aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/lockdep.c
Commit message (Collapse)AuthorAge
* Merge git://git.kernel.org/pub/scm/linux/kernel/git/dtor/inputLinus Torvalds2006-10-17
|\ | | | | | | | | | | | | | | | | | | | | | | | | * git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input: Input: fm801-gp - handle errors from pci_enable_device() Input: gameport core - handle errors returned by device_bind_driver() Input: serio core - handle errors returned by device_bind_driver() Lockdep: fix compile error in drivers/input/serio/serio.c Input: serio - add lockdep annotations Lockdep: add lockdep_set_class_and_subclass() and lockdep_set_subclass() Input: atkbd - supress "too many keys" error message Input: i8042 - supress ACK/NAKs when blinking during panic Input: add missing exports to fix modular build
| * Lockdep: add lockdep_set_class_and_subclass() and lockdep_set_subclass()Peter Zijlstra2006-10-11
| | | | | | | | | | | | | | | | | | | | | | | | | | This annotation makes it possible to assign a subclass on lock init. This annotation is meant to reduce the _nested() annotations by assigning a default subclass. One could do without this annotation and rely on lockdep_set_class() exclusively, but that would require a manual stack of struct lock_class_key objects. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Dmitry Torokhov <dtor@mail.ru>
* | [PATCH] lockdep: increase max allowed recursion depthIngo Molnar2006-10-17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In general, lockdep warnings are intended to be non-fatal, so I have put in various practical limits on internal data structure failure modes. We haven't had a /single/ lockdep-internal crash ever since lockdep went upstream [the unwinder crashes are outside of lockdep], and that's largely due to the good internal checks it does. Recursion within the dependency graph is currently limited to 20, that's probably not enough on some many-CPU boxes - this patch doubles it to 40. I have written the lockdep functions to have as small stackframes as possible, so 40 should be OK too. (The practical recursion limit should be somewhere between 100 and 200 entries. If we hit that then I'll change the algorithm to be iteration-based. Graph walking logic is so easy to program via recursion, so i'd like to keep recursion as long as possible.) Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* | [PATCH] lockdep: use BUILD_BUG_ONAlexey Dobriyan2006-10-11
|/ | | | | | | Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] namespaces: utsname: use init_utsname when appropriateSerge E. Hallyn2006-10-02
| | | | | | | | | | | | | | | | | | | | | In some places, particularly drivers and __init code, the init utsns is the appropriate one to use. This patch replaces those with a the init_utsname helper. Changes: Removed several uses of init_utsname(). Hope I picked all the right ones in net/ipv4/ipconfig.c. These are now changed to utsname() (the per-process namespace utsname) in the previous patch (2/7) [akpm@osdl.org: CIFS fix] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Kirill Korotaev <dev@openvz.org> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: Andrey Savochkin <saw@sw.ru> Cc: Serge Hallyn <serue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] lockdep core: improve the lock-chain-hashIngo Molnar2006-09-29
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | With CONFIG_DEBUG_LOCK_ALLOC turned off i was getting sporadic failures in the locking self-test: ------------> | Locking API testsuite: ---------------------------------------------------------------------------- | spin |wlock |rlock |mutex | wsem | rsem | -------------------------------------------------------------------------- A-A deadlock: ok | ok | ok | ok | ok | ok | A-B-B-A deadlock: ok | ok | ok | ok | ok | ok | A-B-B-C-C-A deadlock: ok | ok | ok | ok | ok | ok | A-B-C-A-B-C deadlock: ok | ok | ok | ok | ok | ok | A-B-B-C-C-D-D-A deadlock: ok |FAILED| ok | ok | ok | ok | A-B-C-D-B-D-D-A deadlock: ok | ok | ok | ok | ok | ok | A-B-C-D-B-C-D-A deadlock: ok | ok | ok | ok | ok |FAILED| after much debugging it turned out to be caused by accidental chain-hash key collisions. The current hash is: #define iterate_chain_key(key1, key2) \ (((key1) << MAX_LOCKDEP_KEYS_BITS/2) ^ \ ((key1) >> (64-MAX_LOCKDEP_KEYS_BITS/2)) ^ \ (key2)) where MAX_LOCKDEP_KEYS_BITS is 11. This hash is pretty good as it will shift by 5 bits in every iteration, where every new ID 'mixed' into the hash would have up to 11 bits. But because there was a 6 bits overlap between subsequent IDs and their high bits tended to be similar, there was a chance for accidental chain-hash collision for a low number of locks held. the solution is to shift by 11 bits: #define iterate_chain_key(key1, key2) \ (((key1) << MAX_LOCKDEP_KEYS_BITS) ^ \ ((key1) >> (64-MAX_LOCKDEP_KEYS_BITS)) ^ \ (key2)) This keeps the hash perfect up to 5 locks held, but even above that the hash is still good because 11 bits is a relative prime to the total 64 bits, so a complete match will only occur after 64 held locks (which doesnt happen in Linux). Even after 5 locks held, entropy of the 5 IDs mixed into the hash is already good enough so that overlap doesnt generate a colliding hash ID. with this change the false positives went away. Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] lockdep: print kernel versionDave Jones2006-09-29
| | | | | | | | | | | | Lets do the same thing we do for oopses - print out the version in the report. It's an extra line of output though. We could tack it on the end of the INFO: lines, but that screws up Ingo's pretty output. Signed-off-by: Dave Jones <davej@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] Avoid recursion in lockdep when stack tracer takes locksAndi Kleen2006-09-26
| | | | | | | | | | | The new dwarf2 unwinder needs to take locks to do backtraces inside modules. This patch makes sure lockdep which calls stacktrace is not reentered. Thanks to Ingo for suggesting this simpler approach. Cc: mingo@elte.hu Signed-off-by: Andi Kleen <ak@suse.de>
* [PATCH] x86: Some preparationary cleanup for stack traceAndi Kleen2006-09-26
| | | | | | | | | | | - Remove unused all_contexts parameter No caller used it - Move skip argument into the structure (needed for followon patches) Cc: mingo@elte.hu Signed-off-by: Andi Kleen <ak@suse.de>
* [PATCH] lockdep: core, reduce per-lock class-cache sizeIngo Molnar2006-07-10
| | | | | | | | | | | | | | | lockdep_map is embedded into every lock, which blows up data structure sizes all around the kernel. Reduce the class-cache to be for the default class only - that is used in 99.9% of the cases and even if we dont have a class cached, the lookup in the class-hash is lockless. This change reduces the per-lock dep_map overhead by 56 bytes on 64-bit platforms and by 28 bytes on 32-bit platforms. Signed-off-by: Ingo Molnar <mingo@elte.hu> Cc: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] lockdep: improve debug outputArjan van de Ven2006-07-10
| | | | | | | | | | Make lockdep print which lock is held, in the "kfree() of a live lock" scenario. Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] Minor cleanup to lockdep.cAndi Kleen2006-07-10
| | | | | | | | | | - Use printk formatting for indentation - Don't leave NTFS in the default event filter Signed-off-by: Andi Kleen <ak@suse.de> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] lockdep: allow read_lock() recursion of same classIngo Molnar2006-07-03
| | | | | | | | | | | | | | | | | From: Ingo Molnar <mingo@elte.hu> lockdep so far only allowed read-recursion for the same lock instance. This is enough in the overwhelming majority of cases, but a hostap case triggered and reported by Miles Lane relies on same-class different-instance recursion. So we relax the restriction on read-lock recursion. (This change does not allow rwsem read-recursion, which is still forbidden.) Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] lockdep: coreIngo Molnar2006-07-03
Do 'make oldconfig' and accept all the defaults for new config options - reboot into the kernel and if everything goes well it should boot up fine and you should have /proc/lockdep and /proc/lockdep_stats files. Typically if the lock validator finds some problem it will print out voluminous debug output that begins with "BUG: ..." and which syslog output can be used by kernel developers to figure out the precise locking scenario. What does the lock validator do? It "observes" and maps all locking rules as they occur dynamically (as triggered by the kernel's natural use of spinlocks, rwlocks, mutexes and rwsems). Whenever the lock validator subsystem detects a new locking scenario, it validates this new rule against the existing set of rules. If this new rule is consistent with the existing set of rules then the new rule is added transparently and the kernel continues as normal. If the new rule could create a deadlock scenario then this condition is printed out. When determining validity of locking, all possible "deadlock scenarios" are considered: assuming arbitrary number of CPUs, arbitrary irq context and task context constellations, running arbitrary combinations of all the existing locking scenarios. In a typical system this means millions of separate scenarios. This is why we call it a "locking correctness" validator - for all rules that are observed the lock validator proves it with mathematical certainty that a deadlock could not occur (assuming that the lock validator implementation itself is correct and its internal data structures are not corrupted by some other kernel subsystem). [see more details and conditionals of this statement in include/linux/lockdep.h and Documentation/lockdep-design.txt] Furthermore, this "all possible scenarios" property of the validator also enables the finding of complex, highly unlikely multi-CPU multi-context races via single single-context rules, increasing the likelyhood of finding bugs drastically. In practical terms: the lock validator already found a bug in the upstream kernel that could only occur on systems with 3 or more CPUs, and which needed 3 very unlikely code sequences to occur at once on the 3 CPUs. That bug was found and reported on a single-CPU system (!). So in essence a race will be found "piecemail-wise", triggering all the necessary components for the race, without having to reproduce the race scenario itself! In its short existence the lock validator found and reported many bugs before they actually caused a real deadlock. To further increase the efficiency of the validator, the mapping is not per "lock instance", but per "lock-class". For example, all struct inode objects in the kernel have inode->inotify_mutex. If there are 10,000 inodes cached, then there are 10,000 lock objects. But ->inotify_mutex is a single "lock type", and all locking activities that occur against ->inotify_mutex are "unified" into this single lock-class. The advantage of the lock-class approach is that all historical ->inotify_mutex uses are mapped into a single (and as narrow as possible) set of locking rules - regardless of how many different tasks or inode structures it took to build this set of rules. The set of rules persist during the lifetime of the kernel. To see the rough magnitude of checking that the lock validator does, here's a portion of /proc/lockdep_stats, fresh after bootup: lock-classes: 694 [max: 2048] direct dependencies: 1598 [max: 8192] indirect dependencies: 17896 all direct dependencies: 16206 dependency chains: 1910 [max: 8192] in-hardirq chains: 17 in-softirq chains: 105 in-process chains: 1065 stack-trace entries: 38761 [max: 131072] combined max dependencies: 2033928 hardirq-safe locks: 24 hardirq-unsafe locks: 176 softirq-safe locks: 53 softirq-unsafe locks: 137 irq-safe locks: 59 irq-unsafe locks: 176 The lock validator has observed 1598 actual single-thread locking patterns, and has validated all possible 2033928 distinct locking scenarios. More details about the design of the lock validator can be found in Documentation/lockdep-design.txt, which can also found at: http://redhat.com/~mingo/lockdep-patches/lockdep-design.txt [bunk@stusta.de: cleanups] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>