aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/cpuset.c
Commit message (Collapse)AuthorAge
* Fix cpusets update_cpumaskPaul Menage2007-10-19
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Cause writes to cpuset "cpus" file to update cpus_allowed for member tasks: - collect batches of tasks under tasklist_lock and then call set_cpus_allowed() on them outside the lock (since this can sleep). - add a simple generic priority heap type to allow efficient collection of batches of tasks to be processed without duplicating or missing any tasks in subsequent batches. - make "cpus" file update a no-op if the mask hasn't changed - fix race between update_cpumask() and sched_setaffinity() by making sched_setaffinity() post-check that it's not running on any cpus outside cpuset_cpus_allowed(). [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Paul Menage <menage@google.com> Cc: Paul Jackson <pj@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Cedric Le Goater <clg@fr.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Serge Hallyn <serue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* cpusets: decrustify cpuset mask update codePaul Jackson2007-10-19
| | | | | | | | | | | | | | | | | Decrustify the kernel/cpuset.c 'cpus' and 'mems' updating code. Other than subtle improvements in the consistency of identifying white space at the beginning and end of passed in masks, this doesn't make any visible difference in behaviour. But it's one or two hundred kernel text bytes smaller, and easier to understand. [akpm@linux-foundation.org: coding-style fix] Signed-off-by: Paul Jackson <pj@sgi.com> Reviewed-by: Paul Menage <menage@google.com> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* cpuset sched_load_balance flagPaul Jackson2007-10-19
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add a new per-cpuset flag called 'sched_load_balance'. When enabled in a cpuset (the default value) it tells the kernel scheduler that the scheduler should provide the normal load balancing on the CPUs in that cpuset, sometimes moving tasks from one CPU to a second CPU if the second CPU is less loaded and if that task is allowed to run there. When disabled (write "0" to the file) then it tells the kernel scheduler that load balancing is not required for the CPUs in that cpuset. Now even if this flag is disabled for some cpuset, the kernel may still have to load balance some or all the CPUs in that cpuset, if some overlapping cpuset has its sched_load_balance flag enabled. If there are some CPUs that are not in any cpuset whose sched_load_balance flag is enabled, the kernel scheduler will not load balance tasks to those CPUs. Moreover the kernel will partition the 'sched domains' (non-overlapping sets of CPUs over which load balancing is attempted) into the finest granularity partition that it can find, while still keeping any two CPUs that are in the same shed_load_balance enabled cpuset in the same element of the partition. This serves two purposes: 1) It provides a mechanism for real time isolation of some CPUs, and 2) it can be used to improve performance on systems with many CPUs by supporting configurations in which load balancing is not done across all CPUs at once, but rather only done in several smaller disjoint sets of CPUs. This mechanism replaces the earlier overloading of the per-cpuset flag 'cpu_exclusive', which overloading was removed in an earlier patch: cpuset-remove-sched-domain-hooks-from-cpusets See further the Documentation and comments in the code itself. [akpm@linux-foundation.org: don't be weird] Signed-off-by: Paul Jackson <pj@sgi.com> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Task Control Groups: make cpusets a client of cgroupsPaul Menage2007-10-19
| | | | | | | | | | | | | | | | | | | | | | Remove the filesystem support logic from the cpusets system and makes cpusets a cgroup subsystem The "cpuset" filesystem becomes a dummy filesystem; attempts to mount it get passed through to the cgroup filesystem with the appropriate options to emulate the old cpuset filesystem behaviour. Signed-off-by: Paul Menage <menage@google.com> Cc: Serge E. Hallyn <serue@us.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Paul Jackson <pj@sgi.com> Cc: Kirill Korotaev <dev@openvz.org> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com> Cc: Cedric Le Goater <clg@fr.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* cpuset: zero malloc - revert the old cpuset fixPaul Jackson2007-10-19
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The cpuset code to present a list of tasks using a cpuset to user space could write to an array that it had kmalloc'd, after a kmalloc request of zero size. The problem was that the code didn't check for writes past the allocated end of the array until -after- the first write. This is a race condition that is likely rare -- it would only show up if a cpuset went from being empty to having a task in it, during the brief time between the allocation and the first write. Prior to roughly 2.6.22 kernels, this was also a benign problem, because a zero kmalloc returned a few usable bytes anyway, and no harm was done with the bogus write. With the 2.6.22 kernel changes to make issue a warning if code tries to write to the location returned from a zero size allocation, this problem is no longer benign. This cpuset code would occassionally trigger that warning. The fix is trivial -- check before storing into the array, not after, whether the array is big enough to hold the store. Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: "Serge E. Hallyn" <serue@us.ibm.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: Kirill Korotaev <dev@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com> Cc: Christoph Lameter <clameter@sgi.com> Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* whitespace fixes: cpusetDaniel Walker2007-10-18
| | | | | | | Signed-off-by: Daniel Walker <dwalker@mvista.com> Cc: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* oom: compare cpuset mems_allowed instead of exclusive ancestorsDavid Rientjes2007-10-17
| | | | | | | | | | | | | | | | | | | Instead of testing for overlap in the memory nodes of the the nearest exclusive ancestor of both current and the candidate task, it is better to simply test for intersection between the task's mems_allowed in their task descriptors. This does not require taking callback_mutex since it is only used as a hint in the badness scoring. Tasks that do not have an intersection in their mems_allowed with the current task are not explicitly restricted from being OOM killed because it is quite possible that the candidate task has allocated memory there before and has since changed its mems_allowed. Cc: Andrea Arcangeli <andrea@suse.de> Acked-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* cpuset: remove sched domain hooks from cpusetsPaul Jackson2007-10-16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Remove the cpuset hooks that defined sched domains depending on the setting of the 'cpu_exclusive' flag. The cpu_exclusive flag can only be set on a child if it is set on the parent. This made that flag painfully unsuitable for use as a flag defining a partitioning of a system. It was entirely unobvious to a cpuset user what partitioning of sched domains they would be causing when they set that one cpu_exclusive bit on one cpuset, because it depended on what CPUs were in the remainder of that cpusets siblings and child cpusets, after subtracting out other cpu_exclusive cpusets. Furthermore, there was no way on production systems to query the result. Using the cpu_exclusive flag for this was simply wrong from the get go. Fortunately, it was sufficiently borked that so far as I know, almost no successful use has been made of this. One real time group did use it to affectively isolate CPUs from any load balancing efforts. They are willing to adapt to alternative mechanisms for this, such as someway to manipulate the list of isolated CPUs on a running system. They can do without this present cpu_exclusive based mechanism while we develop an alternative. There is a real risk, to the best of my understanding, of users accidentally setting up a partitioned scheduler domains, inhibiting desired load balancing across all their CPUs, due to the nonobvious (from the cpuset perspective) side affects of the cpu_exclusive flag. Furthermore, since there was no way on a running system to see what one was doing with sched domains, this change will be invisible to any using code. Unless they have real insight to the scheduler load balancing choices, they will be unable to detect that this change has been made in the kernel's behaviour. Initial discussion on lkml of this patch has generated much comment. My (probably controversial) take on that discussion is that it has reached a rough concensus that the current cpuset cpu_exclusive mechanism for defining sched domains is borked. There is no concensus on the replacement. But since we can remove this mechanism, and since its continued presence risks causing unwanted partitioning of the schedulers load balancing, we should remove it while we can, as we proceed to work the replacement scheduler domain mechanisms. Signed-off-by: Paul Jackson <pj@sgi.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Christoph Lameter <clameter@engr.sgi.com> Cc: Dinakar Guniguntala <dino@in.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Group short-lived and reclaimable kernel allocationsMel Gorman2007-10-16
| | | | | | | | | | | | | | | | | | This patch marks a number of allocations that are either short-lived such as network buffers or are reclaimable such as inode allocations. When something like updatedb is called, long-lived and unmovable kernel allocations tend to be spread throughout the address space which increases fragmentation. This patch groups these allocations together as much as possible by adding a new MIGRATE_TYPE. The MIGRATE_RECLAIMABLE type is for allocations that can be reclaimed on demand, but not moved. i.e. they can be migrated by deleting them and re-reading the information from elsewhere. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Andy Whitcroft <apw@shadowen.org> Cc: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Memoryless nodes: Use N_HIGH_MEMORY for cpusetsChristoph Lameter2007-10-16
| | | | | | | | | | | | | | | | | | | | | | cpusets try to ensure that any node added to a cpuset's mems_allowed is on-line and contains memory. The assumption was that online nodes contained memory. Thus, it is possible to add memoryless nodes to a cpuset and then add tasks to this cpuset. This results in continuous series of oom-kill and apparent system hang. Change cpusets to use node_states[N_HIGH_MEMORY] [a.k.a. node_memory_map] in place of node_online_map when vetting memories. Return error if admin attempts to write a non-empty mems_allowed node mask containing only memoryless-nodes. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@skynet.ie> Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* usermodehelper: Tidy up waitingJeremy Fitzhardinge2007-07-18
| | | | | | | | | | | | | | | | | | | | | | | Rather than using a tri-state integer for the wait flag in call_usermodehelper_exec, define a proper enum, and use that. I've preserved the integer values so that any callers I've missed should still work OK. Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Andi Kleen <ak@suse.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Johannes Berg <johannes@sipsolutions.net> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Bjorn Helgaas <bjorn.helgaas@hp.com> Cc: Joel Becker <joel.becker@oracle.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Cc: David Howells <dhowells@redhat.com>
* Merge branch 'for-linus' of ↵Linus Torvalds2007-07-17
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/avi/kvm * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/avi/kvm: (80 commits) KVM: Use CPU_DYING for disabling virtualization KVM: Tune hotplug/suspend IPIs KVM: Keep track of which cpus have virtualization enabled SMP: Allow smp_call_function_single() to current cpu i386: Allow smp_call_function_single() to current cpu x86_64: Allow smp_call_function_single() to current cpu HOTPLUG: Adapt thermal throttle to CPU_DYING HOTPLUG: Adapt cpuset hotplug callback to CPU_DYING HOTPLUG: Add CPU_DYING notifier KVM: Clean up #includes KVM: Remove kvmfs in favor of the anonymous inodes source KVM: SVM: Reliably detect if SVM was disabled by BIOS KVM: VMX: Remove unnecessary code in vmx_tlb_flush() KVM: MMU: Fix Wrong tlb flush order KVM: VMX: Reinitialize the real-mode tss when entering real mode KVM: Avoid useless memory write when possible KVM: Fix x86 emulator writeback KVM: Add support for in-kernel pio handlers KVM: VMX: Fix interrupt checking on lightweight exit KVM: Adds support for in-kernel mmio handlers ...
| * HOTPLUG: Adapt cpuset hotplug callback to CPU_DYINGAvi Kivity2007-07-16
| | | | | | | | | | | | CPU_DYING is called in atomic context, so don't try to take any locks. Signed-off-by: Avi Kivity <avi@qumranet.com>
* | Reduce cpuset.c write_lock_irq() to read_lock()Paul Menage2007-07-16
|/ | | | | | | | | | cpuset.c:update_nodemask() uses a write_lock_irq() on tasklist_lock to block concurrent forks; a read_lock() suffices and is less intrusive. Signed-off-by: Paul Menage<menage@google.com> Acked-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* cpuset: zero malloc - fix for old cpusetsPaul Jackson2007-06-16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The cpuset code to present a list of tasks using a cpuset to user space could write to an array that it had kmalloc'd, after a kmalloc request of zero size. The problem was that the code didn't check for writes past the allocated end of the array until -after- the first write. This is a race condition that is likely rare -- it would only show up if a cpuset went from being empty to having a task in it, during the brief time between the allocation and the first write. Prior to roughly 2.6.22 kernels, this was also a benign problem, because a zero kmalloc returned a few usable bytes anyway, and no harm was done with the bogus write. With the 2.6.22 kernel changes to make issue a warning if code tries to write to the location returned from a zero size allocation, this problem is no longer benign. This cpuset code would occassionally trigger that warning. The fix is trivial -- check before storing into the array, not after, whether the array is big enough to hold the store. Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: "Serge E. Hallyn" <serue@us.ibm.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: Kirill Korotaev <dev@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com> Cc: Christoph Lameter <clameter@sgi.com> Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* use simple_read_from_buffer in kernel/Akinobu Mita2007-05-09
| | | | | | | | | | | Cleanup using simple_read_from_buffer() for /dev/cpuset/tasks and /proc/config.gz. Cc: Paul Jackson <pj@sgi.com> Cc: Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* cpusets: allow empty {cpus,mems}_allowed to be set for unpopulated cpusetDavid Rientjes2007-05-08
| | | | | | | | | | | | | You currently cannot remove all cpus or mems from cpus_allowed or mems_allowed of a cpuset. We now allow both if there are no attached tasks. Acked-by: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Paul Menage <menage@google.com> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* header cleaning: don't include smp_lock.h when not usedRandy Dunlap2007-05-08
| | | | | | | | | | | | Remove includes of <linux/smp_lock.h> where it is not used/needed. Suggested by Al Viro. Builds cleanly on x86_64, i386, alpha, ia64, powerpc, sparc, sparc64, and arm (all 59 defconfigs). Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Fix race between attach_task and cpuset_exitSrivatsa Vaddagiri2007-05-08
| | | | | | | | | | | | | | | | Currently cpuset_exit() changes the exiting task's ->cpuset pointer w/o taking task_lock(). This can lead to ugly races between attach_task and cpuset_exit. Details of the races are described at http://lkml.org/lkml/2007/3/24/132. Patch below closes those races. Signed-off-by: Srivatsa Vaddagiri <vatsa@in.ibm.com> Cc: Paul Jackson <pj@sgi.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Paul Menage <menage@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* cpusets: allow TIF_MEMDIE threads to allocate anywhereDavid Rientjes2007-05-07
| | | | | | | | | | | | | | | | | | OOM killed tasks have access to memory reserves as specified by the TIF_MEMDIE flag in the hopes that it will quickly exit. If such a task has memory allocations constrained by cpusets, we may encounter a deadlock if a blocking task cannot exit because it cannot allocate the necessary memory. We allow tasks that have the TIF_MEMDIE flag to allocate memory anywhere, including outside its cpuset restriction, so that it can quickly die regardless of whether it is __GFP_HARDWALL. Cc: Andi Kleen <ak@suse.de> Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* [PATCH] mark struct inode_operations const 2Arjan van de Ven2007-02-12
| | | | | | | | | | | Many struct inode_operations in the kernel can be "const". Marking them const moves these to the .rodata section, which avoids false sharing with potential dirty data. In addition it'll catch accidental writes at compile time to these shared resources. Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* [PATCH] mark struct file_operations const 7Arjan van de Ven2007-02-12
| | | | | | | | | | | Many struct file_operations in the kernel can be "const". Marking them const moves these to the .rodata section, which avoids false sharing with potential dirty data. In addition it'll catch accidental writes at compile time to these shared resources. Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* [PATCH] cpuset procfs warning fixAndrew Morton2006-12-30
| | | | | | | | | fs/proc/base.c:1869: warning: initialization discards qualifiers from pointer target type fs/proc/base.c:2150: warning: initialization discards qualifiers from pointer target type Cc: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] cpuset: rework cpuset_zone_allowed apiPaul Jackson2006-12-13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Elaborate the API for calling cpuset_zone_allowed(), so that users have to explicitly choose between the two variants: cpuset_zone_allowed_hardwall() cpuset_zone_allowed_softwall() Until now, whether or not you got the hardwall flavor depended solely on whether or not you or'd in the __GFP_HARDWALL gfp flag to the gfp_mask argument. If you didn't specify __GFP_HARDWALL, you implicitly got the softwall version. Unfortunately, this meant that users would end up with the softwall version without thinking about it. Since only the softwall version might sleep, this led to bugs with possible sleeping in interrupt context on more than one occassion. The hardwall version requires that the current tasks mems_allowed allows the node of the specified zone (or that you're in interrupt or that __GFP_THISNODE is set or that you're on a one cpuset system.) The softwall version, depending on the gfp_mask, might allow a node if it was allowed in the nearest enclusing cpuset marked mem_exclusive (which requires taking the cpuset lock 'callback_mutex' to evaluate.) This patch removes the cpuset_zone_allowed() call, and forces the caller to explicitly choose between the hardwall and the softwall case. If the caller wants the gfp_mask to determine this choice, they should (1) be sure they can sleep or that __GFP_HARDWALL is set, and (2) invoke the cpuset_zone_allowed_softwall() routine. This adds another 100 or 200 bytes to the kernel text space, due to the few lines of nearly duplicate code at the top of both cpuset_zone_allowed_* routines. It should save a few instructions executed for the calls that turned into calls of cpuset_zone_allowed_hardwall, thanks to not having to set (before the call) then check (within the call) the __GFP_HARDWALL flag. For the most critical call, from get_page_from_freelist(), the same instructions are executed as before -- the old cpuset_zone_allowed() routine it used to call is the same code as the cpuset_zone_allowed_softwall() routine that it calls now. Not a perfect win, but seems worth it, to reduce this chance of hitting a sleeping with irq off complaint again. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] struct path: convert kernelJosef Sipek2006-12-08
| | | | | | Signed-off-by: Josef Sipek <jsipek@fsl.cs.sunysb.edu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] cpuset: allow a larger buffer for writes to cpuset filesPaul Menage2006-12-07
| | | | | | | | | | | When using fake NUMA setup, the number of memory nodes can greatly exceed the number of CPUs. So the current limit in cpuset_common_file_write() is insufficient. Signed-off-by: Paul Menage <menage@google.com> Acked-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] struct seq_operations and struct file_operations constificationHelge Deller2006-12-07
| | | | | | | | | | | | | | - move some file_operations structs into the .rodata section - move static strings from policy_types[] array into the .rodata section - fix generic seq_operations usages, so that those structs may be defined as "const" as well [akpm@osdl.org: couple of fixes] Signed-off-by: Helge Deller <deller@gmx.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] hotplug CPU: clean up hotcpu_notifier() useIngo Molnar2006-12-07
| | | | | | | | | | | | | | | | | | There was lots of #ifdef noise in the kernel due to hotcpu_notifier(fn, prio) not correctly marking 'fn' as used in the !HOTPLUG_CPU case, and thus generating compiler warnings of unused symbols, hence forcing people to add #ifdefs. the compiler can skip truly unused functions just fine: text data bss dec hex filename 1624412 728710 3674856 6027978 5bfaca vmlinux.before 1624412 728710 3674856 6027978 5bfaca vmlinux.after [akpm@osdl.org: topology.c fix] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] cpuset: minor code refinementsPaul Jackson2006-12-07
| | | | | | | | | A couple of minor code simplifications to the kernel/cpuset.c code. No functional change. Just a little less code and a little more readable. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] cpuset ANSI prototypeAl Viro2006-10-10
| | | | | | Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Acked-by: Paul Jackson <pj@sgi.com> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] r/o bind mount prepwork: inc_nlink() helperDave Hansen2006-10-01
| | | | | | | | | | | This is mostly included for parity with dec_nlink(), where we will have some more hooks. This one should stay pretty darn straightforward for now. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Acked-by: Christoph Hellwig <hch@lst.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] cpuset: fix obscure attach_task vs exiting racePaul Jackson2006-09-29
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Fix obscure race condition in kernel/cpuset.c attach_task() code. There is basically zero chance of anyone accidentally being harmed by this race. It requires a special 'micro-stress' load and a special timing loop hacks in the kernel to hit in less than an hour, and even then you'd have to hit it hundreds or thousands of times, followed by some unusual and senseless cpuset configuration requests, including removing the top cpuset, to cause any visibly harm affects. One could, with perhaps a few days or weeks of such effort, get the reference count on the top cpuset below zero, and manage to crash the kernel by asking to remove the top cpuset. I found it by code inspection. The race was introduced when 'the_top_cpuset_hack' was introduced, and one piece of code was not updated. An old check for a possibly null task cpuset pointer needed to be changed to a check for a task marked PF_EXITING. The pointer can't be null anymore, thanks to the_top_cpuset_hack (documented in kernel/cpuset.c). But the task could have gone into PF_EXITING state after it was found in the task_list scan. If a task is PF_EXITING in this code, it is possible that its task->cpuset pointer is pointing to the top cpuset due to the_top_cpuset_hack, rather than because the top_cpuset was that tasks last valid cpuset. In that case, the wrong cpuset reference counter would be decremented. The fix is trivial. Instead of failing the system call if the tasks cpuset pointer is null here, fail it if the task is in PF_EXITING state. The code for 'the_top_cpuset_hack' that changes an exiting tasks cpuset to the top_cpuset is done without locking, so could happen at anytime. But it is done during the exit handling, after the PF_EXITING flag is set. So if we verify that a task is still not PF_EXITING after we copy out its cpuset pointer (into 'oldcs', below), we know that 'oldcs' is not one of these hack references to the top_cpuset. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] cpuset: hotunplug cpus and mems in all cpusetsPaul Jackson2006-09-29
| | | | | | | | | | | | | | | | | | | | | | | | | The cpuset code handling hot unplug of CPUs or Memory Nodes was incorrect - it could remove a CPU or Node from the top cpuset, while leaving it still in some child cpusets. One basic rule of cpusets is that each cpusets cpus and mems are subsets of its parents. The cpuset hot unplug code violated this rule. So the cpuset hotunplug handler must walk down the tree, removing any removed CPU or Node from all cpusets. However, it is not allowed to make a cpusets cpus or mems become empty. They can only transition from empty to non-empty, not back. So if the last CPU or Node would be removed from a cpuset by the above walk, we scan back up the cpuset hierarchy, finding the nearest ancestor that still has something online, and copy its CPU or Memory placement. Signed-off-by: Paul Jackson <pj@sgi.com> Cc: Nathan Lynch <ntl@pobox.com> Cc: Anton Blanchard <anton@samba.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] cpuset: top_cpuset tracks hotplug changes to node_online_mapPaul Jackson2006-09-29
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Change the list of memory nodes allowed to tasks in the top (root) nodeset to dynamically track what cpus are online, using a call to a cpuset hook from the memory hotplug code. Make this top cpus file read-only. On systems that have cpusets configured in their kernel, but that aren't actively using cpusets (for some distros, this covers the majority of systems) all tasks end up in the top cpuset. If that system does support memory hotplug, then these tasks cannot make use of memory nodes that are added after system boot, because the memory nodes are not allowed in the top cpuset. This is a surprising regression over earlier kernels that didn't have cpusets enabled. One key motivation for this change is to remain consistent with the behaviour for the top_cpuset's 'cpus', which is also read-only, and which automatically tracks the cpu_online_map. This change also has the minor benefit that it fixes a long standing, little noticed, minor bug in cpusets. The cpuset performance tweak to short circuit the cpuset_zone_allowed() check on systems with just a single cpuset (see 'number_of_cpusets', in linux/cpuset.h) meant that simply changing the 'mems' of the top_cpuset had no affect, even though the change (the write system call) appeared to succeed. With the following change, that write to the 'mems' file fails -EACCES, and the 'mems' file stubbornly refuses to be changed via user space writes. Thus no one should be mislead into thinking they've changed the top_cpusets's 'mems' when in affect they haven't. In order to keep the behaviour of cpusets consistent between systems actively making use of them and systems not using them, this patch changes the behaviour of the 'mems' file in the top (root) cpuset, making it read only, and making it automatically track the value of node_online_map. Thus tasks in the top cpuset will have automatic use of hot plugged memory nodes allowed by their cpuset. [akpm@osdl.org: build fix] [bunk@stusta.de: build fix] Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] pidspace: is_init()Sukadev Bhattiprolu2006-09-29
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This is an updated version of Eric Biederman's is_init() patch. (http://lkml.org/lkml/2006/2/6/280). It applies cleanly to 2.6.18-rc3 and replaces a few more instances of ->pid == 1 with is_init(). Further, is_init() checks pid and thus removes dependency on Eric's other patches for now. Eric's original description: There are a lot of places in the kernel where we test for init because we give it special properties. Most significantly init must not die. This results in code all over the kernel test ->pid == 1. Introduce is_init to capture this case. With multiple pid spaces for all of the cases affected we are looking for only the first process on the system, not some other process that has pid == 1. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Sukadev Bhattiprolu <sukadev@us.ibm.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: Serge Hallyn <serue@us.ibm.com> Cc: Cedric Le Goater <clg@fr.ibm.com> Cc: <lxc-devel@lists.sourceforge.net> Acked-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] inode-diet: Eliminate i_blksize from the inode structureTheodore Ts'o2006-09-27
| | | | | | | | | | | | | | | | This eliminates the i_blksize field from struct inode. Filesystems that want to provide a per-inode st_blksize can do so by providing their own getattr routine instead of using the generic_fillattr() function. Note that some filesystems were providing pretty much random (and incorrect) values for i_blksize. [bunk@stusta.de: cleanup] [akpm@osdl.org: generic_fillattr() fix] Signed-off-by: "Theodore Ts'o" <tytso@mit.edu> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] NUMA: Add zone_to_nid functionChristoph Lameter2006-09-26
| | | | | | | | | | | There are many places where we need to determine the node of a zone. Currently we use a difficult to read sequence of pointer dereferencing. Put that into an inline function and use throughout VM. Maybe we can find a way to optimize the lookup in the future. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] Add __GFP_THISNODE to avoid fallback to other nodes and ignore ↵Christoph Lameter2006-09-26
| | | | | | | | | | | | | | | | cpuset/memory policy restrictions Add a new gfp flag __GFP_THISNODE to avoid fallback to other nodes. This flag is essential if a kernel component requires memory to be located on a certain node. It will be needed for alloc_pages_node() to force allocation on the indicated node and for alloc_pages() to force allocation on the current node. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] cpuset: oom panic fixNick Piggin2006-08-27
| | | | | | | | | | | | | | | cpuset_excl_nodes_overlap always returns 0 if current is exiting. This caused customer's systems to panic in the OOM killer when processes were having trouble getting memory for the final put_user in mm_release. Even though there were lots of processes to kill. Change to returning 1 in this case. This achieves parity with !CONFIG_CPUSETS case, and was observed to fix the problem. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] cpuset: top_cpuset tracks hotplug changes to cpu_online_mapPaul Jackson2006-08-27
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Change the list of cpus allowed to tasks in the top (root) cpuset to dynamically track what cpus are online, using a CPU hotplug notifier. Make this top cpus file read-only. On systems that have cpusets configured in their kernel, but that aren't actively using cpusets (for some distros, this covers the majority of systems) all tasks end up in the top cpuset. If that system does support CPU hotplug, then these tasks cannot make use of CPUs that are added after system boot, because the CPUs are not allowed in the top cpuset. This is a surprising regression over earlier kernels that didn't have cpusets enabled. In order to keep the behaviour of cpusets consistent between systems actively making use of them and systems not using them, this patch changes the behaviour of the 'cpus' file in the top (root) cpuset, making it read only, and making it automatically track the value of cpu_online_map. Thus tasks in the top cpuset will have automatic use of hot plugged CPUs allowed by their cpuset. Thanks to Anton Blanchard and Nathan Lynch for reporting this problem, driving the fix, and earlier versions of this patch. Signed-off-by: Paul Jackson <pj@sgi.com> Cc: Nathan Lynch <ntl@pobox.com> Cc: Anton Blanchard <anton@samba.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] Cpuset: fix ABBA deadlock with cpu hotplug lockPaul Jackson2006-07-23
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Fix ABBA deadlock between lock_cpu_hotplug() and the cpuset callback_mutex lock. It only happens on cpu_exclusive cpusets, due to the dynamic sched domain code trying to take the cpu hotplug lock inside the cpuset callback_mutex lock. This bug has apparently been here for several months, but didn't get hit until the right customer load on a large system. This fix appears right from inspection, but it will take a few more days running it on that customers workload to be confident we nailed it. We don't have any other reproducible test case. The cpu_hotplug_lock() tends to cover large runs of code. The other places that hold both that lock and the cpuset callback mutex lock always nest the cpuset lock inside the hotplug lock. This place tries to do the reverse, risking an ABBA deadlock. This is in the cpuset_rmdir() code, where we: * take the callback_mutex lock * mark the cpuset CS_REMOVED * call update_cpu_domains for cpu_exclusive cpusets * in that call, take the cpu_hotplug lock if the cpuset is marked for removal. Thanks to Jack Steiner for identifying this deadlock. The fix is to tear down the dynamic sched domain before we grab the cpuset callback_mutex lock. This way, the two locks are serialized, with the hotplug lock taken and released before trying for the cpuset lock. I suspect that this bug was introduced when I changed the cpuset locking from one lock to two. The dynamic sched domain dependency on cpu_exclusive cpusets and its hotplug hooks were added to this code earlier, when cpusets had only a single lock. It may well have been fine then. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* Remove obsolete #include <linux/config.h>Jörn Engel2006-06-30
| | | | | Signed-off-by: Jörn Engel <joern@wohnheim.fh-wedel.de> Signed-off-by: Adrian Bunk <bunk@stusta.de>
* typo fixes: occuring -> occurringAdrian Bunk2006-06-30
| | | | Signed-off-by: Adrian Bunk <bunk@stusta.de>
* [PATCH] proc: Use struct pid not struct task_refEric W. Biederman2006-06-26
| | | | | | | | | | | Incrementally update my proc-dont-lock-task_structs-indefinitely patches so that they work with struct pid instead of struct task_ref. Mostly this is a straight 1-1 substitution. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] proc: don't lock task_structs indefinitelyEric W. Biederman2006-06-26
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Every inode in /proc holds a reference to a struct task_struct. If a directory or file is opened and remains open after the the task exits this pinning continues. With 8K stacks on a 32bit machine the amount pinned per file descriptor is about 10K. Normally I would figure a reasonable per user process limit is about 100 processes. With 80 processes, with a 1000 file descriptors each I can trigger the 00M killer on a 32bit kernel, because I have pinned about 800MB of useless data. This patch replaces the struct task_struct pointer with a pointer to a struct task_ref which has a struct task_struct pointer. The so the pinning of dead tasks does not happen. The code now has to contend with the fact that the task may now exit at any time. Which is a little but not muh more complicated. With this change it takes about 1000 processes each opening up 1000 file descriptors before I can trigger the OOM killer. Much better. [mlp@google.com: task_mmu small fixes] Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Cc: Paul Jackson <pj@sgi.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Cc: Albert Cahalan <acahalan@gmail.com> Signed-off-by: Prasanna Meda <mlp@google.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] SELinux: add security hook call to mediate attach_task (kernel/cpuset.c)David Quigley2006-06-23
| | | | | | | | | | | | | | | | Add a security hook call to enable security modules to control the ability to attach a task to a cpuset. While limited control over this operation is possible via permission checks on the pseudo fs interface, those checks are not sufficient to control access to the target task, which is looked up in this function. The existing task_setscheduler hook is re-used for this operation since this falls under the same class of operations. Signed-off-by: David Quigley <dpquigl@tycho.nsa.gov> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org> Acked-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] VFS: Permit filesystem to override root dentry on mountDavid Howells2006-06-23
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Extend the get_sb() filesystem operation to take an extra argument that permits the VFS to pass in the target vfsmount that defines the mountpoint. The filesystem is then required to manually set the superblock and root dentry pointers. For most filesystems, this should be done with simple_set_mnt() which will set the superblock pointer and then set the root dentry to the superblock's s_root (as per the old default behaviour). The get_sb() op now returns an integer as there's now no need to return the superblock pointer. This patch permits a superblock to be implicitly shared amongst several mount points, such as can be done with NFS to avoid potential inode aliasing. In such a case, simple_set_mnt() would not be called, and instead the mnt_root and mnt_sb would be set directly. The patch also makes the following changes: (*) the get_sb_*() convenience functions in the core kernel now take a vfsmount pointer argument and return an integer, so most filesystems have to change very little. (*) If one of the convenience function is not used, then get_sb() should normally call simple_set_mnt() to instantiate the vfsmount. This will always return 0, and so can be tail-called from get_sb(). (*) generic_shutdown_super() now calls shrink_dcache_sb() to clean up the dcache upon superblock destruction rather than shrink_dcache_anon(). This is required because the superblock may now have multiple trees that aren't actually bound to s_root, but that still need to be cleaned up. The currently called functions assume that the whole tree is rooted at s_root, and that anonymous dentries are not the roots of trees which results in dentries being left unculled. However, with the way NFS superblock sharing are currently set to be implemented, these assumptions are violated: the root of the filesystem is simply a dummy dentry and inode (the real inode for '/' may well be inaccessible), and all the vfsmounts are rooted on anonymous[*] dentries with child trees. [*] Anonymous until discovered from another tree. (*) The documentation has been adjusted, including the additional bit of changing ext2_* into foo_* in the documentation. [akpm@osdl.org: convert ipath_fs, do other stuff] Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Cc: Nathan Scott <nathans@sgi.com> Cc: Roland Dreier <rolandd@cisco.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] cpuset: might_sleep_if check in cpuset_zones_allowedPaul Jackson2006-05-21
| | | | | | | | | | | | | | | It's too easy to incorrectly call cpuset_zone_allowed() in an atomic context without __GFP_HARDWALL set, and when done, it is not noticed until a tight memory situation forces allocations to be tried outside the current cpuset. Add a 'might_sleep_if()' check, to catch this earlier on, instead of waiting for a similar check in the mutex_lock() code, which is only rarely invoked. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] cpuset: update cpuset_zones_allowed commentPaul Jackson2006-05-21
| | | | | | | | | | | | | | | | | | | | | Update the kernel/cpuset.c:cpuset_zone_allowed() comment. The rule for when mm/page_alloc.c should call cpuset_zone_allowed() was intended to be: Don't call cpuset_zone_allowed() if you can't sleep, unless you pass in the __GFP_HARDWALL flag set in gfp_flag, which disables the code that might scan up ancestor cpusets and sleep. The explanation of this rule in the comment above cpuset_zone_allowed() was stale, as a result of a restructuring of some __alloc_pages() code in November 2005. Rewrite that comment ... Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] cpuset: memory migration interaction fixPaul Jackson2006-03-31
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Fix memory migration so that it works regardless of what cpuset the invoking task is in. If a task invoked a memory migration, by doing one of: 1) writing a different nodemask to a cpuset 'mems' file, or 2) writing a tasks pid to a different cpuset's 'tasks' file, where the cpuset had its 'memory_migrate' option turned on, then the allocation of the new pages for the migrated task(s) was constrained by the invoking tasks cpuset. If this task wasn't in a cpuset that allowed the requested memory nodes, the memory migration would happen to some other nodes that were in that invoking tasks cpuset. This was usually surprising and puzzling behaviour: Why didn't the pages move? Why did the pages move -there-? To fix this, temporarilly change the invoking tasks 'mems_allowed' task_struct field to the nodes the migrating tasks is moving to, so that new pages can be allocated there. Signed-off-by: Paul Jackson <pj@sgi.com> Acked-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>