| Commit message (Collapse) | Author | Age |
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
| |
- allocate job nodes
- init pending_on
intercept releases, exits
|
| |
|
|
|
|
|
| |
Just stick TS_SYSCALL_IN_START into any
system call that needs tracing.
|
|
|
|
| |
Avoids getting tasks getting stuck in sched_yield() loops.
|
|
|
|
|
|
| |
User a 32-bit word for all non-preemptive section flags.
Set the "please yield soon" flag atomically when
accessing it on remotely-scheduled tasks.
|
|
|
|
|
| |
We'd like to have consistent deadline tie-breaking
in priority-ordered wait queues, too.
|
| |
|
|
|
|
| |
Ensure that _END - _START = 1. This simplifies ft2csv.
|
|
|
|
|
|
|
| |
We need to be able to figure out overlapping suspensions, etc.
So to reuse the existing format, just encode the lower 16bits of
the PID in the cpu and task-type fields (which we don't care about
when collecting locking overheads).
|
| |
|
| |
|
|
|
|
|
| |
This allows us to splice in information into logs from events
that were recorded in userspace.
|
| |
|
|
|
|
| |
Will be used by MPCP implementation.
|
| |
|
|
|
|
|
|
|
|
|
|
| |
The next owner of a FMLP-protected resource is dequeued from
the FMLP FIFO queue by unlock() (when the resource is freed by
the previous owner) instead of performing the dequeue by the next
owner immediately after it has been woken up.
This simplifies the code a little bit and also reduces potential
spinlock contention.
|
|
|
|
| |
The preemption check must check the correct queue.
|
| |
|
|
|
|
|
|
| |
Currently, this is basically the PSN-EDF plugin with a bit of renaming
going on. The priority queue implementation and priority boosting
implementation should change next.
|
|
|
|
| |
This will allow us to implement fixed-priority scheduling
|
| |
|
| |
|
|
|
|
|
| |
Inspired by the existing C-EDF code, this generic version will build
clusters of CPUs based on a given cache level.
|
|
|
|
|
| |
Make the cluster size configuration in C-EDF generic so that it can be
used by other clustered schedulers.
|
|
|
|
|
| |
Since we don't expect to trace more than one lock type at a time,
having protocol-specific trace points is not required.
|
|
|
|
|
|
|
|
|
|
|
|
| |
As Glenn pointed out, it is useful for some protocols (e.g.,
k-exclusion protocols) to know the userspace configuration at object
creation time. This patch changes the fdso API to pass the parameter
to the object constructor, which is then in turn passed to the lock
allocater. The return code from the lock allocater is passed to
userspace in return.
This also fixes some null pointer dereferences in the FDSO code found
by the test suite in liblitmus.
|
|
|
|
|
| |
Implement the partitioned FMLP with priority boosting based on the
generic lock API.
|
|
|
|
| |
While we are at it, simplify edf_higher_prio() a bit.
|
| |
|
|
|
|
|
| |
This re-enables SRP support under PSN-EDF and demonstrates how the new
locking API should be used.
|
|
|
|
|
| |
This renders the FMLP and SRP unfunctional until they are ported to
the new locking API.
|
|
|
|
|
| |
Provide a unified userspace interface for plugin-specific locking
protocols.
|
|
|
|
|
|
|
|
|
| |
As the number of supported locking protocols is expected to rise,
hard-coding things like priority inheritance in the plugin interface
doesn't scale. Instead, use a new generic lock-ops approach. With this
approach, each plugin can define its own protocol implementation (or
use a generic one), and plugins can support multiple protocols without
having to change the plugin interface for each protocol.
|
|
|
|
| |
Passing the object type explicitly will enable generic lock constructors.
|
| |
|
| |
|
|
|
|
|
|
| |
We read in a line from userspace and remove the trailing newline in a
number of places. This function extracts the common code to avoid
future duplication.
|
| |
|
|
|
|
|
|
| |
This patch changes Feather-Trace to allocate memory for the minor
devices dynamically, which addresses a long-standing FIXME. It also
provides clean module exit and error conditions for Feather-Trace.
|
|
|
|
|
|
|
|
|
|
| |
This patch implements support for Feather-Trace devices to use the sysfs
file system and, consequently, udev support.
This allows us to allocate major/minor numbers for Feather-Trace
devices dynamically, which is desirable because our old static
allocations tend to create conflicts on modern distributions and/or
when there are many cores.
|
|
|
|
|
|
|
| |
budget_remaining() reports incorrect values due to the operands being
switched, which leads to an integer underflow.
Reported-by: Chris Kenna <cjk@cs.unc.edu>
|
|
|
|
|
|
|
|
|
|
|
| |
Add information to each trace message that makes it easier to locate
where it came from. It is disabled by default since this adds a lot of
clutter. Example:
81281 P1 [gsnedf_schedule@litmus/sched_gsn_edf.c:406]: (rtspin/1483:1) blocks:0 out_of_time:0 np:0 sleep:1 preempt:0 state:0 sig:0
81282 P1 [job_completion@litmus/sched_gsn_edf.c:303]: (rtspin/1483:1) job_completion().
81283 P1 [__add_release@litmus/rt_domain.c:344]: (rtspin/1483:2) add_release(), rel=41941764351
81284 P1 [gsnedf_schedule@litmus/sched_gsn_edf.c:453]: (rtspin/1483:2) scheduled_on = NO_CPU
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For some problems it can be helpful to know which job of a task
generated a log message. This patch changes TRACE_TASK to add :<jobno>
to the existing (<comm>/<pid>) tag.
The result is a trace such as the following, in which the third job of
rtspin/1511 completes and the fourth job is added to the release
queue.
137615 P0: (rtspin/1511:3) job_completion().
137616 P0: (rtspin/1511:4) add_release(), rel=262013223089
137617 P0: (rtspin/1511:4) scheduled_on = NO_CPU
The job number for non-real-time tasks is always zero.
|
|
|
|
|
|
| |
Linux now has a macro of the same name, which causes namespace
collisions. Since our version is only being used in two places that
haven't triggered in several years, let's just remove it.
|
|
|
|
|
|
|
|
|
|
|
|
| |
To date, Litmus has just hooked into the smp_send_reschedule() IPI
handler and marked tasks as having to reschedule to implement remote
preemptions. This was never particularly clean, but so far we got away
with it. However, changes in the underlying Linux, and peculartities
of the ARM code (interrupts enabled before context switch) break this
naive approach. This patch introduces new state-machine based remote
preemption support. By examining the local state before calling
set_tsk_need_resched(), we avoid confusing the underlying Linux
scheduler. Further, this patch avoids sending unncessary IPIs.
|
|
|
|
|
|
|
|
|
|
| |
The TRACE() functionality doesn't need all of litmus.h. Currently,
it's impossible to use TRACE() in sched.h due to a circular
dependency. This patch moves TRACE() and friends to
litmus/sched_debug.h, which can be included in sched.h.
While at it, also fix some minor include ugliness that was revealed by
this change.
|