aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/timex.h
Commit message (Expand)AuthorAge
* [PATCH] remove pps supportRoman Zippel2006-03-25
* [PATCH] Provide an interface for getting the current tick lengthPaul Mackerras2006-02-17
* [PATCH] NTP shift_right cleanupjohn stultz2005-10-30
* [PATCH] NTP: ntp-helper functionsjohn stultz2005-09-07
* Linux-2.6.12-rc2v2.6.12-rc2Linus Torvalds2005-04-16
f='#n214'>214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
/*
 * Front panel driver for Linux
 * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
 * connected to a parallel printer port.
 *
 * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
 * serial module compatible with Samsung's KS0074. The pins may be connected in
 * any combination, everything is programmable.
 *
 * The keypad consists in a matrix of push buttons connecting input pins to
 * data output pins or to the ground. The combinations have to be hard-coded
 * in the driver, though several profiles exist and adding new ones is easy.
 *
 * Several profiles are provided for commonly found LCD+keypad modules on the
 * market, such as those found in Nexcom's appliances.
 *
 * FIXME:
 *      - the initialization/deinitialization process is very dirty and should
 *        be rewritten. It may even be buggy.
 *
 * TODO:
 *	- document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
 *      - make the LCD a part of a virtual screen of Vx*Vy
 *	- make the inputs list smp-safe
 *      - change the keyboard to a double mapping : signals -> key_id -> values
 *        so that applications can change values without knowing signals
 *
 */

#include <linux/module.h>

#include <linux/types.h>
#include <linux/errno.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/smp_lock.h>
#include <linux/interrupt.h>
#include <linux/miscdevice.h>
#include <linux/slab.h>
#include <linux/ioport.h>
#include <linux/fcntl.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/ctype.h>
#include <linux/parport.h>
#include <linux/version.h>
#include <linux/list.h>
#include <linux/notifier.h>
#include <linux/reboot.h>
#include <linux/utsrelease.h>

#include <linux/io.h>
#include <asm/uaccess.h>
#include <asm/system.h>

#define LCD_MINOR		156
#define KEYPAD_MINOR		185

#define PANEL_VERSION		"0.9.5"

#define LCD_MAXBYTES		256	/* max burst write */

#define KEYPAD_BUFFER		64
#define INPUT_POLL_TIME		(HZ/50)	/* poll the keyboard this every second */
#define KEYPAD_REP_START	(10)	/* a key starts to repeat after this times INPUT_POLL_TIME */
#define KEYPAD_REP_DELAY	(2)	/* a key repeats this times INPUT_POLL_TIME */

#define FLASH_LIGHT_TEMPO	(200)	/* keep the light on this times INPUT_POLL_TIME for each flash */

/* converts an r_str() input to an active high, bits string : 000BAOSE */
#define PNL_PINPUT(a)		((((unsigned char)(a)) ^ 0x7F) >> 3)

#define PNL_PBUSY		0x80	/* inverted input, active low */
#define PNL_PACK		0x40	/* direct input, active low */
#define PNL_POUTPA		0x20	/* direct input, active high */
#define PNL_PSELECD		0x10	/* direct input, active high */
#define PNL_PERRORP		0x08	/* direct input, active low */

#define PNL_PBIDIR		0x20	/* bi-directional ports */
#define PNL_PINTEN		0x10	/* high to read data in or-ed with data out */
#define PNL_PSELECP		0x08	/* inverted output, active low */
#define PNL_PINITP		0x04	/* direct output, active low */
#define PNL_PAUTOLF		0x02	/* inverted output, active low */
#define PNL_PSTROBE		0x01	/* inverted output */

#define PNL_PD0			0x01
#define PNL_PD1			0x02
#define PNL_PD2			0x04
#define PNL_PD3			0x08
#define PNL_PD4			0x10
#define PNL_PD5			0x20
#define PNL_PD6			0x40
#define PNL_PD7			0x80

#define PIN_NONE		0
#define PIN_STROBE		1
#define PIN_D0			2
#define PIN_D1			3
#define PIN_D2			4
#define PIN_D3			5
#define PIN_D4			6
#define PIN_D5			7
#define PIN_D6			8
#define PIN_D7			9
#define PIN_AUTOLF		14
#define PIN_INITP		16
#define PIN_SELECP		17
#define PIN_NOT_SET		127

#define LCD_FLAG_S		0x0001
#define LCD_FLAG_ID		0x0002
#define LCD_FLAG_B		0x0004	/* blink on */
#define LCD_FLAG_C		0x0008	/* cursor on */
#define LCD_FLAG_D		0x0010	/* display on */
#define LCD_FLAG_F		0x0020	/* large font mode */
#define LCD_FLAG_N		0x0040	/* 2-rows mode */
#define LCD_FLAG_L		0x0080	/* backlight enabled */

#define LCD_ESCAPE_LEN		24	/* 24 chars max for an LCD escape command */
#define LCD_ESCAPE_CHAR	27	/* use char 27 for escape command */

/* macros to simplify use of the parallel port */
#define r_ctr(x)        (parport_read_control((x)->port))
#define r_dtr(x)        (parport_read_data((x)->port))
#define r_str(x)        (parport_read_status((x)->port))
#define w_ctr(x, y)     do { parport_write_control((x)->port, (y)); } while (0)
#define w_dtr(x, y)     do { parport_write_data((x)->port, (y)); } while (0)

/* this defines which bits are to be used and which ones to be ignored */
static __u8 scan_mask_o;	/* logical or of the output bits involved in the scan matrix */
static __u8 scan_mask_i;	/* logical or of the input bits involved in the scan matrix */

typedef __u64 pmask_t;

enum input_type {
	INPUT_TYPE_STD,
	INPUT_TYPE_KBD,
};

enum input_state {
	INPUT_ST_LOW,
	INPUT_ST_RISING,
	INPUT_ST_HIGH,
	INPUT_ST_FALLING,
};

struct logical_input {
	struct list_head list;
	pmask_t mask;
	pmask_t value;
	enum input_type type;
	enum input_state state;
	__u8 rise_time, fall_time;
	__u8 rise_timer, fall_timer, high_timer;

	union {
		struct {	/* this structure is valid when type == INPUT_TYPE_STD */
			void (*press_fct) (int);
			void (*release_fct) (int);
			int press_data;
			int release_data;
		} std;
		struct {	/* this structure is valid when type == INPUT_TYPE_KBD */
			/* strings can be full-length (ie. non null-terminated) */
			char press_str[sizeof(void *) + sizeof(int)];
			char repeat_str[sizeof(void *) + sizeof(int)];
			char release_str[sizeof(void *) + sizeof(int)];
		} kbd;
	} u;
};

LIST_HEAD(logical_inputs);	/* list of all defined logical inputs */

/* physical contacts history
 * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
 * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
 * corresponds to the ground.
 * Within each group, bits are stored in the same order as read on the port :
 * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
 * So, each __u64 (or pmask_t) is represented like this :
 * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
 * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
 */
static pmask_t phys_read;	/* what has just been read from the I/O ports */
static pmask_t phys_read_prev;	/* previous phys_read */
static pmask_t phys_curr;	/* stabilized phys_read (phys_read|phys_read_prev) */
static pmask_t phys_prev;	/* previous phys_curr */
static char inputs_stable;	/* 0 means that at least one logical signal needs be computed */

/* these variables are specific to the keypad */
static char keypad_buffer[KEYPAD_BUFFER];
static int keypad_buflen;
static int keypad_start;
static char keypressed;
static wait_queue_head_t keypad_read_wait;

/* lcd-specific variables */
static unsigned long int lcd_flags;	/* contains the LCD config state */
static unsigned long int lcd_addr_x;	/* contains the LCD X offset */
static unsigned long int lcd_addr_y;	/* contains the LCD Y offset */
static char lcd_escape[LCD_ESCAPE_LEN + 1];	/* current escape sequence, 0 terminated */
static int lcd_escape_len = -1;	/* not in escape state. >=0 = escape cmd len */

/*
 * Bit masks to convert LCD signals to parallel port outputs.
 * _d_ are values for data port, _c_ are for control port.
 * [0] = signal OFF, [1] = signal ON, [2] = mask
 */
#define BIT_CLR		0
#define BIT_SET		1
#define BIT_MSK		2
#define BIT_STATES	3
/*
 * one entry for each bit on the LCD
 */
#define LCD_BIT_E	0
#define LCD_BIT_RS	1
#define LCD_BIT_RW	2
#define LCD_BIT_BL	3
#define LCD_BIT_CL	4
#define LCD_BIT_DA	5
#define LCD_BITS	6

/*
 * each bit can be either connected to a DATA or CTRL port
 */
#define LCD_PORT_C	0
#define LCD_PORT_D	1
#define LCD_PORTS	2

static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];

/*
 * LCD protocols
 */
#define LCD_PROTO_PARALLEL      0
#define LCD_PROTO_SERIAL        1

/*
 * LCD character sets
 */
#define LCD_CHARSET_NORMAL      0
#define LCD_CHARSET_KS0074      1

/*
 * LCD types
 */
#define LCD_TYPE_NONE		0
#define LCD_TYPE_OLD		1
#define LCD_TYPE_KS0074		2
#define LCD_TYPE_HANTRONIX	3
#define LCD_TYPE_NEXCOM		4
#define LCD_TYPE_CUSTOM		5

/*
 * keypad types
 */
#define KEYPAD_TYPE_NONE	0
#define KEYPAD_TYPE_OLD		1
#define KEYPAD_TYPE_NEW		2
#define KEYPAD_TYPE_NEXCOM	3

/*
 * panel profiles
 */
#define PANEL_PROFILE_CUSTOM	0
#define PANEL_PROFILE_OLD	1
#define PANEL_PROFILE_NEW	2
#define PANEL_PROFILE_HANTRONIX	3
#define PANEL_PROFILE_NEXCOM	4
#define PANEL_PROFILE_LARGE	5

/*
 * Construct custom config from the kernel's configuration
 */
#define DEFAULT_PROFILE         PANEL_PROFILE_LARGE
#define DEFAULT_PARPORT         0
#define DEFAULT_LCD             LCD_TYPE_OLD
#define DEFAULT_KEYPAD          KEYPAD_TYPE_OLD
#define DEFAULT_LCD_WIDTH       40
#define DEFAULT_LCD_BWIDTH      40
#define DEFAULT_LCD_HWIDTH      64
#define DEFAULT_LCD_HEIGHT      2
#define DEFAULT_LCD_PROTO       LCD_PROTO_PARALLEL

#define DEFAULT_LCD_PIN_E       PIN_AUTOLF
#define DEFAULT_LCD_PIN_RS      PIN_SELECP
#define DEFAULT_LCD_PIN_RW      PIN_INITP
#define DEFAULT_LCD_PIN_SCL     PIN_STROBE
#define DEFAULT_LCD_PIN_SDA     PIN_D0
#define DEFAULT_LCD_PIN_BL      PIN_NOT_SET
#define DEFAULT_LCD_CHARSET     LCD_CHARSET_NORMAL

#ifdef CONFIG_PANEL_PROFILE
#undef DEFAULT_PROFILE
#define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
#endif

#ifdef CONFIG_PANEL_PARPORT
#undef DEFAULT_PARPORT
#define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
#endif

#if DEFAULT_PROFILE == 0	/* custom */
#ifdef CONFIG_PANEL_KEYPAD
#undef DEFAULT_KEYPAD
#define DEFAULT_KEYPAD CONFIG_PANEL_KEYPAD
#endif

#ifdef CONFIG_PANEL_LCD
#undef DEFAULT_LCD
#define DEFAULT_LCD CONFIG_PANEL_LCD
#endif

#ifdef CONFIG_PANEL_LCD_WIDTH
#undef DEFAULT_LCD_WIDTH
#define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
#endif

#ifdef CONFIG_PANEL_LCD_BWIDTH
#undef DEFAULT_LCD_BWIDTH
#define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
#endif

#ifdef CONFIG_PANEL_LCD_HWIDTH
#undef DEFAULT_LCD_HWIDTH
#define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
#endif

#ifdef CONFIG_PANEL_LCD_HEIGHT
#undef DEFAULT_LCD_HEIGHT
#define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
#endif

#ifdef CONFIG_PANEL_LCD_PROTO
#undef DEFAULT_LCD_PROTO
#define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
#endif

#ifdef CONFIG_PANEL_LCD_PIN_E
#undef DEFAULT_LCD_PIN_E
#define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
#endif

#ifdef CONFIG_PANEL_LCD_PIN_RS
#undef DEFAULT_LCD_PIN_RS
#define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
#endif

#ifdef CONFIG_PANEL_LCD_PIN_RW
#undef DEFAULT_LCD_PIN_RW
#define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
#endif

#ifdef CONFIG_PANEL_LCD_PIN_SCL
#undef DEFAULT_LCD_PIN_SCL
#define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
#endif

#ifdef CONFIG_PANEL_LCD_PIN_SDA
#undef DEFAULT_LCD_PIN_SDA
#define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
#endif

#ifdef CONFIG_PANEL_LCD_PIN_BL
#undef DEFAULT_LCD_PIN_BL
#define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
#endif

#ifdef CONFIG_PANEL_LCD_CHARSET
#undef DEFAULT_LCD_CHARSET
#define DEFAULT_LCD_CHARSET
#endif

#endif /* DEFAULT_PROFILE == 0 */

/* global variables */
static int keypad_open_cnt;	/* #times opened */
static int lcd_open_cnt;	/* #times opened */
static struct pardevice *pprt;

static int lcd_initialized;
static int keypad_initialized;

static int light_tempo;

static char lcd_must_clear;
static char lcd_left_shift;
static char init_in_progress;

static void (*lcd_write_cmd) (int);
static void (*lcd_write_data) (int);
static void (*lcd_clear_fast) (void);

static DEFINE_SPINLOCK(pprt_lock);
static struct timer_list scan_timer;

MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");

static int parport = -1;
module_param(parport, int, 0000);
MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");

static int lcd_height = -1;
module_param(lcd_height, int, 0000);
MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");

static int lcd_width = -1;
module_param(lcd_width, int, 0000);
MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");

static int lcd_bwidth = -1;	/* internal buffer width (usually 40) */
module_param(lcd_bwidth, int, 0000);
MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");

static int lcd_hwidth = -1;	/* hardware buffer width (usually 64) */
module_param(lcd_hwidth, int, 0000);
MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");

static int lcd_enabled = -1;
module_param(lcd_enabled, int, 0000);
MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");

static int keypad_enabled = -1;
module_param(keypad_enabled, int, 0000);
MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");

static int lcd_type = -1;
module_param(lcd_type, int, 0000);
MODULE_PARM_DESC(lcd_type,
		 "LCD type: 0=none, 1=old //, 2=serial ks0074, 3=hantronix //, 4=nexcom //, 5=compiled-in");

static int lcd_proto = -1;
module_param(lcd_proto, int, 0000);
MODULE_PARM_DESC(lcd_proto, "LCD communication: 0=parallel (//), 1=serial");

static int lcd_charset = -1;
module_param(lcd_charset, int, 0000);
MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");

static int keypad_type = -1;
module_param(keypad_type, int, 0000);
MODULE_PARM_DESC(keypad_type,
		 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");

static int profile = DEFAULT_PROFILE;
module_param(profile, int, 0000);
MODULE_PARM_DESC(profile,
		 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; 4=16x2 nexcom; default=40x2, old kp");

/*
 * These are the parallel port pins the LCD control signals are connected to.
 * Set this to 0 if the signal is not used. Set it to its opposite value
 * (negative) if the signal is negated. -MAXINT is used to indicate that the
 * pin has not been explicitly specified.
 *
 * WARNING! no check will be performed about collisions with keypad !
 */

static int lcd_e_pin  = PIN_NOT_SET;
module_param(lcd_e_pin, int, 0000);
MODULE_PARM_DESC(lcd_e_pin,
		 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");

static int lcd_rs_pin = PIN_NOT_SET;
module_param(lcd_rs_pin, int, 0000);
MODULE_PARM_DESC(lcd_rs_pin,
		 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");

static int lcd_rw_pin = PIN_NOT_SET;
module_param(lcd_rw_pin, int, 0000);
MODULE_PARM_DESC(lcd_rw_pin,
		 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");

static int lcd_bl_pin = PIN_NOT_SET;
module_param(lcd_bl_pin, int, 0000);
MODULE_PARM_DESC(lcd_bl_pin,
		 "# of the // port pin connected to LCD backlight, with polarity (-17..17)");

static int lcd_da_pin = PIN_NOT_SET;
module_param(lcd_da_pin, int, 0000);
MODULE_PARM_DESC(lcd_da_pin,
		 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");

static int lcd_cl_pin = PIN_NOT_SET;
module_param(lcd_cl_pin, int, 0000);
MODULE_PARM_DESC(lcd_cl_pin,
		 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");

static unsigned char *lcd_char_conv;

/* for some LCD drivers (ks0074) we need a charset conversion table. */
static unsigned char lcd_char_conv_ks0074[256] = {
	/*          0|8   1|9   2|A   3|B   4|C   5|D   6|E   7|F */
	/* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
	/* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
	/* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
	/* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
	/* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
	/* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
	/* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
	/* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
	/* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
	/* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
	/* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
	/* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
	/* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
	/* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
	/* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
	/* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
	/* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
	/* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
	/* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
	/* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
	/* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
	/* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
	/* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
	/* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
	/* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
	/* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
	/* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
	/* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
	/* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
	/* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
	/* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
	/* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
};

char old_keypad_profile[][4][9] = {
	{"S0", "Left\n", "Left\n", ""},
	{"S1", "Down\n", "Down\n", ""},
	{"S2", "Up\n", "Up\n", ""},
	{"S3", "Right\n", "Right\n", ""},
	{"S4", "Esc\n", "Esc\n", ""},
	{"S5", "Ret\n", "Ret\n", ""},
	{"", "", "", ""}
};

/* signals, press, repeat, release */
char new_keypad_profile[][4][9] = {
	{"S0", "Left\n", "Left\n", ""},
	{"S1", "Down\n", "Down\n", ""},
	{"S2", "Up\n", "Up\n", ""},
	{"S3", "Right\n", "Right\n", ""},
	{"S4s5", "", "Esc\n", "Esc\n"},
	{"s4S5", "", "Ret\n", "Ret\n"},
	{"S4S5", "Help\n", "", ""},
	/* add new signals above this line */
	{"", "", "", ""}
};

/* signals, press, repeat, release */
char nexcom_keypad_profile[][4][9] = {
	{"a-p-e-", "Down\n", "Down\n", ""},
	{"a-p-E-", "Ret\n", "Ret\n", ""},
	{"a-P-E-", "Esc\n", "Esc\n", ""},
	{"a-P-e-", "Up\n", "Up\n", ""},
	/* add new signals above this line */
	{"", "", "", ""}
};

static char (*keypad_profile)[4][9] = old_keypad_profile;

/* FIXME: this should be converted to a bit array containing signals states */
static struct {
	unsigned char e;	/* parallel LCD E   (data latch on falling edge) */
	unsigned char rs;	/* parallel LCD RS  (0 = cmd, 1 = data) */
	unsigned char rw;	/* parallel LCD R/W (0 = W, 1 = R) */
	unsigned char bl;	/* parallel LCD backlight (0 = off, 1 = on) */
	unsigned char cl;	/* serial LCD clock (latch on rising edge) */
	unsigned char da;	/* serial LCD data */
} bits;

static void init_scan_timer(void);

/* sets data port bits according to current signals values */
static int set_data_bits(void)
{
	int val, bit;

	val = r_dtr(pprt);
	for (bit = 0; bit < LCD_BITS; bit++)
		val &= lcd_bits[LCD_PORT_D][bit][BIT_MSK];

	val |= lcd_bits[LCD_PORT_D][LCD_BIT_E][bits.e]
	    | lcd_bits[LCD_PORT_D][LCD_BIT_RS][bits.rs]
	    | lcd_bits[LCD_PORT_D][LCD_BIT_RW][bits.rw]
	    | lcd_bits[LCD_PORT_D][LCD_BIT_BL][bits.bl]
	    | lcd_bits[LCD_PORT_D][LCD_BIT_CL][bits.cl]
	    | lcd_bits[LCD_PORT_D][LCD_BIT_DA][bits.da];

	w_dtr(pprt, val);
	return val;
}

/* sets ctrl port bits according to current signals values */
static int set_ctrl_bits(void)
{
	int val, bit;

	val = r_ctr(pprt);
	for (bit = 0; bit < LCD_BITS; bit++)
		val &= lcd_bits[LCD_PORT_C][bit][BIT_MSK];

	val |= lcd_bits[LCD_PORT_C][LCD_BIT_E][bits.e]
	    | lcd_bits[LCD_PORT_C][LCD_BIT_RS][bits.rs]
	    | lcd_bits[LCD_PORT_C][LCD_BIT_RW][bits.rw]
	    | lcd_bits[LCD_PORT_C][LCD_BIT_BL][bits.bl]
	    | lcd_bits[LCD_PORT_C][LCD_BIT_CL][bits.cl]
	    | lcd_bits[LCD_PORT_C][LCD_BIT_DA][bits.da];

	w_ctr(pprt, val);
	return val;
}

/* sets ctrl & data port bits according to current signals values */
static void set_bits(void)
{
	set_data_bits();
	set_ctrl_bits();
}

/*
 * Converts a parallel port pin (from -25 to 25) to data and control ports
 * masks, and data and control port bits. The signal will be considered
 * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
 *
 * Result will be used this way :
 *   out(dport, in(dport) & d_val[2] | d_val[signal_state])
 *   out(cport, in(cport) & c_val[2] | c_val[signal_state])
 */
void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
{
	int d_bit, c_bit, inv;

	d_val[0] = c_val[0] = d_val[1] = c_val[1] = 0;
	d_val[2] = c_val[2] = 0xFF;

	if (pin == 0)
		return;

	inv = (pin < 0);
	if (inv)
		pin = -pin;

	d_bit = c_bit = 0;

	switch (pin) {
	case PIN_STROBE:	/* strobe, inverted */
		c_bit = PNL_PSTROBE;
		inv = !inv;
		break;
	case PIN_D0...PIN_D7:	/* D0 - D7 = 2 - 9 */
		d_bit = 1 << (pin - 2);
		break;
	case PIN_AUTOLF:	/* autofeed, inverted */
		c_bit = PNL_PAUTOLF;
		inv = !inv;
		break;
	case PIN_INITP:	/* init, direct */
		c_bit = PNL_PINITP;
		break;
	case PIN_SELECP:	/* select_in, inverted */
		c_bit = PNL_PSELECP;
		inv = !inv;
		break;
	default:		/* unknown pin, ignore */
		break;
	}

	if (c_bit) {
		c_val[2] &= ~c_bit;
		c_val[!inv] = c_bit;
	} else if (d_bit) {
		d_val[2] &= ~d_bit;
		d_val[!inv] = d_bit;
	}
}

/* sleeps that many milliseconds with a reschedule */
static void long_sleep(int ms)
{

	if (in_interrupt())
		mdelay(ms);
	else {
		current->state = TASK_INTERRUPTIBLE;
		schedule_timeout((ms * HZ + 999) / 1000);
	}
}

/* send a serial byte to the LCD panel. The caller is responsible for locking if needed. */
static void lcd_send_serial(int byte)
{
	int bit;

	/* the data bit is set on D0, and the clock on STROBE.
	 * LCD reads D0 on STROBE's rising edge.
	 */
	for (bit = 0; bit < 8; bit++) {
		bits.cl = BIT_CLR;	/* CLK low */
		set_bits();
		bits.da = byte & 1;
		set_bits();
		udelay(2);	/* maintain the data during 2 us before CLK up */
		bits.cl = BIT_SET;	/* CLK high */
		set_bits();
		udelay(1);	/* maintain the strobe during 1 us */
		byte >>= 1;
	}
}

/* turn the backlight on or off */
static void lcd_backlight(int on)
{
	if (lcd_bl_pin == PIN_NONE)
		return;

	/* The backlight is activated by seting the AUTOFEED line to +5V  */
	spin_lock(&pprt_lock);
	bits.bl = on;
	set_bits();
	spin_unlock(&pprt_lock);
}

/* send a command to the LCD panel in serial mode */
static void lcd_write_cmd_s(int cmd)
{
	spin_lock(&pprt_lock);
	lcd_send_serial(0x1F);	/* R/W=W, RS=0 */
	lcd_send_serial(cmd & 0x0F);
	lcd_send_serial((cmd >> 4) & 0x0F);
	udelay(40);		/* the shortest command takes at least 40 us */
	spin_unlock(&pprt_lock);
}

/* send data to the LCD panel in serial mode */
static void lcd_write_data_s(int data)
{
	spin_lock(&pprt_lock);
	lcd_send_serial(0x5F);	/* R/W=W, RS=1 */
	lcd_send_serial(data & 0x0F);
	lcd_send_serial((data >> 4) & 0x0F);
	udelay(40);		/* the shortest data takes at least 40 us */
	spin_unlock(&pprt_lock);
}

/* send a command to the LCD panel in 8 bits parallel mode */
static void lcd_write_cmd_p8(int cmd)
{
	spin_lock(&pprt_lock);
	/* present the data to the data port */
	w_dtr(pprt, cmd);
	udelay(20);		/* maintain the data during 20 us before the strobe */

	bits.e = BIT_SET;
	bits.rs = BIT_CLR;
	bits.rw = BIT_CLR;
	set_ctrl_bits();

	udelay(40);		/* maintain the strobe during 40 us */

	bits.e = BIT_CLR;
	set_ctrl_bits();

	udelay(120);		/* the shortest command takes at least 120 us */
	spin_unlock(&pprt_lock);
}

/* send data to the LCD panel in 8 bits parallel mode */
static void lcd_write_data_p8(int data)
{
	spin_lock(&pprt_lock);
	/* present the data to the data port */
	w_dtr(pprt, data);
	udelay(20);		/* maintain the data during 20 us before the strobe */

	bits.e = BIT_SET;
	bits.rs = BIT_SET;
	bits.rw = BIT_CLR;
	set_ctrl_bits();

	udelay(40);		/* maintain the strobe during 40 us */

	bits.e = BIT_CLR;
	set_ctrl_bits();

	udelay(45);		/* the shortest data takes at least 45 us */
	spin_unlock(&pprt_lock);
}

static void lcd_gotoxy(void)
{
	lcd_write_cmd(0x80	/* set DDRAM address */
		      | (lcd_addr_y ? lcd_hwidth : 0)
		      /* we force the cursor to stay at the end of the line if it wants to go farther */
		      | ((lcd_addr_x < lcd_bwidth) ? lcd_addr_x &
			 (lcd_hwidth - 1) : lcd_bwidth - 1));
}

static void lcd_print(char c)
{
	if (lcd_addr_x < lcd_bwidth) {
		if (lcd_char_conv != NULL)
			c = lcd_char_conv[(unsigned char)c];
		lcd_write_data(c);
		lcd_addr_x++;
	}
	/* prevents the cursor from wrapping onto the next line */
	if (lcd_addr_x == lcd_bwidth)
		lcd_gotoxy();
}

/* fills the display with spaces and resets X/Y */
static void lcd_clear_fast_s(void)
{
	int pos;
	lcd_addr_x = lcd_addr_y = 0;
	lcd_gotoxy();

	spin_lock(&pprt_lock);
	for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
		lcd_send_serial(0x5F);	/* R/W=W, RS=1 */
		lcd_send_serial(' ' & 0x0F);
		lcd_send_serial((' ' >> 4) & 0x0F);
		udelay(40);	/* the shortest data takes at least 40 us */
	}
	spin_unlock(&pprt_lock);

	lcd_addr_x = lcd_addr_y = 0;
	lcd_gotoxy();
}

/* fills the display with spaces and resets X/Y */
static void lcd_clear_fast_p8(void)
{
	int pos;
	lcd_addr_x = lcd_addr_y = 0;
	lcd_gotoxy();

	spin_lock(&pprt_lock);
	for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
		/* present the data to the data port */
		w_dtr(pprt, ' ');
		udelay(20);	/* maintain the data during 20 us before the strobe */

		bits.e = BIT_SET;
		bits.rs = BIT_SET;
		bits.rw = BIT_CLR;
		set_ctrl_bits();

		udelay(40);	/* maintain the strobe during 40 us */

		bits.e = BIT_CLR;
		set_ctrl_bits();

		udelay(45);	/* the shortest data takes at least 45 us */
	}
	spin_unlock(&pprt_lock);

	lcd_addr_x = lcd_addr_y = 0;
	lcd_gotoxy();
}

/* clears the display and resets X/Y */
static void lcd_clear_display(void)
{
	lcd_write_cmd(0x01);	/* clear display */
	lcd_addr_x = lcd_addr_y = 0;
	/* we must wait a few milliseconds (15) */
	long_sleep(15);
}

static void lcd_init_display(void)
{

	lcd_flags = ((lcd_height > 1) ? LCD_FLAG_N : 0)
	    | LCD_FLAG_D | LCD_FLAG_C | LCD_FLAG_B;

	long_sleep(20);		/* wait 20 ms after power-up for the paranoid */

	lcd_write_cmd(0x30);	/* 8bits, 1 line, small fonts */
	long_sleep(10);
	lcd_write_cmd(0x30);	/* 8bits, 1 line, small fonts */
	long_sleep(10);
	lcd_write_cmd(0x30);	/* 8bits, 1 line, small fonts */
	long_sleep(10);

	lcd_write_cmd(0x30	/* set font height and lines number */
		      | ((lcd_flags & LCD_FLAG_F) ? 4 : 0)
		      | ((lcd_flags & LCD_FLAG_N) ? 8 : 0)
	    );
	long_sleep(10);

	lcd_write_cmd(0x08);	/* display off, cursor off, blink off */
	long_sleep(10);

	lcd_write_cmd(0x08	/* set display mode */
		      | ((lcd_flags & LCD_FLAG_D) ? 4 : 0)
		      | ((lcd_flags & LCD_FLAG_C) ? 2 : 0)
		      | ((lcd_flags & LCD_FLAG_B) ? 1 : 0)
	    );

	lcd_backlight((lcd_flags & LCD_FLAG_L) ? 1 : 0);

	long_sleep(10);

	lcd_write_cmd(0x06);	/* entry mode set : increment, cursor shifting */

	lcd_clear_display();
}

/*
 * These are the file operation function for user access to /dev/lcd
 * This function can also be called from inside the kernel, by
 * setting file and ppos to NULL.
 *
 */

static ssize_t lcd_write(struct file *file,
			 const char *buf, size_t count, loff_t *ppos)
{

	const char *tmp = buf;
	char c;

	for (; count-- > 0; (ppos ? (*ppos)++ : 0), ++tmp) {
		if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
			schedule();	/* let's be a little nice with other processes that need some CPU */

		if (ppos == NULL && file == NULL)
			c = *tmp;	/* let's not use get_user() from the kernel ! */
		else if (get_user(c, tmp))
			return -EFAULT;

		/* first, we'll test if we're in escape mode */
		if ((c != '\n') && lcd_escape_len >= 0) {	/* yes, let's add this char to the buffer */
			lcd_escape[lcd_escape_len++] = c;
			lcd_escape[lcd_escape_len] = 0;
		} else {
			lcd_escape_len = -1;	/* aborts any previous escape sequence */

			switch (c) {
			case LCD_ESCAPE_CHAR:	/* start of an escape sequence */
				lcd_escape_len = 0;
				lcd_escape[lcd_escape_len] = 0;
				break;
			case '\b':	/* go back one char and clear it */
				if (lcd_addr_x > 0) {
					if (lcd_addr_x < lcd_bwidth)	/* check if we're not at the end of the line */
						lcd_write_cmd(0x10);	/* back one char */
					lcd_addr_x--;
				}
				lcd_write_data(' ');	/* replace with a space */
				lcd_write_cmd(0x10);	/* back one char again */
				break;
			case '\014':	/* quickly clear the display */
				lcd_clear_fast();
				break;
			case '\n':	/* flush the remainder of the current line and go to the
					   beginning of the next line */
				for (; lcd_addr_x < lcd_bwidth; lcd_addr_x++)
					lcd_write_data(' ');
				lcd_addr_x = 0;
				lcd_addr_y = (lcd_addr_y + 1) % lcd_height;
				lcd_gotoxy();
				break;
			case '\r':	/* go to the beginning of the same line */
				lcd_addr_x = 0;
				lcd_gotoxy();
				break;
			case '\t':	/* print a space instead of the tab */
				lcd_print(' ');
				break;
			default:	/* simply print this char */
				lcd_print(c);
				break;
			}
		}

		/* now we'll see if we're in an escape mode and if the current
		   escape sequence can be understood.
		 */
		if (lcd_escape_len >= 2) {	/* minimal length for an escape command */
			int processed = 0;	/* 1 means the command has been processed */

			if (!strcmp(lcd_escape, "[2J")) {	/* Clear the display */
				lcd_clear_fast();	/* clear display */
				processed = 1;
			} else if (!strcmp(lcd_escape, "[H")) {	/* Cursor to home */
				lcd_addr_x = lcd_addr_y = 0;
				lcd_gotoxy();
				processed = 1;
			}
			/* codes starting with ^[[L */
			else if ((lcd_escape_len >= 3) &&
				 (lcd_escape[0] == '[') && (lcd_escape[1] == 'L')) {	/* LCD special codes */

				char *esc = lcd_escape + 2;
				int oldflags = lcd_flags;

				/* check for display mode flags */
				switch (*esc) {
				case 'D':	/* Display ON */
					lcd_flags |= LCD_FLAG_D;
					processed = 1;
					break;
				case 'd':	/* Display OFF */
					lcd_flags &= ~LCD_FLAG_D;
					processed = 1;
					break;
				case 'C':	/* Cursor ON */
					lcd_flags |= LCD_FLAG_C;
					processed = 1;
					break;
				case 'c':	/* Cursor OFF */
					lcd_flags &= ~LCD_FLAG_C;
					processed = 1;
					break;
				case 'B':	/* Blink ON */
					lcd_flags |= LCD_FLAG_B;
					processed = 1;
					break;
				case 'b':	/* Blink OFF */
					lcd_flags &= ~LCD_FLAG_B;
					processed = 1;
					break;
				case '+':	/* Back light ON */
					lcd_flags |= LCD_FLAG_L;
					processed = 1;
					break;
				case '-':	/* Back light OFF */
					lcd_flags &= ~LCD_FLAG_L;
					processed = 1;
					break;
				case '*':	/* flash back light using the keypad timer */
					if (scan_timer.function != NULL) {
						if (light_tempo == 0
						    && ((lcd_flags & LCD_FLAG_L)
							== 0))
							lcd_backlight(1);
						light_tempo = FLASH_LIGHT_TEMPO;
					}
					processed = 1;
					break;
				case 'f':	/* Small Font */
					lcd_flags &= ~LCD_FLAG_F;
					processed = 1;
					break;
				case 'F':	/* Large Font */
					lcd_flags |= LCD_FLAG_F;
					processed = 1;
					break;
				case 'n':	/* One Line */
					lcd_flags &= ~LCD_FLAG_N;
					processed = 1;
					break;
				case 'N':	/* Two Lines */
					lcd_flags |= LCD_FLAG_N;
					break;

				case 'l':	/* Shift Cursor Left */
					if (lcd_addr_x > 0) {
						if (lcd_addr_x < lcd_bwidth)
							lcd_write_cmd(0x10);	/* back one char if not at end of line */
						lcd_addr_x--;
					}
					processed = 1;
					break;

				case 'r':	/* shift cursor right */
					if (lcd_addr_x < lcd_width) {
						if (lcd_addr_x < (lcd_bwidth - 1))
							lcd_write_cmd(0x14);	/* allow the cursor to pass the end of the line */
						lcd_addr_x++;
					}
					processed = 1;
					break;

				case 'L':	/* shift display left */
					lcd_left_shift++;
					lcd_write_cmd(0x18);
					processed = 1;
					break;

				case 'R':	/* shift display right */
					lcd_left_shift--;
					lcd_write_cmd(0x1C);
					processed = 1;
					break;

				case 'k':{	/* kill end of line */
						int x;
						for (x = lcd_addr_x; x < lcd_bwidth; x++)
							lcd_write_data(' ');
						lcd_gotoxy();	/* restore cursor position */
						processed = 1;
						break;
					}
				case 'I':	/* reinitialize display */
					lcd_init_display();
					lcd_left_shift = 0;
					processed = 1;
					break;

				case 'G':	/* Generator : LGcxxxxx...xx; */  {
						/* must have <c> between '0' and '7', representing the numerical
						 * ASCII code of the redefined character, and <xx...xx> a sequence
						 * of 16 hex digits representing 8 bytes for each character. Most
						 * LCDs will only use 5 lower bits of the 7 first bytes.
						 */

						unsigned char cgbytes[8];
						unsigned char cgaddr;
						int cgoffset;
						int shift;
						char value;
						int addr;

						if (strchr(esc, ';') == NULL)
							break;

						esc++;

						cgaddr = *(esc++) - '0';
						if (cgaddr > 7) {
							processed = 1;
							break;
						}

						cgoffset = 0;
						shift = 0;
						value = 0;
						while (*esc && cgoffset < 8) {
							shift ^= 4;
							if (*esc >= '0' && *esc <= '9')
								value |= (*esc - '0') << shift;
							else if (*esc >= 'A' && *esc <= 'Z')
								value |= (*esc - 'A' + 10) << shift;
							else if (*esc >= 'a' && *esc <= 'z')
								value |= (*esc - 'a' + 10) << shift;
							else {
								esc++;
								continue;
							}

							if (shift == 0) {
								cgbytes[cgoffset++] = value;
								value = 0;
							}

							esc++;
						}

						lcd_write_cmd(0x40 | (cgaddr * 8));
						for (addr = 0; addr < cgoffset; addr++)
							lcd_write_data(cgbytes[addr]);

						lcd_gotoxy();	/* ensures that we stop writing to CGRAM */
						processed = 1;
						break;
					}
				case 'x':	/* gotoxy : LxXXX[yYYY]; */
				case 'y':	/* gotoxy : LyYYY[xXXX]; */
					if (strchr(esc, ';') == NULL)
						break;

					while (*esc) {
						if (*esc == 'x') {
							esc++;
							lcd_addr_x = 0;
							while (isdigit(*esc)) {
								lcd_addr_x =
								    lcd_addr_x *
								    10 + (*esc -
									  '0');
								esc++;
							}
						} else if (*esc == 'y') {
							esc++;
							lcd_addr_y = 0;
							while (isdigit(*esc)) {
								lcd_addr_y =
								    lcd_addr_y *
								    10 + (*esc -
									  '0');
								esc++;
							}
						} else
							break;
					}

					lcd_gotoxy();
					processed = 1;
					break;
				}	/* end of switch */

				/* Check wether one flag was changed */
				if (oldflags != lcd_flags) {
					/* check wether one of B,C,D flags was changed */
					if ((oldflags ^ lcd_flags) &
					    (LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D))
						/* set display mode */
						lcd_write_cmd(0x08 |
							      ((lcd_flags & LCD_FLAG_D) ? 4 : 0) |
							      ((lcd_flags & LCD_FLAG_C) ? 2 : 0) |
							      ((lcd_flags & LCD_FLAG_B) ? 1 : 0));
					/* check wether one of F,N flags was changed */
					else if ((oldflags ^ lcd_flags) &
						 (LCD_FLAG_F | LCD_FLAG_N))
						lcd_write_cmd(0x30 |
							      ((lcd_flags & LCD_FLAG_F) ? 4 : 0) |
							      ((lcd_flags & LCD_FLAG_N) ? 8 : 0));
					/* check wether L flag was changed */
					else if ((oldflags ^ lcd_flags) &
						 (LCD_FLAG_L)) {
						if (lcd_flags & (LCD_FLAG_L))
							lcd_backlight(1);
						else if (light_tempo == 0)	/* switch off the light only when the tempo lighting is gone */
							lcd_backlight(0);
					}
				}
			}

			/* LCD special escape codes */
			/* flush the escape sequence if it's been processed or if it is
			   getting too long. */
			if (processed || (lcd_escape_len >= LCD_ESCAPE_LEN))
				lcd_escape_len = -1;
		}		/* escape codes */
	}

	return tmp - buf;
}

static int lcd_open(struct inode *inode, struct file *file)
{
	if (lcd_open_cnt)
		return -EBUSY;	/* open only once at a time */

	if (file->f_mode & FMODE_READ)	/* device is write-only */
		return -EPERM;

	if (lcd_must_clear) {
		lcd_clear_display();
		lcd_must_clear = 0;
	}
	lcd_open_cnt++;
	return 0;
}

static int lcd_release(struct inode *inode, struct file *file)
{
	lcd_open_cnt--;
	return 0;
}

static struct file_operations lcd_fops = {
	.write   = lcd_write,
	.open    = lcd_open,
	.release = lcd_release,
};

static struct miscdevice lcd_dev = {
	LCD_MINOR,
	"lcd",
	&lcd_fops
};

/* public function usable from the kernel for any purpose */
void panel_lcd_print(char *s)
{
	if (lcd_enabled && lcd_initialized)
		lcd_write(NULL, s, strlen(s), NULL);
}

/* initialize the LCD driver */
void lcd_init(void)
{
	switch (lcd_type) {
	case LCD_TYPE_OLD:	/* parallel mode, 8 bits */
		if (lcd_proto < 0)
			lcd_proto = LCD_PROTO_PARALLEL;
		if (lcd_charset < 0)
			lcd_charset = LCD_CHARSET_NORMAL;
		if (lcd_e_pin == PIN_NOT_SET)
			lcd_e_pin = PIN_STROBE;
		if (lcd_rs_pin == PIN_NOT_SET)
			lcd_rs_pin = PIN_AUTOLF;

		if (lcd_width < 0)
			lcd_width = 40;
		if (lcd_bwidth < 0)
			lcd_bwidth = 40;
		if (lcd_hwidth < 0)
			lcd_hwidth = 64;
		if (lcd_height < 0)
			lcd_height = 2;
		break;
	case LCD_TYPE_KS0074:	/* serial mode, ks0074 */
		if (lcd_proto < 0)
			lcd_proto = LCD_PROTO_SERIAL;
		if (lcd_charset < 0)
			lcd_charset = LCD_CHARSET_KS0074;
		if (lcd_bl_pin == PIN_NOT_SET)
			lcd_bl_pin = PIN_AUTOLF;
		if (lcd_cl_pin == PIN_NOT_SET)
			lcd_cl_pin = PIN_STROBE;
		if (lcd_da_pin == PIN_NOT_SET)
			lcd_da_pin = PIN_D0;

		if (lcd_width < 0)
			lcd_width = 16;
		if (lcd_bwidth < 0)
			lcd_bwidth = 40;
		if (lcd_hwidth < 0)
			lcd_hwidth = 16;
		if (lcd_height < 0)
			lcd_height = 2;
		break;
	case LCD_TYPE_NEXCOM:	/* parallel mode, 8 bits, generic */
		if (lcd_proto < 0)
			lcd_proto = LCD_PROTO_PARALLEL;
		if (lcd_charset < 0)
			lcd_charset = LCD_CHARSET_NORMAL;
		if (lcd_e_pin == PIN_NOT_SET)
			lcd_e_pin = PIN_AUTOLF;
		if (lcd_rs_pin == PIN_NOT_SET)
			lcd_rs_pin = PIN_SELECP;
		if (lcd_rw_pin == PIN_NOT_SET)
			lcd_rw_pin = PIN_INITP;

		if (lcd_width < 0)
			lcd_width = 16;
		if (lcd_bwidth < 0)
			lcd_bwidth = 40;
		if (lcd_hwidth < 0)
			lcd_hwidth = 64;
		if (lcd_height < 0)
			lcd_height = 2;
		break;
	case LCD_TYPE_CUSTOM:	/* customer-defined */
		if (lcd_proto < 0)
			lcd_proto = DEFAULT_LCD_PROTO;
		if (lcd_charset < 0)
			lcd_charset = DEFAULT_LCD_CHARSET;
		/* default geometry will be set later */
		break;
	case LCD_TYPE_HANTRONIX:	/* parallel mode, 8 bits, hantronix-like */
	default:
		if (lcd_proto < 0)
			lcd_proto = LCD_PROTO_PARALLEL;
		if (lcd_charset < 0)
			lcd_charset = LCD_CHARSET_NORMAL;
		if (lcd_e_pin == PIN_NOT_SET)
			lcd_e_pin = PIN_STROBE;
		if (lcd_rs_pin == PIN_NOT_SET)
			lcd_rs_pin = PIN_SELECP;

		if (lcd_width < 0)
			lcd_width = 16;
		if (lcd_bwidth < 0)
			lcd_bwidth = 40;
		if (lcd_hwidth < 0)
			lcd_hwidth = 64;
		if (lcd_height < 0)
			lcd_height = 2;
		break;
	}

	/* this is used to catch wrong and default values */
	if (lcd_width <= 0)
		lcd_width = DEFAULT_LCD_WIDTH;
	if (lcd_bwidth <= 0)
		lcd_bwidth = DEFAULT_LCD_BWIDTH;
	if (lcd_hwidth <= 0)
		lcd_hwidth = DEFAULT_LCD_HWIDTH;
	if (lcd_height <= 0)
		lcd_height = DEFAULT_LCD_HEIGHT;

	if (lcd_proto == LCD_PROTO_SERIAL) {	/* SERIAL */
		lcd_write_cmd = lcd_write_cmd_s;
		lcd_write_data = lcd_write_data_s;
		lcd_clear_fast = lcd_clear_fast_s;

		if (lcd_cl_pin == PIN_NOT_SET)
			lcd_cl_pin = DEFAULT_LCD_PIN_SCL;
		if (lcd_da_pin == PIN_NOT_SET)
			lcd_da_pin = DEFAULT_LCD_PIN_SDA;

	} else {		/* PARALLEL */
		lcd_write_cmd = lcd_write_cmd_p8;
		lcd_write_data = lcd_write_data_p8;
		lcd_clear_fast = lcd_clear_fast_p8;

		if (lcd_e_pin == PIN_NOT_SET)
			lcd_e_pin = DEFAULT_LCD_PIN_E;
		if (lcd_rs_pin == PIN_NOT_SET)
			lcd_rs_pin = DEFAULT_LCD_PIN_RS;
		if (lcd_rw_pin == PIN_NOT_SET)
			lcd_rw_pin = DEFAULT_LCD_PIN_RW;
	}

	if (lcd_bl_pin == PIN_NOT_SET)
		lcd_bl_pin = DEFAULT_LCD_PIN_BL;

	if (lcd_e_pin == PIN_NOT_SET)
		lcd_e_pin = PIN_NONE;
	if (lcd_rs_pin == PIN_NOT_SET)
		lcd_rs_pin = PIN_NONE;
	if (lcd_rw_pin == PIN_NOT_SET)
		lcd_rw_pin = PIN_NONE;
	if (lcd_bl_pin == PIN_NOT_SET)
		lcd_bl_pin = PIN_NONE;
	if (lcd_cl_pin == PIN_NOT_SET)
		lcd_cl_pin = PIN_NONE;
	if (lcd_da_pin == PIN_NOT_SET)
		lcd_da_pin = PIN_NONE;

	if (lcd_charset < 0)
		lcd_charset = DEFAULT_LCD_CHARSET;

	if (lcd_charset == LCD_CHARSET_KS0074)
		lcd_char_conv = lcd_char_conv_ks0074;
	else
		lcd_char_conv = NULL;

	if (lcd_bl_pin != PIN_NONE)
		init_scan_timer();

	pin_to_bits(lcd_e_pin, lcd_bits[LCD_PORT_D][LCD_BIT_E],
		    lcd_bits[LCD_PORT_C][LCD_BIT_E]);
	pin_to_bits(lcd_rs_pin, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
		    lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
	pin_to_bits(lcd_rw_pin, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
		    lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
	pin_to_bits(lcd_bl_pin, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
		    lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
	pin_to_bits(lcd_cl_pin, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
		    lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
	pin_to_bits(lcd_da_pin, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
		    lcd_bits[LCD_PORT_C][LCD_BIT_DA]);

	/* before this line, we must NOT send anything to the display.
	 * Since lcd_init_display() needs to write data, we have to
	 * enable mark the LCD initialized just before.
	 */
	lcd_initialized = 1;
	lcd_init_display();

	/* display a short message */
#ifdef CONFIG_PANEL_CHANGE_MESSAGE
#ifdef CONFIG_PANEL_BOOT_MESSAGE
	panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*" CONFIG_PANEL_BOOT_MESSAGE);
#endif
#else
	panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*Linux-" UTS_RELEASE "\nPanel-"
			PANEL_VERSION);
#endif
	lcd_addr_x = lcd_addr_y = 0;
	lcd_must_clear = 1;	/* clear the display on the next device opening */
	lcd_gotoxy();
}

/*
 * These are the file operation function for user access to /dev/keypad
 */

static ssize_t keypad_read(struct file *file,
			   char *buf, size_t count, loff_t *ppos)
{

	unsigned i = *ppos;
	char *tmp = buf;

	if (keypad_buflen == 0) {
		if (file->f_flags & O_NONBLOCK)
			return -EAGAIN;

		interruptible_sleep_on(&keypad_read_wait);
		if (signal_pending(current))
			return -EINTR;
	}

	for (; count-- > 0 && (keypad_buflen > 0); ++i, ++tmp, --keypad_buflen) {
		put_user(keypad_buffer[keypad_start], tmp);
		keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
	}
	*ppos = i;

	return tmp - buf;
}

static int keypad_open(struct inode *inode, struct file *file)
{

	if (keypad_open_cnt)
		return -EBUSY;	/* open only once at a time */

	if (file->f_mode & FMODE_WRITE)	/* device is read-only */
		return -EPERM;

	keypad_buflen = 0;	/* flush the buffer on opening */
	keypad_open_cnt++;
	return 0;
}

static int keypad_release(struct inode *inode, struct file *file)
{
	keypad_open_cnt--;
	return 0;
}

static struct file_operations keypad_fops = {
	.read    = keypad_read,		/* read */
	.open    = keypad_open,		/* open */
	.release = keypad_release,	/* close */
};

static struct miscdevice keypad_dev = {
	KEYPAD_MINOR,
	"keypad",
	&keypad_fops
};

static void keypad_send_key(char *string, int max_len)
{
	if (init_in_progress)
		return;

	/* send the key to the device only if a process is attached to it. */
	if (keypad_open_cnt > 0) {
		while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
			keypad_buffer[(keypad_start + keypad_buflen++) %
				      KEYPAD_BUFFER] = *string++;
		}
		wake_up_interruptible(&keypad_read_wait);
	}
}

/* this function scans all the bits involving at least one logical signal, and puts the
 * results in the bitfield "phys_read" (one bit per established contact), and sets
 * "phys_read_prev" to "phys_read".
 *
 * Note: to debounce input signals, we will only consider as switched a signal which is
 * stable across 2 measures. Signals which are different between two reads will be kept
 * as they previously were in their logical form (phys_prev). A signal which has just
 * switched will have a 1 in (phys_read ^ phys_read_prev).
 */
static void phys_scan_contacts(void)
{
	int bit, bitval;
	char oldval;
	char bitmask;
	char gndmask;

	phys_prev = phys_curr;
	phys_read_prev = phys_read;
	phys_read = 0;		/* flush all signals */

	oldval = r_dtr(pprt) | scan_mask_o;	/* keep track of old value, with all outputs disabled */
	w_dtr(pprt, oldval & ~scan_mask_o);	/* activate all keyboard outputs (active low) */
	bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;	/* will have a 1 for each bit set to gnd */
	w_dtr(pprt, oldval);	/* disable all matrix signals */

	/* now that all outputs are cleared, the only active input bits are
	 * directly connected to the ground
	 */
	gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;	/* 1 for each grounded input */

	phys_read |= (pmask_t) gndmask << 40;	/* grounded inputs are signals 40-44 */

	if (bitmask != gndmask) {
		/* since clearing the outputs changed some inputs, we know that some
		 * input signals are currently tied to some outputs. So we'll scan them.
		 */
		for (bit = 0; bit < 8; bit++) {
			bitval = 1 << bit;

			if (!(scan_mask_o & bitval))	/* skip unused bits */
				continue;

			w_dtr(pprt, oldval & ~bitval);	/* enable this output */
			bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
			phys_read |= (pmask_t) bitmask << (5 * bit);
		}
		w_dtr(pprt, oldval);	/* disable all outputs */
	}
	/* this is easy: use old bits when they are flapping, use new ones when stable */
	phys_curr =
	    (phys_prev & (phys_read ^ phys_read_prev)) | (phys_read &
							  ~(phys_read ^
							    phys_read_prev));
}

static void panel_process_inputs(void)
{
	struct list_head *item;
	struct logical_input *input;

#if 0
	printk(KERN_DEBUG
	       "entering panel_process_inputs with pp=%016Lx & pc=%016Lx\n",
	       phys_prev, phys_curr);
#endif

	keypressed = 0;
	inputs_stable = 1;
	list_for_each(item, &logical_inputs) {
		input = list_entry(item, struct logical_input, list);

		switch (input->state) {
		case INPUT_ST_LOW:
			if ((phys_curr & input->mask) != input->value)
				break;
			/* if all needed ones were already set previously, this means that
			 * this logical signal has been activated by the releasing of
			 * another combined signal, so we don't want to match.
			 * eg: AB -(release B)-> A -(release A)-> 0 : don't match A.
			 */
			if ((phys_prev & input->mask) == input->value)
				break;
			input->rise_timer = 0;
			input->state = INPUT_ST_RISING;
			/* no break here, fall through */
		case INPUT_ST_RISING:
			if ((phys_curr & input->mask) != input->value) {
				input->state = INPUT_ST_LOW;
				break;
			}
			if (input->rise_timer < input->rise_time) {
				inputs_stable = 0;
				input->rise_timer++;
				break;
			}
			input->high_timer = 0;
			input->state = INPUT_ST_HIGH;
			/* no break here, fall through */
		case INPUT_ST_HIGH:
#if 0
			/* FIXME:
			 * this is an invalid test. It tries to catch transitions from single-key
			 * to multiple-key, but doesn't take into account the contacts polarity.
			 * The only solution to the problem is to parse keys from the most complex
			 * to the simplest combinations, and mark them as 'caught' once a combination
			 * matches, then unmatch it for all other ones.
			 */

			/* try to catch dangerous transitions cases :
			 * someone adds a bit, so this signal was a false
			 * positive resulting from a transition. We should invalidate
			 * the signal immediately and not call the release function.
			 * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
			 */
			if (((phys_prev & input->mask) == input->value)
			    && ((phys_curr & input->mask) > input->value)) {
				input->state = INPUT_ST_LOW;	/* invalidate */
				break;
			}
#endif

			if ((phys_curr & input->mask) == input->value) {
				if ((input->type == INPUT_TYPE_STD)
				    && (input->high_timer == 0)) {
					input->high_timer++;
					if (input->u.std.press_fct != NULL)
						input->u.std.press_fct(input->u.
								       std.
								       press_data);
				} else if (input->type == INPUT_TYPE_KBD) {
					keypressed = 1;	/* will turn on the light */

					if (input->high_timer == 0) {
						if (input->u.kbd.press_str[0])
							keypad_send_key(input->
									u.kbd.
									press_str,
									sizeof
									(input->
									 u.kbd.
									 press_str));
					}

					if (input->u.kbd.repeat_str[0]) {
						if (input->high_timer >=
						    KEYPAD_REP_START) {
							input->high_timer -=
							    KEYPAD_REP_DELAY;
							keypad_send_key(input->
									u.kbd.
									repeat_str,
									sizeof
									(input->
									 u.kbd.
									 repeat_str));
						}
						inputs_stable = 0;	/* we will need to come back here soon */
					}

					if (input->high_timer < 255)
						input->high_timer++;
				}
				break;
			} else {
				/* else signal falling down. Let's fall through. */
				input->state = INPUT_ST_FALLING;
				input->fall_timer = 0;
			}
			/* no break here, fall through */
		case INPUT_ST_FALLING:
#if 0
			/* FIXME !!! same comment as above */
			if (((phys_prev & input->mask) == input->value)
			    && ((phys_curr & input->mask) > input->value)) {
				input->state = INPUT_ST_LOW;	/* invalidate */
				break;
			}
#endif

			if ((phys_curr & input->mask) == input->value) {
				if (input->type == INPUT_TYPE_KBD) {
					keypressed = 1;	/* will turn on the light */

					if (input->u.kbd.repeat_str[0]) {
						if (input->high_timer >= KEYPAD_REP_START)
							input->high_timer -= KEYPAD_REP_DELAY;
						keypad_send_key(input->u.kbd.repeat_str,
								sizeof(input->u.kbd.repeat_str));
						inputs_stable = 0;	/* we will need to come back here soon */
					}

					if (input->high_timer < 255)
						input->high_timer++;
				}
				input->state = INPUT_ST_HIGH;
				break;
			} else if (input->fall_timer >= input->fall_time) {
				/* call release event */
				if (input->type == INPUT_TYPE_STD) {
					if (input->u.std.release_fct != NULL)
						input->u.std.release_fct(input->u.std.release_data);

				} else if (input->type == INPUT_TYPE_KBD) {
					if (input->u.kbd.release_str[0])
						keypad_send_key(input->u.kbd.release_str,
								sizeof(input->u.kbd.release_str));
				}

				input->state = INPUT_ST_LOW;
				break;
			} else {
				input->fall_timer++;
				inputs_stable = 0;
				break;
			}
		}
	}
}

static void panel_scan_timer(void)
{
	if (keypad_enabled && keypad_initialized) {
		if (spin_trylock(&pprt_lock)) {
			phys_scan_contacts();
			spin_unlock(&pprt_lock);	/* no need for the parport anymore */
		}

		if (!inputs_stable || phys_curr != phys_prev)
			panel_process_inputs();
	}

	if (lcd_enabled && lcd_initialized) {
		if (keypressed) {
			if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
				lcd_backlight(1);
			light_tempo = FLASH_LIGHT_TEMPO;
		} else if (light_tempo > 0) {
			light_tempo--;
			if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
				lcd_backlight(0);
		}
	}

	mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
}

static void init_scan_timer(void)
{
	if (scan_timer.function != NULL)
		return;		/* already started */

	init_timer(&scan_timer);
	scan_timer.expires = jiffies + INPUT_POLL_TIME;
	scan_timer.data = 0;
	scan_timer.function = (void *)&panel_scan_timer;
	add_timer(&scan_timer);
}

/* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
 * if <omask> or <imask> are non-null, they will be or'ed with the bits corresponding
 * to out and in bits respectively.
 * returns 1 if ok, 0 if error (in which case, nothing is written).
 */
static int input_name2mask(char *name, pmask_t *mask, pmask_t *value,
			   char *imask, char *omask)
{
	static char sigtab[10] = "EeSsPpAaBb";
	char im, om;
	pmask_t m, v;

	om = im = m = v = 0ULL;
	while (*name) {
		int in, out, bit, neg;
		for (in = 0; (in < sizeof(sigtab)) && (sigtab[in] != *name); in++)
			;
		if (in >= sizeof(sigtab))
			return 0;	/* input name not found */
		neg = (in & 1);	/* odd (lower) names are negated */
		in >>= 1;
		im |= (1 << in);

		name++;
		if (isdigit(*name)) {
			out = *name - '0';
			om |= (1 << out);
		} else if (*name == '-')
			out = 8;
		else
			return 0;	/* unknown bit name */

		bit = (out * 5) + in;

		m |= 1ULL << bit;
		if (!neg)
			v |= 1ULL << bit;
		name++;
	}
	*mask = m;
	*value = v;
	if (imask)
		*imask |= im;
	if (omask)
		*omask |= om;
	return 1;
}

/* tries to bind a key to the signal name <name>. The key will send the
 * strings <press>, <repeat>, <release> for these respective events.
 * Returns the pointer to the new key if ok, NULL if the key could not be bound.
 */
static struct logical_input *panel_bind_key(char *name, char *press,
					    char *repeat, char *release)
{
	struct logical_input *key;

	key = kmalloc(sizeof(struct logical_input), GFP_KERNEL);
	if (!key) {
		printk(KERN_ERR "panel: not enough memory\n");
		return NULL;
	}
	memset(key, 0, sizeof(struct logical_input));
	if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
			     &scan_mask_o))
		return NULL;

	key->type = INPUT_TYPE_KBD;
	key->state = INPUT_ST_LOW;
	key->rise_time = 1;
	key->fall_time = 1;

#if 0
	printk(KERN_DEBUG "bind: <%s> : m=%016Lx v=%016Lx\n", name, key->mask,
	       key->value);
#endif
	strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
	strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
	strncpy(key->u.kbd.release_str, release,
		sizeof(key->u.kbd.release_str));
	list_add(&key->list, &logical_inputs);
	return key;
}

#if 0
/* tries to bind a callback function to the signal name <name>. The function
 * <press_fct> will be called with the <press_data> arg when the signal is
 * activated, and so on for <release_fct>/<release_data>
 * Returns the pointer to the new signal if ok, NULL if the signal could not be bound.
 */
static struct logical_input *panel_bind_callback(char *name,
						 void (*press_fct) (int),
						 int press_data,
						 void (*release_fct) (int),
						 int release_data)
{
	struct logical_input *callback;

	callback = kmalloc(sizeof(struct logical_input), GFP_KERNEL);
	if (!callback) {
		printk(KERN_ERR "panel: not enough memory\n");
		return NULL;
	}
	memset(callback, 0, sizeof(struct logical_input));
	if (!input_name2mask(name, &callback->mask, &callback->value,
			     &scan_mask_i, &scan_mask_o))
		return NULL;

	callback->type = INPUT_TYPE_STD;
	callback->state = INPUT_ST_LOW;
	callback->rise_time = 1;
	callback->fall_time = 1;
	callback->u.std.press_fct = press_fct;
	callback->u.std.press_data = press_data;
	callback->u.std.release_fct = release_fct;
	callback->u.std.release_data = release_data;
	list_add(&callback->list, &logical_inputs);
	return callback;
}
#endif

static void keypad_init(void)
{
	int keynum;
	init_waitqueue_head(&keypad_read_wait);
	keypad_buflen = 0;	/* flushes any eventual noisy keystroke */

	/* Let's create all known keys */

	for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
		panel_bind_key(keypad_profile[keynum][0],
			       keypad_profile[keynum][1],
			       keypad_profile[keynum][2],
			       keypad_profile[keynum][3]);
	}

	init_scan_timer();
	keypad_initialized = 1;
}

/**************************************************/
/* device initialization                          */
/**************************************************/

static int panel_notify_sys(struct notifier_block *this, unsigned long code,
			    void *unused)
{
	if (lcd_enabled && lcd_initialized) {
		switch (code) {
		case SYS_DOWN:
			panel_lcd_print
			    ("\x0cReloading\nSystem...\x1b[Lc\x1b[Lb\x1b[L+");
			break;
		case SYS_HALT:
			panel_lcd_print
			    ("\x0cSystem Halted.\x1b[Lc\x1b[Lb\x1b[L+");
			break;
		case SYS_POWER_OFF:
			panel_lcd_print("\x0cPower off.\x1b[Lc\x1b[Lb\x1b[L+");
			break;
		default:
			break;
		}
	}
	return NOTIFY_DONE;
}

static struct notifier_block panel_notifier = {
	panel_notify_sys,
	NULL,
	0
};

static void panel_attach(struct parport *port)
{
	if (port->number != parport)
		return;

	if (pprt) {
		printk(KERN_ERR
		       "panel_attach(): port->number=%d parport=%d, already registered !\n",
		       port->number, parport);
		return;
	}

	pprt = parport_register_device(port, "panel", NULL, NULL,	/* pf, kf */
				       NULL,
				       /*PARPORT_DEV_EXCL */
				       0, (void *)&pprt);

	if (parport_claim(pprt)) {
		printk(KERN_ERR
		       "Panel: could not claim access to parport%d. Aborting.\n",
		       parport);
		return;
	}

	/* must init LCD first, just in case an IRQ from the keypad is generated at keypad init */
	if (lcd_enabled) {
		lcd_init();
		misc_register(&lcd_dev);
	}

	if (keypad_enabled) {
		keypad_init();
		misc_register(&keypad_dev);
	}
}

static void panel_detach(struct parport *port)
{
	if (port->number != parport)
		return;

	if (!pprt) {
		printk(KERN_ERR
		       "panel_detach(): port->number=%d parport=%d, nothing to unregister.\n",
		       port->number, parport);
		return;
	}

	if (keypad_enabled && keypad_initialized)
		misc_deregister(&keypad_dev);

	if (lcd_enabled && lcd_initialized)
		misc_deregister(&lcd_dev);

	parport_release(pprt);
	parport_unregister_device(pprt);
	pprt = NULL;
}

static struct parport_driver panel_driver = {
	.name = "panel",
	.attach = panel_attach,
	.detach = panel_detach,
};

/* init function */
int panel_init(void)
{
	/* for backwards compatibility */
	if (keypad_type < 0)
		keypad_type = keypad_enabled;

	if (lcd_type < 0)
		lcd_type = lcd_enabled;

	if (parport < 0)
		parport = DEFAULT_PARPORT;

	/* take care of an eventual profile */
	switch (profile) {
	case PANEL_PROFILE_CUSTOM:	/* custom profile */
		if (keypad_type < 0)
			keypad_type = DEFAULT_KEYPAD;
		if (lcd_type < 0)
			lcd_type = DEFAULT_LCD;
		break;
	case PANEL_PROFILE_OLD:	/* 8 bits, 2*16, old keypad */
		if (keypad_type < 0)
			keypad_type = KEYPAD_TYPE_OLD;
		if (lcd_type < 0)
			lcd_type = LCD_TYPE_OLD;
		if (lcd_width < 0)
			lcd_width = 16;
		if (lcd_hwidth < 0)
			lcd_hwidth = 16;
		break;
	case PANEL_PROFILE_NEW:	/* serial, 2*16, new keypad */
		if (keypad_type < 0)
			keypad_type = KEYPAD_TYPE_NEW;
		if (lcd_type < 0)
			lcd_type = LCD_TYPE_KS0074;
		break;
	case PANEL_PROFILE_HANTRONIX:	/* 8 bits, 2*16 hantronix-like, no keypad */
		if (keypad_type < 0)
			keypad_type = KEYPAD_TYPE_NONE;
		if (lcd_type < 0)
			lcd_type = LCD_TYPE_HANTRONIX;
		break;
	case PANEL_PROFILE_NEXCOM:	/* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
		if (keypad_type < 0)
			keypad_type = KEYPAD_TYPE_NEXCOM;
		if (lcd_type < 0)
			lcd_type = LCD_TYPE_NEXCOM;
		break;
	case PANEL_PROFILE_LARGE:	/* 8 bits, 2*40, old keypad */
		if (keypad_type < 0)
			keypad_type = KEYPAD_TYPE_OLD;
		if (lcd_type < 0)
			lcd_type = LCD_TYPE_OLD;
		break;
	}

	lcd_enabled = (lcd_type > 0);
	keypad_enabled = (keypad_type > 0);

	switch (keypad_type) {
	case KEYPAD_TYPE_OLD:
		keypad_profile = old_keypad_profile;
		break;
	case KEYPAD_TYPE_NEW:
		keypad_profile = new_keypad_profile;
		break;
	case KEYPAD_TYPE_NEXCOM:
		keypad_profile = nexcom_keypad_profile;
		break;
	default:
		keypad_profile = NULL;
		break;
	}

	/* tells various subsystems about the fact that we are initializing */
	init_in_progress = 1;

	if (parport_register_driver(&panel_driver)) {
		printk(KERN_ERR
		       "Panel: could not register with parport. Aborting.\n");
		return -EIO;
	}

	if (!lcd_enabled && !keypad_enabled) {
		/* no device enabled, let's release the parport */
		if (pprt) {
			parport_release(pprt);
			parport_unregister_device(pprt);
		}
		parport_unregister_driver(&panel_driver);
		printk(KERN_ERR "Panel driver version " PANEL_VERSION
		       " disabled.\n");
		return -ENODEV;
	}

	register_reboot_notifier(&panel_notifier);

	if (pprt)
		printk(KERN_INFO "Panel driver version " PANEL_VERSION
		       " registered on parport%d (io=0x%lx).\n", parport,
		       pprt->port->base);
	else
		printk(KERN_INFO "Panel driver version " PANEL_VERSION
		       " not yet registered\n");
	/* tells various subsystems about the fact that initialization is finished */
	init_in_progress = 0;
	return 0;
}

static int __init panel_init_module(void)
{
	return panel_init();
}

static void __exit panel_cleanup_module(void)
{
	unregister_reboot_notifier(&panel_notifier);

	if (scan_timer.function != NULL)
		del_timer(&scan_timer);

	if (keypad_enabled)
		misc_deregister(&keypad_dev);

	if (lcd_enabled) {
		panel_lcd_print("\x0cLCD driver " PANEL_VERSION
				"\nunloaded.\x1b[Lc\x1b[Lb\x1b[L-");
		misc_deregister(&lcd_dev);
	}

	/* TODO: free all input signals */

	parport_release(pprt);
	parport_unregister_device(pprt);
	parport_unregister_driver(&panel_driver);
}

module_init(panel_init_module);
module_exit(panel_cleanup_module);
MODULE_AUTHOR("Willy Tarreau");
MODULE_LICENSE("GPL");

/*
 * Local variables:
 *  c-indent-level: 4
 *  tab-width: 8
 * End:
 */