backwards, take #2Thomas Gleixner2008-12-31
| | | | | | | | | | | | | | | | | | | | Redo: 5b7dba4: sched_clock: prevent scd->clock from moving backwards which had to be reverted due to s2ram hangs: ca7e716: Revert "sched_clock: prevent scd->clock from moving backwards" ... this time with resume restoring GTOD later in the sequence taken into account as well. The "timekeeping_suspended" flag is not very nice but we cannot call into GTOD before it has been properly resumed and the scheduler will run very early in the resume sequence. Cc: <stable@kernel.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* time: catch xtime_nsec underflows and fix themjohn stultz2008-12-04
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Impact: fix time warp bug Alex Shi, along with Yanmin Zhang have been noticing occasional time inconsistencies recently. Through their great diagnosis, they found that the xtime_nsec value used in update_wall_time was occasionally going negative. After looking through the code for awhile, I realized we have the possibility for an underflow when three conditions are met in update_wall_time(): 1) We have accumulated a second's worth of nanoseconds, so we incremented xtime.tv_sec and appropriately decrement xtime_nsec. (This doesn't cause xtime_nsec to go negative, but it can cause it to be small). 2) The remaining offset value is large, but just slightly less then cycle_interval. 3) clocksource_adjust() is speeding up the clock, causing a corrective amount (compensating for the increase in the multiplier being multiplied against the unaccumulated offset value) to be subtracted from xtime_nsec. This can cause xtime_nsec to underflow. Unfortunately, since we notify the NTP subsystem via second_overflow() whenever we accumulate a full second, and this effects the error accumulation that has already occured, we cannot simply revert the accumulated second from xtime nor move the second accumulation to after the clocksource_adjust call without a change in behavior. This leaves us with (at least) two options: 1) Simply return from clocksource_adjust() without making a change if we notice the adjustment would cause xtime_nsec to go negative. This would work, but I'm concerned that if a large adjustment was needed (due to the error being large), it may be possible to get stuck with an ever increasing error that becomes too large to correct (since it may always force xtime_nsec negative). This may just be paranoia on my part. 2) Catch xtime_nsec if it is negative, then add back the amount its negative to both xtime_nsec and the error. This second method is consistent with how we've handled earlier rounding issues, and also has the benefit that the error being added is always in the oposite direction also always equal or smaller then the correction being applied. So the risk of a corner case where things get out of control is lessened. This patch fixes bug 11970, as tested by Yanmin Zhang http://bugzilla.kernel.org/show_bug.cgi?id=11970 Reported-by: alex.shi@intel.com Signed-off-by: John Stultz <johnstul@us.ibm.com> Acked-by: "Zhang, Yanmin" <yanmin_zhang@linux.intel.com> Tested-by: "Zhang, Yanmin" <yanmin_zhang@linux.intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
*-. Merge branches 'timers/clocksource', 'timers/hrtimers', 'timers/nohz', ↵Thomas Gleixner2008-10-20
|\ \ | | | | | | | | | 'timers/ntp', 'timers/posixtimers' and 'timers/debug' into v28-timers-for-linus
| | * timekeeping: fix rounding problem during clock updateRoman Zippel2008-09-24
| |/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Due to a rounding problem during a clock update it's possible for readers to observe the clock jumping back by 1nsec. The following simplified example demonstrates the problem: cycle xtime 0 0 1000 999999.6 2000 1999999.2 3000 2999998.8 ... 1500 = 1499999.4 = 0.0 + 1499999.4 = 999999.6 + 499999.8 When reading the clock only the full nanosecond part is used, while timekeeping internally keeps nanosecond fractions. If the clock is now updated at cycle 1500 here, a nanosecond is missing due to the truncation. The simple fix is to round up the xtime value during the update, this also changes the distance to the reference time, but the adjustment will automatically take care that it stays under control. Signed-off-by: Roman Zippel <zippel@linux-m68k.org> Signed-off-by: John Stultz <johnstul@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* | clocksource: introduce CLOCK_MONOTONIC_RAWJohn Stultz2008-08-21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In talking with Josip Loncaric, and his work on clock synchronization (see btime.sf.net), he mentioned that for really close synchronization, it is useful to have access to "hardware time", that is a notion of time that is not in any way adjusted by the clock slewing done to keep close time sync. Part of the issue is if we are using the kernel's ntp adjusted representation of time in order to measure how we should correct time, we can run into what Paul McKenney aptly described as "Painting a road using the lines we're painting as the guide". I had been thinking of a similar problem, and was trying to come up with a way to give users access to a purely hardware based time representation that avoided users having to know the underlying frequency and mask values needed to deal with the wide variety of possible underlying hardware counters. My solution is to introduce CLOCK_MONOTONIC_RAW. This exposes a nanosecond based time value, that increments starting at bootup and has no frequency adjustments made to it what so ever. The time is accessed from userspace via the posix_clock_gettime() syscall, passing CLOCK_MONOTONIC_RAW as the clock_id. Signed-off-by: John Stultz <johnstul@us.ibm.com> Signed-off-by: Roman Zippel <zippel@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* | clocksource: introduce clocksource_forward_now()Roman Zippel2008-08-21
|/ | | | | | | | | | | | | | | | | To keep the raw monotonic patch simple first introduce clocksource_forward_now(), which takes care of the offset since the last update_wall_time() call and adds it to the clock, so there is no need anymore to deal with it explicitly at various places, which need to make significant changes to the clock. This is also gets rid of the timekeeping_suspend_nsecs, instead of waiting until resume, the value is accumulated during suspend. In the end there is only a single user of __get_nsec_offset() left, so I integrated it back to getnstimeofday(). Signed-off-by: Roman Zippel <zippel@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* ntp: handle leap second via timerRoman Zippel2008-05-01
| | | | | | | | | | | | | | Remove the leap second handling from second_overflow(), which doesn't have to check for it every second anymore. With CONFIG_NO_HZ this also makes sure the leap second is handled close to the full second. Additionally this makes it possible to abort a leap second properly by resetting the STA_INS/STA_DEL status bits. Signed-off-by: Roman Zippel <zippel@linux-m68k.org> Cc: john stultz <johnstul@us.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* ntp: remove current_tick_length()Roman Zippel2008-05-01
| | | | | | | | | | | | current_tick_length used to do a little more, but now it just returns tick_length, which we can also access directly at the few places, where it's needed. Signed-off-by: Roman Zippel <zippel@linux-m68k.org> Cc: john stultz <johnstul@us.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* ntp: rename TICK_LENGTH_SHIFT to NTP_SCALE_SHIFTRoman Zippel2008-05-01
| | | | | | | | | | | As TICK_LENGTH_SHIFT is used for more than just the tick length, the name isn't quite approriate anymore, so this renames it to NTP_SCALE_SHIFT. Signed-off-by: Roman Zippel <zippel@linux-m68k.org> Cc: john stultz <johnstul@us.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* x86: tsc prevent time going backwardsThomas Gleixner2008-04-19
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We already catch most of the TSC problems by sanity checks, but there is a subtle bug which has been in the code forever. This can cause time jumps in the range of hours. This was reported in: http://lkml.org/lkml/2007/8/23/96 and http://lkml.org/lkml/2008/3/31/23 I was able to reproduce the problem with a gettimeofday loop test on a dual core and a quad core machine which both have sychronized TSCs. The TSCs seems not to be perfectly in sync though, but the kernel is not able to detect the slight delta in the sync check. Still there exists an extremly small window where this delta can be observed with a real big time jump. So far I was only able to reproduce this with the vsyscall gettimeofday implementation, but in theory this might be observable with the syscall based version as well. CPU 0 updates the clock source variables under xtime/vyscall lock and CPU1, where the TSC is slighty behind CPU0, is reading the time right after the seqlock was unlocked. The clocksource reference data was updated with the TSC from CPU0 and the value which is read from TSC on CPU1 is less than the reference data. This results in a huge delta value due to the unsigned subtraction of the TSC value and the reference value. This algorithm can not be changed due to the support of wrapping clock sources like pm timer. The huge delta is converted to nanoseconds and added to xtime, which is then observable by the caller. The next gettimeofday call on CPU1 will show the correct time again as now the TSC has advanced above the reference value. To prevent this TSC specific wreckage we need to compare the TSC value against the reference value and return the latter when it is larger than the actual TSC value. I pondered to mark the TSC unstable when the readout is smaller than the reference value, but this would render an otherwise good and fast clocksource unusable without a real good reason. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* Don't 'printk()' while holding xtime lock for writingLinus Torvalds2008-03-24
| | | | | | | | | | | The printk() can deadlock because it can wake up klogd(), and task enqueueing will try to read the time in order to set a hrtimer. Reported-by: Marcin Slusarz <marcin.slusarz@gmail.com> Debugged-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* time: remove obsolete CLOCK_TICK_ADJUSTRoman Zippel2008-03-09
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The first version of the ntp_interval/tick_length inconsistent usage patch was recently merged as bbe4d18ac2e058c56adb0cd71f49d9ed3216a405 http://git.kernel.org/gitweb.cgi?p=linux/kernel/git/torvalds/linux-2.6.git;a=commit;h=bbe4d18ac2e058c56adb0cd71f49d9ed3216a405 While the fix did greatly improve the situation, it was correctly pointed out by Roman that it does have a small bug: If the users change clocksources after the system has been running and NTP has made corrections, the correctoins made against the old clocksource will be applied against the new clocksource, causing error. The second attempt, which corrects the issue in the NTP_INTERVAL_LENGTH definition has also made it up-stream as commit e13a2e61dd5152f5499d2003470acf9c838eab84 http://git.kernel.org/gitweb.cgi?p=linux/kernel/git/torvalds/linux-2.6.git;a=commit;h=e13a2e61dd5152f5499d2003470acf9c838eab84 Roman has correctly pointed out that CLOCK_TICK_ADJUST is calculated based on the PIT's frequency, and isn't really relevant to non-PIT driven clocksources (that is, clocksources other then jiffies and pit). This patch reverts both of those changes, and simply removes CLOCK_TICK_ADJUST. This does remove the granularity error correction for users of PIT and Jiffies clocksource users, but the granularity error but for the majority of users, it should be within the 500ppm range NTP can accommodate for. For systems that have granularity errors greater then 500ppm, the "ntp_tick_adj=" boot option can be used to compensate. [johnstul@us.ibm.com: provided changelog] [mattilinnanvuori@yahoo.com: maek ntp_tick_adj static] Signed-off-by: Roman Zippel <zippel@linux-m68k.org> Acked-by: john stultz <johnstul@us.ibm.com> Signed-off-by: Matti Linnanvuori <mattilinnanvuori@yahoo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: mingo@elte.hu Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* time: fix typo in commentsLi Zefan2008-02-08
| | | | | | | | | | | | | | Fix typo in comments. BTW: I have to fix coding style in arch/ia64/kernel/time.c also, otherwise checkpatch.pl will be complaining. Signed-off-by: Li Zefan <lizf@cn.fujitsu.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@elte.hu> Cc: john stultz <johnstul@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* timekeeping: rename timekeeping_is_continuous to timekeeping_valid_for_hresLi Zefan2008-02-08
| | | | | | | | | | | | | Function timekeeping_is_continuous() no longer checks flag CLOCK_IS_CONTINUOUS, and it checks CLOCK_SOURCE_VALID_FOR_HRES now. So rename the function accordingly. Signed-off-by: Li Zefan <lizf@cn.fujitsu.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@elte.hu> Cc: john stultz <johnstul@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* timekeeping: update xtime_cache when time(zone) changesThomas Gleixner2008-02-01
| | | | | | | | | | | | | | xtime_cache needs to be updated whenever xtime and or wall_to_monotic are changed. Otherwise users of xtime_cache might see a stale (and in the case of timezone changes utterly wrong) value until the next update happens. Fixup the obvious places, which miss this update. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: John Stultz <johnstul@us.ibm.com> Tested-by: Dhaval Giani <dhaval@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* NTP: correct inconsistent ntp interval/tick_length usagejohn stultz2008-01-30
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | I recently noticed on one of my boxes that when synched with an NTP server, the drift value reported for the system was ~283ppm. While in some cases, clock hardware can be that bad, it struck me as unusual as the system was using the acpi_pm clocksource, which is one of the more trustworthy and accurate clocksources on x86 hardware. I brought up another system and let it sync to the same NTP server, and I noticed a similar 280some ppm drift. In looking at the code, I found that the acpi_pm's constant frequency was being computed correctly at boot-up, however once the system was up, even without the ntp daemon running, the clocksource's frequency was being modified by the clocksource_adjust() function. Digging deeper, I realized that in the code that keeps track of how much the clocksource is skewing from the ntp desired time, we were using different lengths to establish how long an time interval was. The clocksource was being setup with the following interval: NTP_INTERVAL_LENGTH = NSEC_PER_SEC/NTP_INTERVAL_FREQ While the ntp code was using the tick_length_base value: tick_length_base ~= (tick_usec * NSEC_PER_USEC * USER_HZ) /NTP_INTERVAL_FREQ The subtle difference is: (tick_usec * NSEC_PER_USEC * USER_HZ) != NSEC_PER_SEC This difference in calculation was causing the clocksource correction code to apply a correction factor to the clocksource so the two intervals were the same, however this results in the actual frequency of the clocksource to be made incorrect. I believe this difference would affect all clocksources, although to differing degrees depending on the clocksource resolution. The issue was introduced when my HZ free ntp patch landed in 2.6.21-rc1, so my apologies for the mistake, and for not noticing it until now. The following patch, corrects the clocksource's initialization code so it uses the same interval length as the code in ntp.c. After applying this patch, the drift value for the same system went from ~283ppm to only 2.635ppm. I believe this patch to be good, however it does affect all arches and I've only tested on x86, so some caution is advised. I do think it would be a likely candidate for a stable 2.6.24.x release. Any thoughts or feedback would be appreciated. Signed-off-by: John Stultz <johnstul@us.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* time: fold __get_realtime_clock_ts() into getnstimeofday()Geert Uytterhoeven2008-01-30
| | | | | | | | | | | | - getnstimeofday() was just a wrapper around __get_realtime_clock_ts() - Replace calls to __get_realtime_clock_ts() by calls to getnstimeofday() - Fix bogus reference to get_realtime_clock_ts(), which never existed Signed-off-by: Geert Uytterhoeven <Geert.Uytterhoeven@sonycom.com> Cc: john stultz <johnstul@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* Driver core: change sysdev classes to use dynamic kobject namesKay Sievers2008-01-24
| | | | | | | | | | All kobjects require a dynamically allocated name now. We no longer need to keep track if the name is statically assigned, we can just unconditionally free() all kobject names on cleanup. Signed-off-by: Kay Sievers <kay.sievers@vrfy.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
* kernel/time/timekeeping.c: cleanupsAdrian Bunk2007-10-17
| | | | | | | | | | | | | - remove the no longer required __attribute__((weak)) of xtime_lock - remove the following no longer used EXPORT_SYMBOL's: - xtime - xtime_lock Signed-off-by: Adrian Bunk <bunk@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: john stultz <johnstul@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* time: introduce xtime_secondsIngo Molnar2007-10-16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | improve performance of sys_time(). sys_time() returns time in seconds, but it does so by calling do_gettimeofday() and then returning the tv_sec portion of the GTOD time. But the data structure "xtime", which is updated by every timer/scheduler tick, already offers HZ granularity time. the patch improves the sysbench oltp macrobenchmark by 4-5% on an AMD dual-core system: v2.6.23: #threads 1: transactions: 4073 (407.23 per sec.) 2: transactions: 8530 (852.81 per sec.) 3: transactions: 8321 (831.88 per sec.) 4: transactions: 8407 (840.58 per sec.) 5: transactions: 8070 (806.74 per sec.) v2.6.23 + sys_time-speedup.patch: 1: transactions: 4281 (428.09 per sec.) 2: transactions: 8910 (890.85 per sec.) 3: transactions: 8659 (865.79 per sec.) 4: transactions: 8676 (867.34 per sec.) 5: transactions: 8532 (852.91 per sec.) and by 4-5% on an Intel dual-core system too: 2.6.23: 1: transactions: 4560 (455.94 per sec.) 2: transactions: 10094 (1009.30 per sec.) 3: transactions: 9755 (975.36 per sec.) 4: transactions: 9859 (985.78 per sec.) 5: transactions: 9701 (969.72 per sec.) 2.6.23 + sys_time-speedup.patch: 1: transactions: 4779 (477.84 per sec.) 2: transactions: 10103 (1010.14 per sec.) 3: transactions: 10141 (1013.93 per sec.) 4: transactions: 10371 (1036.89 per sec.) 5: transactions: 10178 (1017.50 per sec.) (the more CPUs the system has, the more speedup this patch gives for this particular workload.) Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* timekeeping: Prevent time going backwards on resumeThomas Gleixner2007-09-16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Timekeeping resume adjusts xtime by adding the slept time in seconds and resets the reference value of the clock source (clock->cycle_last). clock->cycle last is used to calculate the delta between the last xtime update and the readout of the clock source in __get_nsec_offset(). xtime plus the offset is the current time. The resume code ignores the delta which had already elapsed between the last xtime update and the actual time of suspend. If the suspend time is short, then we can see time going backwards on resume. Suspend: offs_s = clock->read() - clock->cycle_last; now = xtime + offs_s; timekeeping_suspend_time = read_rtc(); Resume: sleep_time = read_rtc() - timekeeping_suspend_time; xtime.tv_sec += sleep_time; clock->cycle_last = clock->read(); offs_r = clock->read() - clock->cycle_last; now = xtime + offs_r; if sleep_time_seconds == 0 and offs_r < offs_s, then time goes backwards. Fix this by storing the offset from the last xtime update and add it to xtime during resume, when we reset clock->cycle_last: sleep_time = read_rtc() - timekeeping_suspend_time; xtime.tv_sec += sleep_time; xtime += offs_s; /* Fixup xtime offset at suspend time */ clock->cycle_last = clock->read(); offs_r = clock->read() - clock->cycle_last; now = xtime + offs_r; Thanks to Marcelo for tracking this down on the OLPC and providing the necessary details to analyze the root cause. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: John Stultz <johnstul@us.ibm.com> Cc: Tosatti <marcelo@kvack.org>
* timekeeping: access rtc outside of xtime lockThomas Gleixner2007-09-16
| | | | | | | | | | Lockdep complains about the access of rtc in timekeeping_suspend inside the interrupt disabled region of the write locked xtime lock. Move the access outside. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: John Stultz <johnstul@us.ibm.com>
* Cache xtime every call to update_wall_timejohn stultz2007-07-25
| | | | | | | | | | | | | | | | | | | | This avoids xtime lag seen with dynticks, because while 'xtime' itself is still not updated often, we keep a 'xtime_cache' variable around that contains the approximate real-time that _is_ updated each time we do a 'update_wall_time()', and is thus never off by more than one tick. IOW, this restores the original semantics for 'xtime' users, as long as you use the proper abstraction functions (ie 'current_kernel_time()' or 'get_seconds()' depending on whether you want a timespec or just the seconds field). [ Updated Patch. As penance for my sins I've also yanked another #ifdef that was added to avoid the xtime lag w/ hrtimers. ] Signed-off-by: John Stultz <johnstul@us.ibm.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Cleanup non-arch xtime uses, use get_seconds() or current_kernel_time().john stultz2007-07-25
| | | | | | | | | | | | | | | | | | This avoids use of the kernel-internal "xtime" variable directly outside of the actual time-related functions. Instead, use the helper functions that we already have available to us. This doesn't actually change any behaviour, but this will allow us to fix the fact that "xtime" isn't updated very often with CONFIG_NO_HZ (because much of the realtime information is maintained as separate offsets to 'xtime'), which has caused interfaces that use xtime directly to get a time that is out of sync with the real-time clock by up to a third of a second or so. Signed-off-by: John Stultz <johnstul@us.ibm.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Pull ia64-clocksource into release branchTony Luck2007-07-20
|\
| * [IA64] remove time interpolatorBob Picco2007-07-20
| | | | | | | | | | | | | | | | | | | | | | Remove time_interpolator code (This is generic code, but only user was ia64. It has been superseded by the CONFIG_GENERIC_TIME code). Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: John Stultz <johnstul@us.ibm.com> Signed-off-by: Peter Keilty <peter.keilty@hp.com> Signed-off-by: Tony Luck <tony.luck@intel.com>
* | timekeeping: fixup shadow variable argumentThomas Gleixner2007-07-19
|/ | | | | | | | | | clocksource_adjust() has a clock argument, which shadows the file global clock variable. Fix this up. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: john stultz <johnstul@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Introduce boot based timeTomas Janousek2007-07-16
| | | | | | | | | | | | | | | | | | | | | | | | | The commits 411187fb05cd11676b0979d9fbf3291db69dbce2 (GTOD: persistent clock support) c1d370e167d66b10bca3b602d3740405469383de (i386: use GTOD persistent clock support) changed the monotonic time so that it no longer jumps after resume, but it's not possible to use it for boot time and process start time calculations then. Also, the uptime no longer increases during suspend. I add a variable to track the wall_to_monotonic changes, a function to get the real boot time and a function to get the boot based time from the monotonic one. [akpm@linux-foundation.org: remove exports, add comment] Signed-off-by: Tomas Janousek <tjanouse@redhat.com> Cc: Tomas Smetana <tsmetana@redhat.com> Cc: John Stultz <johnstul@us.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* timekeeping fix patch got mis-appliedThomas Gleixner2007-05-14
| | | | | | | | | | | The time keeping code move to kernel/time/timekeeping.c broke the clocksource resume logic patch, which got applied to the old file by a fuzzy application. Fix it up and move the clocksource_resume() call to the appropriate place. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> [ tssk, tssk, everybody should use --fuzz=0 ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Move timekeeping code to timekeeping.cjohn stultz2007-05-08
Move the timekeeping code out of kernel/timer.c and into kernel/time/timekeeping.c. I made no cleanups or other changes in transit. [akpm@linux-foundation.org: build fix] Signed-off-by: John Stultz <johnstul@us.ibm.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>