aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/vmalloc.h
Commit message (Collapse)AuthorAge
* NOMMU: support SMP dynamic percpu_allocGraf Yang2011-03-28
| | | | | | | | | | | The percpu code requires more functions to be implemented in the mm core which nommu currently does not provide. So add inline implementations since these are largely meaningless on nommu systems. Signed-off-by: Graf Yang <graf.yang@analog.com> Signed-off-by: Mike Frysinger <vapier@gentoo.org> Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Greg Ungerer <gerg@uclinux.org>
* mm: unify module_alloc code for vmallocDavid Rientjes2011-01-13
| | | | | | | | | | | | | | | | | | | | | | | Four architectures (arm, mips, sparc, x86) use __vmalloc_area() for module_init(). Much of the code is duplicated and can be generalized in a globally accessible function, __vmalloc_node_range(). __vmalloc_node() now calls into __vmalloc_node_range() with a range of [VMALLOC_START, VMALLOC_END) for functionally equivalent behavior. Each architecture may then use __vmalloc_node_range() directly to remove the duplication of code. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Russell King <linux@arm.linux.org.uk> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: remove gfp mask from pcpu_get_vm_areasDavid Rientjes2011-01-13
| | | | | | | | | | | pcpu_get_vm_areas() only uses GFP_KERNEL allocations, so remove the gfp_t formal and use the mask internally. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: remove unused get_vm_area_nodeDavid Rientjes2011-01-13
| | | | | | | | | get_vm_area_node() is unused in the kernel and can thus be removed. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* vmalloc: eagerly clear ptes on vunmapJeremy Fitzhardinge2010-12-02
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | On stock 2.6.37-rc4, running: # mount lilith:/export /mnt/lilith # find /mnt/lilith/ -type f -print0 | xargs -0 file crashes the machine fairly quickly under Xen. Often it results in oops messages, but the couple of times I tried just now, it just hung quietly and made Xen print some rude messages: (XEN) mm.c:2389:d80 Bad type (saw 7400000000000001 != exp 3000000000000000) for mfn 1d7058 (pfn 18fa7) (XEN) mm.c:964:d80 Attempt to create linear p.t. with write perms (XEN) mm.c:2389:d80 Bad type (saw 7400000000000010 != exp 1000000000000000) for mfn 1d2e04 (pfn 1d1fb) (XEN) mm.c:2965:d80 Error while pinning mfn 1d2e04 Which means the domain tried to map a pagetable page RW, which would allow it to map arbitrary memory, so Xen stopped it. This is because vm_unmap_ram() left some pages mapped in the vmalloc area after NFS had finished with them, and those pages got recycled as pagetable pages while still having these RW aliases. Removing those mappings immediately removes the Xen-visible aliases, and so it has no problem with those pages being reused as pagetable pages. Deferring the TLB flush doesn't upset Xen because it can flush the TLB itself as needed to maintain its invariants. When unmapping a region in the vmalloc space, clear the ptes immediately. There's no point in deferring this because there's no amortization benefit. The TLBs are left dirty, and they are flushed lazily to amortize the cost of the IPIs. This specific motivation for this patch is an oops-causing regression since 2.6.36 when using NFS under Xen, triggered by the NFS client's use of vm_map_ram() introduced in 56e4ebf877b60 ("NFS: readdir with vmapped pages") . XFS also uses vm_map_ram() and could cause similar problems. Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Bryan Schumaker <bjschuma@netapp.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: Alex Elder <aelder@sgi.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: add vzalloc() and vzalloc_node() helpersDave Young2010-10-26
| | | | | | | | | | | | | | Add vzalloc() and vzalloc_node() to encapsulate the vmalloc-then-memset-zero operation. Use __GFP_ZERO to zero fill the allocated memory. Signed-off-by: Dave Young <hidave.darkstar@gmail.com> Cc: Christoph Lameter <cl@linux-foundation.org> Acked-by: Greg Ungerer <gerg@snapgear.com> Cc: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* vmalloc: pcpu_get/free_vm_areas() aren't needed on UPTejun Heo2010-09-08
| | | | | | | | | These functions are used only by percpu memory allocator on SMP. Don't build them on UP. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Nick Piggin <npiggin@kernel.dk> Reviewed-by: Chrsitoph Lameter <cl@linux.com>
* Merge branch 'stable/xen-swiotlb-0.8.6' of ↵Linus Torvalds2010-08-12
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/konrad/xen * 'stable/xen-swiotlb-0.8.6' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/xen: x86: Detect whether we should use Xen SWIOTLB. pci-swiotlb-xen: Add glue code to setup dma_ops utilizing xen_swiotlb_* functions. swiotlb-xen: SWIOTLB library for Xen PV guest with PCI passthrough. xen/mmu: inhibit vmap aliases rather than trying to clear them out vmap: add flag to allow lazy unmap to be disabled at runtime xen: Add xen_create_contiguous_region xen: Rename the balloon lock xen: Allow unprivileged Xen domains to create iomap pages xen: use _PAGE_IOMAP in ioremap to do machine mappings Fix up trivial conflicts (adding both xen swiotlb and xen pci platform driver setup close to each other) in drivers/xen/{Kconfig,Makefile} and include/xen/xen-ops.h
| * vmap: add flag to allow lazy unmap to be disabled at runtimeJeremy Fitzhardinge2010-07-27
| | | | | | | | | | | | | | | | | | Add a flag to force lazy_max_pages() to zero to prevent any outstanding mapped pages. We'll need this for Xen. Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com> Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Acked-by: Nick Piggin <npiggin@suse.de>
* | x86, ioremap: Fix incorrect physical address handling in PAE modeKenji Kaneshige2010-07-09
|/ | | | | | | | | | | | | | | | | | Current x86 ioremap() doesn't handle physical address higher than 32-bit properly in X86_32 PAE mode. When physical address higher than 32-bit is passed to ioremap(), higher 32-bits in physical address is cleared wrongly. Due to this bug, ioremap() can map wrong address to linear address space. In my case, 64-bit MMIO region was assigned to a PCI device (ioat device) on my system. Because of the ioremap()'s bug, wrong physical address (instead of MMIO region) was mapped to linear address space. Because of this, loading ioatdma driver caused unexpected behavior (kernel panic, kernel hangup, ...). Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com> LKML-Reference: <4C1AE680.7090408@jp.fujitsu.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
* vmalloc: implement pcpu_get_vm_areas()Tejun Heo2009-08-14
| | | | | | | | | | | | | | | | | | | | | | | | | To directly use spread NUMA memories for percpu units, percpu allocator will be updated to allow sparsely mapping units in a chunk. As the distances between units can be very large, this makes allocating single vmap area for each chunk undesirable. This patch implements pcpu_get_vm_areas() and pcpu_free_vm_areas() which allocates and frees sparse congruent vmap areas. pcpu_get_vm_areas() take @offsets and @sizes array which define distances and sizes of vmap areas. It scans down from the top of vmalloc area looking for the top-most address which can accomodate all the areas. The top-down scan is to avoid interacting with regular vmallocs which can push up these congruent areas up little by little ending up wasting address space and page table. To speed up top-down scan, the highest possible address hint is maintained. Although the scan is linear from the hint, given the usual large holes between memory addresses between NUMA nodes, the scanning is highly likely to finish after finding the first hole for the last unit which is scanned first. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Nick Piggin <npiggin@suse.de>
* Merge branch 'tj-percpu' of ↵Ingo Molnar2009-02-24
|\ | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tj/misc into core/percpu Conflicts: arch/x86/include/asm/pgtable.h
| * vmalloc: add @align to vm_area_register_early()Tejun Heo2009-02-23
| | | | | | | | | | | | | | | | | | | | | | | | Impact: allow larger alignment for early vmalloc area allocation Some early vmalloc users might want larger alignment, for example, for custom large page mapping. Add @align to vm_area_register_early(). While at it, drop docbook comment on non-existent @size. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
| * vmalloc: add un/map_kernel_range_noflush()Tejun Heo2009-02-20
| | | | | | | | | | | | | | | | | | | | | | | | Impact: two more public map/unmap functions Implement map_kernel_range_noflush() and unmap_kernel_range_noflush(). These functions respectively map and unmap address range in kernel VM area but doesn't do any vcache or tlb flushing. These will be used by new percpu allocator. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Nick Piggin <nickpiggin@yahoo.com.au>
| * vmalloc: implement vm_area_register_early()Tejun Heo2009-02-20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Impact: allow multiple early vm areas There are places where kernel VM area needs to be allocated before vmalloc is initialized. This is done by allocating static vm_struct, initializing several fields and linking it to vmlist and later vmalloc initialization picking up these from vmlist. This is currently done manually and if there's more than one such areas, there's no defined way to arbitrate who gets which address. This patch implements vm_area_register_early(), which takes vm_area struct with flags and size initialized, assigns address to it and puts it on the vmlist. This way, multiple early vm areas can determine which addresses they should use. The only current user - alpha mm init - is converted to use it. Signed-off-by: Tejun Heo <tj@kernel.org>
* | vmalloc: add __get_vm_area_caller()Benjamin Herrenschmidt2009-02-18
|/ | | | | | | | | | | | | | | | | | We have get_vm_area_caller() and __get_vm_area() but not __get_vm_area_caller() On powerpc, I use __get_vm_area() to separate the ranges of addresses given to vmalloc vs. ioremap (various good reasons for that) so in order to be able to implement the new caller tracking in /proc/vmallocinfo, I need a "_caller" variant of it. (akpm: needed for ongoing powerpc development, so merge it early) [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: make vread() and vwrite() declarationKOSAKI Motohiro2009-01-06
| | | | | | | | | | | | | Sparse output following warnings. mm/vmalloc.c:1436:6: warning: symbol 'vread' was not declared. Should it be static? mm/vmalloc.c:1474:6: warning: symbol 'vwrite' was not declared. Should it be static? However, it is used by /dev/kmem. fixed here. Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* proc: move /proc/vmallocinfo to mm/vmalloc.cAlexey Dobriyan2008-10-23
| | | | | Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Acked-by: Christoph Lameter <cl@linux-foundation.org>
* mm: rewrite vmap layerNick Piggin2008-10-20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: VM_flags comment fixesHugh Dickins2008-08-16
| | | | | | | | Try to comment away a little of the confusion between mm's vm_area_struct vm_flags and vmalloc's vm_struct flags: based on an idea by Ulrich Drepper. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* vmallocinfo: add caller informationChristoph Lameter2008-04-28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add caller information so that /proc/vmallocinfo shows where the allocation request for a slice of vmalloc memory originated. Results in output like this: 0xffffc20000000000-0xffffc20000801000 8392704 alloc_large_system_hash+0x127/0x246 pages=2048 vmalloc vpages 0xffffc20000801000-0xffffc20000806000 20480 alloc_large_system_hash+0x127/0x246 pages=4 vmalloc 0xffffc20000806000-0xffffc20000c07000 4198400 alloc_large_system_hash+0x127/0x246 pages=1024 vmalloc vpages 0xffffc20000c07000-0xffffc20000c0a000 12288 alloc_large_system_hash+0x127/0x246 pages=2 vmalloc 0xffffc20000c0a000-0xffffc20000c0c000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c0c000-0xffffc20000c0f000 12288 acpi_os_map_memory+0x13/0x1c phys=cff64000 ioremap 0xffffc20000c10000-0xffffc20000c15000 20480 acpi_os_map_memory+0x13/0x1c phys=cff65000 ioremap 0xffffc20000c16000-0xffffc20000c18000 8192 acpi_os_map_memory+0x13/0x1c phys=cff69000 ioremap 0xffffc20000c18000-0xffffc20000c1a000 8192 acpi_os_map_memory+0x13/0x1c phys=fed1f000 ioremap 0xffffc20000c1a000-0xffffc20000c1c000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c1c000-0xffffc20000c1e000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c1e000-0xffffc20000c20000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c20000-0xffffc20000c22000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c22000-0xffffc20000c24000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c24000-0xffffc20000c26000 8192 acpi_os_map_memory+0x13/0x1c phys=e0081000 ioremap 0xffffc20000c26000-0xffffc20000c28000 8192 acpi_os_map_memory+0x13/0x1c phys=e0080000 ioremap 0xffffc20000c28000-0xffffc20000c2d000 20480 alloc_large_system_hash+0x127/0x246 pages=4 vmalloc 0xffffc20000c2d000-0xffffc20000c31000 16384 tcp_init+0xd5/0x31c pages=3 vmalloc 0xffffc20000c31000-0xffffc20000c34000 12288 alloc_large_system_hash+0x127/0x246 pages=2 vmalloc 0xffffc20000c34000-0xffffc20000c36000 8192 init_vdso_vars+0xde/0x1f1 0xffffc20000c36000-0xffffc20000c38000 8192 pci_iomap+0x8a/0xb4 phys=d8e00000 ioremap 0xffffc20000c38000-0xffffc20000c3a000 8192 usb_hcd_pci_probe+0x139/0x295 [usbcore] phys=d8e00000 ioremap 0xffffc20000c3a000-0xffffc20000c3e000 16384 sys_swapon+0x509/0xa15 pages=3 vmalloc 0xffffc20000c40000-0xffffc20000c61000 135168 e1000_probe+0x1c4/0xa32 phys=d8a20000 ioremap 0xffffc20000c61000-0xffffc20000c6a000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20000c6a000-0xffffc20000c73000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20000c73000-0xffffc20000c7c000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20000c7c000-0xffffc20000c7f000 12288 e1000e_setup_tx_resources+0x29/0xbe pages=2 vmalloc 0xffffc20000c80000-0xffffc20001481000 8392704 pci_mmcfg_arch_init+0x90/0x118 phys=e0000000 ioremap 0xffffc20001481000-0xffffc20001682000 2101248 alloc_large_system_hash+0x127/0x246 pages=512 vmalloc 0xffffc20001682000-0xffffc20001e83000 8392704 alloc_large_system_hash+0x127/0x246 pages=2048 vmalloc vpages 0xffffc20001e83000-0xffffc20002204000 3674112 alloc_large_system_hash+0x127/0x246 pages=896 vmalloc vpages 0xffffc20002204000-0xffffc2000220d000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc2000220d000-0xffffc20002216000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20002216000-0xffffc2000221f000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc2000221f000-0xffffc20002228000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20002228000-0xffffc20002231000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20002231000-0xffffc20002234000 12288 e1000e_setup_rx_resources+0x35/0x122 pages=2 vmalloc 0xffffc20002240000-0xffffc20002261000 135168 e1000_probe+0x1c4/0xa32 phys=d8a60000 ioremap 0xffffc20002261000-0xffffc2000270c000 4894720 sys_swapon+0x509/0xa15 pages=1194 vmalloc vpages 0xffffffffa0000000-0xffffffffa0022000 139264 module_alloc+0x4f/0x55 pages=33 vmalloc 0xffffffffa0022000-0xffffffffa0029000 28672 module_alloc+0x4f/0x55 pages=6 vmalloc 0xffffffffa002b000-0xffffffffa0034000 36864 module_alloc+0x4f/0x55 pages=8 vmalloc 0xffffffffa0034000-0xffffffffa003d000 36864 module_alloc+0x4f/0x55 pages=8 vmalloc 0xffffffffa003d000-0xffffffffa0049000 49152 module_alloc+0x4f/0x55 pages=11 vmalloc 0xffffffffa0049000-0xffffffffa0050000 28672 module_alloc+0x4f/0x55 pages=6 vmalloc [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Christoph Lameter <clameter@sgi.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* vmalloc: show vmalloced areas via /proc/vmallocinfoChristoph Lameter2008-04-28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Implement a new proc file that allows the display of the currently allocated vmalloc memory. It allows to see the users of vmalloc. That is important if vmalloc space is scarce (i386 for example). And it's going to be important for the compound page fallback to vmalloc. Many of the current users can be switched to use compound pages with fallback. This means that the number of users of vmalloc is reduced and page tables no longer necessary to access the memory. /proc/vmallocinfo allows to review how that reduction occurs. If memory becomes fragmented and larger order allocations are no longer possible then /proc/vmallocinfo allows to see which compound page allocations fell back to virtual compound pages. That is important for new users of virtual compound pages. Such as order 1 stack allocation etc that may fallback to virtual compound pages in the future. /proc/vmallocinfo permissions are made readable-only-by-root to avoid possible information leakage. [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: CONFIG_MMU=n build fix] Signed-off-by: Christoph Lameter <clameter@sgi.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* vmalloc: add const to void* parametersChristoph Lameter2008-02-05
| | | | | | | | | | Make vmalloc functions work the same way as kfree() and friends that take a const void * argument. [akpm@linux-foundation.org: fix consts, coding-style] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* i386: fix iounmap's use of vm_struct's size fieldJeremy Fitzhardinge2007-07-21
| | | | | | | | | | | | | | | | | | | | | | | | get_vm_area always returns an area with an adjacent guard page. That guard page is included in vm_struct.size. iounmap uses vm_struct.size to determine how much address space needs to have change_page_attr applied to it, which will BUG if applied to the guard page. This patch adds a helper function - get_vm_area_size() in linux/vmalloc.h - to return the actual size of a vm area, and uses it to make iounmap do the right thing. There are probably other places which should be using get_vm_area_size(). Thanks to Dave Young <hidave.darkstar@gmail.com> for debugging the problem. [ Andi, it wasn't clear to me whether x86_64 needs the same fix. ] Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com> Cc: Dave Young <hidave.darkstar@gmail.com> Cc: Chuck Ebbert <cebbert@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Allocate and free vmalloc areasJeremy Fitzhardinge2007-07-18
| | | | | | | | | | | | | | | Allocate/release a chunk of vmalloc address space: alloc_vm_area reserves a chunk of address space, and makes sure all the pagetables are constructed for that address range - but no pages. free_vm_area releases the address space range. Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com> Signed-off-by: Ian Pratt <ian.pratt@xensource.com> Signed-off-by: Christian Limpach <Christian.Limpach@cl.cam.ac.uk> Signed-off-by: Chris Wright <chrisw@sous-sol.org> Cc: "Jan Beulich" <JBeulich@novell.com> Cc: "Andi Kleen" <ak@muc.de>
* [POWERPC] unmap_vm_area becomes unmap_kernel_range for the publicBenjamin Herrenschmidt2007-06-14
| | | | | | | | | | | | | | | | This makes unmap_vm_area static and a wrapper around a new exported unmap_kernel_range that takes an explicit range instead of a vm_area struct. This makes it more versatile for code that wants to play with kernel page tables outside of the standard vmalloc area. (One example is some rework of the PowerPC PCI IO space mapping code that depends on that patch and removes some code duplication and horrible abuse of forged struct vm_struct). Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Paul Mackerras <paulus@samba.org>
* move die notifier handling to common codeChristoph Hellwig2007-05-08
| | | | | | | | | | | | | | | | | | | | | | | This patch moves the die notifier handling to common code. Previous various architectures had exactly the same code for it. Note that the new code is compiled unconditionally, this should be understood as an appel to the other architecture maintainer to implement support for it aswell (aka sprinkling a notify_die or two in the proper place) arm had a notifiy_die that did something totally different, I renamed it to arm_notify_die as part of the patch and made it static to the file it's declared and used at. avr32 used to pass slightly less information through this interface and I brought it into line with the other architectures. [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: fix vmalloc_sync_all bustage] [bryan.wu@analog.com: fix vmalloc_sync_all in nommu] Signed-off-by: Christoph Hellwig <hch@lst.de> Cc: <linux-arch@vger.kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* [PATCH] vmalloc: optimization, cleanup, bugfixesEric Dumazet2006-11-13
| | | | | | | | | | | | | | | | | - reorder 'struct vm_struct' to speedup lookups on CPUS with small cache lines. The fields 'next,addr,size' should be now in the same cache line, to speedup lookups. - One minor cleanup in __get_vm_area_node() - Bugfixes in vmalloc_user() and vmalloc_32_user() NULL returns from __vmalloc() and __find_vm_area() were not tested. [akpm@osdl.org: remove redundant BUG_ONs] Signed-off-by: Eric Dumazet <dada1@cosmosbay.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] __vmalloc with GFP_ATOMIC causes 'sleeping from invalid context'Giridhar Pemmasani2006-10-28
| | | | | | | | | | | If __vmalloc is called to allocate memory with GFP_ATOMIC in atomic context, the chain of calls results in __get_vm_area_node allocating memory for vm_struct with GFP_KERNEL, causing the 'sleeping from invalid context' warning. This patch fixes it by passing the gfp flags along so __get_vm_area_node allocates memory for vm_struct with the same flags. Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] Mark __remove_vm_area() staticRolf Eike Beer2006-09-27
| | | | | | | | | The function is exported but not used from anywhere else. It's also marked as "not for driver use" so noone out there should really care. Signed-off-by: Rolf Eike Beer <eike-kernel@sf-tec.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] mm/: make functions staticAdrian Bunk2006-09-26
| | | | | | | | | | | This patch makes the following needlessly global functions static: - slab.c: kmem_find_general_cachep() - swap.c: __page_cache_release() - vmalloc.c: __vmalloc_node() Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] mm: fix oom roll-back of __vmalloc_area_nodeJan Kiszka2006-07-15
| | | | | | | | | | __vunmap must not rely on area->nr_pages when picking the release methode for area->pages. It may be too small when __vmalloc_area_node failed early due to lacking memory. Instead, use a flag in vmstruct to differentiate. Signed-off-by: Jan Kiszka <jan.kiszka@web.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] mm: introduce remap_vmalloc_range()Nick Piggin2006-06-23
| | | | | | | | | Add remap_vmalloc_range, vmalloc_user, and vmalloc_32_user so that drivers can have a nice interface for remapping vmalloc memory. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] vmalloc_nodeChristoph Lameter2005-10-30
| | | | | | | | | | | | | | | This patch adds vmalloc_node(size, node) -> Allocate necessary memory on the specified node and get_vm_area_node(size, flags, node) and the other functions that it depends on. Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] gfp flags annotations - part 1Al Viro2005-10-08
| | | | | | | | | | | | - added typedef unsigned int __nocast gfp_t; - replaced __nocast uses for gfp flags with gfp_t - it gives exactly the same warnings as far as sparse is concerned, doesn't change generated code (from gcc point of view we replaced unsigned int with typedef) and documents what's going on far better. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] arm: allow for arch-specific IOREMAP_MAX_ORDERDeepak Saxena2005-09-05
| | | | | | | | | | | | | | | | | | | | | | | | | | | Version 6 of the ARM architecture introduces the concept of 16MB pages (supersections) and 36-bit (40-bit actually, but nobody uses this) physical addresses. 36-bit addressed memory and I/O and ARMv6 can only be mapped using supersections and the requirement on these is that both virtual and physical addresses be 16MB aligned. In trying to add support for ioremap() of 36-bit I/O, we run into the issue that get_vm_area() allows for a maximum of 512K alignment via the IOREMAP_MAX_ORDER constant. To work around this, we can: - Allocate a larger VM area than needed (size + (1ul << IOREMAP_MAX_ORDER)) and then align the pointer ourselves, but this ends up with 512K of wasted VM per ioremap(). - Provide a new __get_vm_area_aligned() API and make __get_vm_area() sit on top of this. I did this and it works but I don't like the idea adding another VM API just for this one case. - My preferred solution which is to allow the architecture to override the IOREMAP_MAX_ORDER constant with it's own version. Signed-off-by: Deepak Saxena <dsaxena@plexity.net> Cc: Russell King <rmk@arm.linux.org.uk> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] x86_64: Fixed guard page handling again in iounmapAndi Kleen2005-05-20
| | | | | | | | | | | | | | Caused oopses again. Also fix potential mismatch in checking if change_page_attr was needed. To do it without races I needed to change mm/vmalloc.c to export a __remove_vm_area that does not take vmlist lock. Noticed by Terence Ripperda and based on a patch of his. Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* Linux-2.6.12-rc2v2.6.12-rc2Linus Torvalds2005-04-16
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!