aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/slob_def.h
Commit message (Collapse)AuthorAge
* dma-mapping: rename ARCH_KMALLOC_MINALIGN to ARCH_DMA_MINALIGNFUJITA Tomonori2010-08-11
| | | | | | | | | | | | | | | | | | | | | | | | | Now each architecture has the own dma_get_cache_alignment implementation. dma_get_cache_alignment returns the minimum DMA alignment. Architectures define it as ARCH_KMALLOC_MINALIGN (it's used to make sure that malloc'ed buffer is DMA-safe; the buffer doesn't share a cache with the others). So we can unify dma_get_cache_alignment implementations. This patch: dma_get_cache_alignment() needs to know if an architecture defines ARCH_KMALLOC_MINALIGN or not (needs to know if architecture has DMA alignment restriction). However, slab.h define ARCH_KMALLOC_MINALIGN if architectures doesn't define it. Let's rename ARCH_KMALLOC_MINALIGN to ARCH_DMA_MINALIGN. ARCH_KMALLOC_MINALIGN is used only in the internals of slab/slob/slub (except for crypto). Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: Move ARCH_SLAB_MINALIGN and ARCH_KMALLOC_MINALIGN to <linux/slob_def.h>David Woodhouse2010-05-19
| | | | | | Acked-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David Woodhouse <David.Woodhouse@intel.com> Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
* slab: remove duplicate kmem_cache_init_late() declarationsWu Fengguang2009-08-06
| | | | | | | | | | kmem_cache_init_late() has been declared in slab.h CC: Nick Piggin <npiggin@suse.de> CC: Matt Mackall <mpm@selenic.com> CC: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
* slab,slub: don't enable interrupts during early bootPekka Enberg2009-06-12
| | | | | | | | | | | | | | | | | | | As explained by Benjamin Herrenschmidt: Oh and btw, your patch alone doesn't fix powerpc, because it's missing a whole bunch of GFP_KERNEL's in the arch code... You would have to grep the entire kernel for things that check slab_is_available() and even then you'll be missing some. For example, slab_is_available() didn't always exist, and so in the early days on powerpc, we used a mem_init_done global that is set form mem_init() (not perfect but works in practice). And we still have code using that to do the test. Therefore, mask out __GFP_WAIT, __GFP_IO, and __GFP_FS in the slab allocators in early boot code to avoid enabling interrupts. Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
* kmemtrace: SLOB hooks.Eduard - Gabriel Munteanu2008-12-29
| | | | | | | | | | | | This adds hooks for the SLOB allocator, to allow tracing with kmemtrace. We also convert some inline functions to __always_inline to make sure _RET_IP_, which expands to __builtin_return_address(0), always works as expected. Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro> Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
* slob: Kill off duplicate kzalloc() definition.Paul Mundt2007-07-17
| | | | | | | | | | With the slab zeroing allocations cleanups Christoph stubbed in a generic kzalloc(), which was missed on SLOB. Follow the SLAB/SLUB changes and kill off the __kzalloc() wrapper that SLOB was using. Reported-by: Jan Engelhardt <jengelh@computergmbh.de> Signed-off-by: Paul Mundt <lethal@linux-sh.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* slob: initial NUMA supportPaul Mundt2007-07-16
This adds preliminary NUMA support to SLOB, primarily aimed at systems with small nodes (tested all the way down to a 128kB SRAM block), whether asymmetric or otherwise. We follow the same conventions as SLAB/SLUB, preferring current node placement for new pages, or with explicit placement, if a node has been specified. Presently on UP NUMA this has the side-effect of preferring node#0 allocations (since numa_node_id() == 0, though this could be reworked if we could hand off a pfn to determine node placement), so single-CPU NUMA systems will want to place smaller nodes further out in terms of node id. Once a page has been bound to a node (via explicit node id typing), we only do block allocations from partial free pages that have a matching node id in the page flags. The current implementation does have some scalability problems, in that all partial free pages are tracked in the global freelist (with contention due to the single spinlock). However, these are things that are being reworked for SMP scalability first, while things like per-node freelists can easily be built on top of this sort of functionality once it's been added. More background can be found in: http://marc.info/?l=linux-mm&m=118117916022379&w=2 http://marc.info/?l=linux-mm&m=118170446306199&w=2 http://marc.info/?l=linux-mm&m=118187859420048&w=2 and subsequent threads. Acked-by: Christoph Lameter <clameter@sgi.com> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Paul Mundt <lethal@linux-sh.org> Acked-by: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>