aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/sched.h
Commit message (Collapse)AuthorAge
* [PATCH] proc: Rewrite the proc dentry flush on exit optimizationEric W. Biederman2006-06-26
| | | | | | | | | | | | | | | | To keep the dcache from filling up with dead /proc entries we flush them on process exit. However over the years that code has gotten hairy with a dentry_pointer and a lock in task_struct and misdocumented as a correctness feature. I have rewritten this code to look and see if we have a corresponding entry in the dcache and if so flush it on process exit. This removes the extra fields in the task_struct and allows me to trivially handle the case of a /proc/<tgid>/task/<pid> entry as well as the current /proc/<pid> entries. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] pacct: none-delayed process accounting accumulationKaiGai Kohei2006-06-25
| | | | | | | | | | | | | | | | | | | | | | In current 2.6.17 implementation, signal_struct refered from task_struct is used for per-process data structure. The pacct facility also uses it as a per-process data structure to store stime, utime, minflt, majflt. But those members are saved in __exit_signal(). It's too late. For example, if some threads exits at same time, pacct facility has a possibility to drop accountings for a part of those threads. (see, the following 'The results of original 2.6.17 kernel') I think accounting information should be completely collected into the per-process data structure before writing out an accounting record. This patch fixes this matter. Accumulation of stime, utime, minflt and majflt are done before generating accounting record. [mingo@elte.hu: fix acct_collect() siglock bug found by lockdep] Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] pacct: avoidance to refer the last thread as a representation of the ↵KaiGai Kohei2006-06-25
| | | | | | | | | | | | | | | | | process When pacct facility generate an 'ac_flag' field in accounting record, it refers a task_struct of the thread which died last in the process. But any other task_structs are ignored. Therefore, pacct facility drops ASU flag even if root-privilege operations are used by any other threads except the last one. In addition, AFORK flag is always set when the thread of group-leader didn't die last, although this process has called execve() after fork(). We have a same matter in ac_exitcode. The recorded ac_exitcode is an exit code of the last thread in the process. There is a possibility this exitcode is not the group leader's one.
* [PATCH] pacct: add pacct_struct to fix some pacct bugs.KaiGai Kohei2006-06-25
| | | | | | | | | | | The pacct facility need an i/o operation when an accounting record is generated. There is a possibility to wake OOM killer up. If OOM killer is activated, it kills some processes to make them release process memory regions. But acct_process() is called in the killed processes context before calling exit_mm(), so those processes cannot release own memory. In the results, any processes stop in this point and it finally cause a system stall.
* [PATCH] Kill PF_SYNCWRITE flagJens Axboe2006-06-23
| | | | | | | | | | | | | | | A process flag to indicate whether we are doing sync io is incredibly ugly. It also causes performance problems when one does a lot of async io and then proceeds to sync it. Part of the io will go out as async, and the other part as sync. This causes a disconnect between the previously submitted io and the synced io. For io schedulers such as CFQ, this will cause us lost merges and suboptimal behaviour in scheduling. Remove PF_SYNCWRITE completely from the fsync/msync paths, and let the O_DIRECT path just directly indicate that the writes are sync by using WRITE_SYNC instead. Signed-off-by: Jens Axboe <axboe@suse.de>
* [PATCH] ptrace: document the locking rulesEric W. Biederman2006-06-23
| | | | | | | | | | | | | | | | | | | | | | | | | After a lot of reading the code and thinking about how it behaves I have managed to figure out what the current ptrace locking rules are. The current code is in much better that it appears at first glance. The troublesome code paths are actually the code paths that violate the current rules. ptrace uses simple exclusive access as it's locking. You can only touch task->ptrace if the task is stopped and you are the ptracer, or if the task is running and are the task itself. Very simple, very easy to maintain. It just needs to be documented so people know not to touch ptrace from elsewhere. Currently we do have a few pieces of code that are in violation of this rule. Particularly the core dump code, and ptrace_attach. But so far the code looks fixable. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Cc: Roland McGrath <roland@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* Merge branch 'audit.b21' of ↵Linus Torvalds2006-06-20
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/viro/audit-current * 'audit.b21' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/audit-current: (25 commits) [PATCH] make set_loginuid obey audit_enabled [PATCH] log more info for directory entry change events [PATCH] fix AUDIT_FILTER_PREPEND handling [PATCH] validate rule fields' types [PATCH] audit: path-based rules [PATCH] Audit of POSIX Message Queue Syscalls v.2 [PATCH] fix se_sen audit filter [PATCH] deprecate AUDIT_POSSBILE [PATCH] inline more audit helpers [PATCH] proc_loginuid_write() uses simple_strtoul() on non-terminated array [PATCH] update of IPC audit record cleanup [PATCH] minor audit updates [PATCH] fix audit_krule_to_{rule,data} return values [PATCH] add filtering by ppid [PATCH] log ppid [PATCH] collect sid of those who send signals to auditd [PATCH] execve argument logging [PATCH] fix deadlocks in AUDIT_LIST/AUDIT_LIST_RULES [PATCH] audit_panic() is audit-internal [PATCH] inotify (5/5): update kernel documentation ... Manual fixup of conflict in unclude/linux/inotify.h
| * [PATCH] inotify (1/5): split kernel API from userspace supportAmy Griffis2006-06-20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The following series of patches introduces a kernel API for inotify, making it possible for kernel modules to benefit from inotify's mechanism for watching inodes. With these patches, inotify will maintain for each caller a list of watches (via an embedded struct inotify_watch), where each inotify_watch is associated with a corresponding struct inode. The caller registers an event handler and specifies for which filesystem events their event handler should be called per inotify_watch. Signed-off-by: Amy Griffis <amy.griffis@hp.com> Acked-by: Robert Love <rml@novell.com> Acked-by: John McCutchan <john@johnmccutchan.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* | Sanitise linux/sched.h for userspace consumptionDavid Woodhouse2006-04-26
| | | | | | | | | | | | | | | | There was a whole load of crap exposed which should have been inside the existing #ifdef __KERNEL__ part. Also hide struct sched_param for now, since glibc has its own and doesn't like being given ours (yet). Signed-off-by: David Woodhouse <dwmw2@infradead.org>
* | Partially sanitise linux/sched.h for userspace consumptionDavid Woodhouse2006-04-25
|/ | | | | | | For now, just make sure all inclusion of private header files is done within #ifdef __KERNEL__. There'll be more to clean up later. Signed-off-by: David Woodhouse <dwmw2@infradead.org>
* [PATCH] task: Make task list manipulations RCU safeEric W. Biederman2006-04-19
| | | | | | | | | | | | | | | | | While we can currently walk through thread groups, process groups, and sessions with just the rcu_read_lock, this opens the door to walking the entire task list. We already have all of the other RCU guarantees so there is no cost in doing this, this should be enough so that proc can stop taking the tasklist lock during readdir. prev_task was killed because it has no users, and using it will miss new tasks when doing an rcu traversal. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] kill unushed __put_task_struct_cbEric W. Biederman2006-04-14
| | | | | | | | | | | | | | | Somehow in the midst of dotting i's and crossing t's during the merge up to rc1 we wound up keeping __put_task_struct_cb when it should have been killed as it no longer has any users. Sorry I probably should have caught this while it was still in the -mm tree. Having the old code there gets confusing when reading through the code and trying to understand what is happening. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* Merge branch 'splice' of git://brick.kernel.dk/data/git/linux-2.6-blockLinus Torvalds2006-04-11
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | * 'splice' of git://brick.kernel.dk/data/git/linux-2.6-block: [PATCH] vfs: add splice_write and splice_read to documentation [PATCH] Remove sys_ prefix of new syscalls from __NR_sys_* [PATCH] splice: warning fix [PATCH] another round of fs/pipe.c cleanups [PATCH] splice: comment styles [PATCH] splice: add Ingo as addition copyright holder [PATCH] splice: unlikely() optimizations [PATCH] splice: speedups and optimizations [PATCH] pipe.c/fifo.c code cleanups [PATCH] get rid of the PIPE_*() macros [PATCH] splice: speedup __generic_file_splice_read [PATCH] splice: add direct fd <-> fd splicing support [PATCH] splice: add optional input and output offsets [PATCH] introduce a "kernel-internal pipe object" abstraction [PATCH] splice: be smarter about calling do_page_cache_readahead() [PATCH] splice: optimize the splice buffer mapping [PATCH] splice: cleanup __generic_file_splice_read() [PATCH] splice: only call wake_up_interruptible() when we really have to [PATCH] splice: potential !page dereference [PATCH] splice: mark the io page as accessed
| * [PATCH] splice: add direct fd <-> fd splicing supportJens Axboe2006-04-11
| | | | | | | | | | | | | | | | | | | | | | | | It's more efficient for sendfile() emulation. Basically we cache an internal private pipe and just use that as the intermediate area for pages. Direct splicing is not available from sys_splice(), it is only meant to be used for sendfile() emulation. Additional patch from Ingo Molnar to avoid the PIPE_BUFFERS loop at exit for the normal fast path. Signed-off-by: Jens Axboe <axboe@suse.de>
* | [PATCH] Reinstate const in next_thread()Keith Owens2006-04-11
| | | | | | | | | | | | | | | | | | | | Before commit 47e65328a7b1cdfc4e3102e50d60faf94ebba7d3, next_thread() took a const task_t. Reinstate the const qualifier, getting the next thread never changes the current thread. Signed-off-by: Keith Owens <kaos@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* | [PATCH] de_thread: Don't confuse users do_each_thread.Eric W. Biederman2006-04-10
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Oleg Nesterov spotted two interesting bugs with the current de_thread code. The simplest is a long standing double decrement of __get_cpu_var(process_counts) in __unhash_process. Caused by two processes exiting when only one was created. The other is that since we no longer detach from the thread_group list it is possible for do_each_thread when run under the tasklist_lock to see the same task_struct twice. Once on the task list as a thread_group_leader, and once on the thread list of another thread. The double appearance in do_each_thread can cause a double increment of mm_core_waiters in zap_threads resulting in problems later on in coredump_wait. To remedy those two problems this patch takes the simple approach of changing the old thread group leader into a child thread. The only routine in release_task that cares is __unhash_process, and it can be trivially seen that we handle cleaning up a thread group leader properly. Since de_thread doesn't change the pid of the exiting leader process and instead shares it with the new leader process. I change thread_group_leader to recognize group leadership based on the group_leader field and not based on pids. This should also be slightly cheaper then the existing thread_group_leader macro. I performed a quick audit and I couldn't see any user of thread_group_leader that cared about the difference. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] pidhash: Refactor the pid hash tableEric W. Biederman2006-03-31
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Simplifies the code, reduces the need for 4 pid hash tables, and makes the code more capable. In the discussions I had with Oleg it was felt that to a large extent the cleanup itself justified the work. With struct pid being dynamically allocated meant we could create the hash table entry when the pid was allocated and free the hash table entry when the pid was freed. Instead of playing with the hash lists when ever a process would attach or detach to a process. For myself the fact that it gave what my previous task_ref patch gave for free with simpler code was a big win. The problem is that if you hold a reference to struct task_struct you lock in 10K of low memory. If you do that in a user controllable way like /proc does, with an unprivileged but hostile user space application with typical resource limits of 1000 fds and 100 processes I can trigger the OOM killer by consuming all of low memory with task structs, on a machine wight 1GB of low memory. If I instead hold a reference to struct pid which holds a pointer to my task_struct, I don't suffer from that problem because struct pid is 2 orders of magnitude smaller. In fact struct pid is small enough that most other kernel data structures dwarf it, so simply limiting the number of referring data structures is enough to prevent exhaustion of low memory. This splits the current struct pid into two structures, struct pid and struct pid_link, and reduces our number of hash tables from PIDTYPE_MAX to just one. struct pid_link is the per process linkage into the hash tables and lives in struct task_struct. struct pid is given an indepedent lifetime, and holds pointers to each of the pid types. The independent life of struct pid simplifies attach_pid, and detach_pid, because we are always manipulating the list of pids and not the hash table. In addition in giving struct pid an indpendent life it makes the concept much more powerful. Kernel data structures can now embed a struct pid * instead of a pid_t and not suffer from pid wrap around problems or from keeping unnecessarily large amounts of memory allocated. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] task: RCU protect task->usageEric W. Biederman2006-03-31
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | A big problem with rcu protected data structures that are also reference counted is that you must jump through several hoops to increase the reference count. I think someone finally implemented atomic_inc_not_zero(&count) to automate the common case. Unfortunately this means you must special case the rcu access case. When data structures are only visible via rcu in a manner that is not determined by the reference count on the object (i.e. tasks are visible until their zombies are reaped) there is a much simpler technique we can employ. Simply delaying the decrement of the reference count until the rcu interval is over. What that means is that the proc code that looks up a task and later wants to sleep can now do: rcu_read_lock(); task = find_task_by_pid(some_pid); if (task) { get_task_struct(task); } rcu_read_unlock(); The effect on the rest of the kernel is that put_task_struct becomes cheaper and immediate, and in the case where the task has been reaped it frees the task immediate instead of unnecessarily waiting an until the rcu interval is over. Cleanup of task_struct does not happen when its reference count drops to zero, instead cleanup happens when release_task is called. Tasks can only be looked up via rcu before release_task is called. All rcu protected members of task_struct are freed by release_task. Therefore we can move call_rcu from put_task_struct into release_task. And we can modify release_task to not immediately release the reference count but instead have it call put_task_struct from the function it gives to call_rcu. The end result: - get_task_struct is safe in an rcu context where we have just looked up the task. - put_task_struct() simplifies into its old pre rcu self. This reorganization also makes put_task_struct uncallable from modules as it is not exported but it does not appear to be called from any modules so this should not be an issue, and is trivially fixed. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] resurrect __put_task_structAndrew Morton2006-03-31
| | | | | | | | This just got nuked in mainline. Bring it back because Eric's patches use it. Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] sched: activate SCHED BATCH expiredCon Kolivas2006-03-31
| | | | | | | | | | | To increase the strength of SCHED_BATCH as a scheduling hint we can activate batch tasks on the expired array since by definition they are latency insensitive tasks. Signed-off-by: Con Kolivas <kernel@kolivas.org> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] sched: cleanup task_activated()Con Kolivas2006-03-31
| | | | | | | | | | | The activated flag in task_struct is used to track different sleep types and its usage is somewhat obfuscated. Convert the variable to an enum with more descriptive names without altering the function. Signed-off-by: Con Kolivas <kernel@kolivas.org> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] sched: reduce overhead of calc_loadJack Steiner2006-03-31
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, count_active_tasks() calls both nr_running() & nr_interruptible(). Each of these functions does a "for_each_cpu" & reads values from the runqueue of each cpu. Although this is not a lot of instructions, each runqueue may be located on different node. Depending on the architecture, a unique TLB entry may be required to access each runqueue. Since there may be more runqueues than cpu TLB entries, a scan of all runqueues can trash the TLB. Each memory reference incurs a TLB miss & refill. In addition, the runqueue cacheline that contains nr_running & nr_uninterruptible may be evicted from the cache between the two passes. This causes unnecessary cache misses. Combining nr_running() & nr_interruptible() into a single function substantially reduces the TLB & cache misses on large systems. This should have no measureable effect on smaller systems. On a 128p IA64 system running a memory stress workload, the new function reduced the overhead of calc_load() from 605 usec/call to 324 usec/call. Signed-off-by: Jack Steiner <steiner@sgi.com> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] cleanup __exit_signal->cleanup_sighand pathOleg Nesterov2006-03-28
| | | | | | | | | | | Move 'tsk->sighand = NULL' from cleanup_sighand() to __exit_signal(). This makes the exit path more understandable and allows us to do cleanup_sighand() outside of ->siglock protected section. Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] pids: kill PIDTYPE_TGIDOleg Nesterov2006-03-28
| | | | | | | | | | | | | | | | | | | | | This patch kills PIDTYPE_TGID pid_type thus saving one hash table in kernel/pid.c and speeding up subthreads create/destroy a bit. It is also a preparation for the further tref/pids rework. This patch adds 'struct list_head thread_group' to 'struct task_struct' instead. We don't detach group leader from PIDTYPE_PID namespace until another thread inherits it's ->pid == ->tgid, so we are safe wrt premature free_pidmap(->tgid) call. Currently there are no users of find_task_by_pid_type(PIDTYPE_TGID). Should the need arise, we can use find_task_by_pid()->group_leader. Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Acked-By: Eric Biederman <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] move __exit_signal() to kernel/exit.cOleg Nesterov2006-03-28
| | | | | | | | | | __exit_signal() is private to release_task() now. I think it is better to make it static in kernel/exit.c and export flush_sigqueue() instead - this function is much more simple and straightforward. Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] rename __exit_sighand to cleanup_sighandOleg Nesterov2006-03-28
| | | | | | | | | | | | | | Cosmetic, rename __exit_sighand to cleanup_sighand and move it close to copy_sighand(). This matches copy_signal/cleanup_signal naming, and I think it is easier to follow. Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Acked-by: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] copy_process: cleanup bad_fork_cleanup_signalOleg Nesterov2006-03-28
| | | | | | | | | | | | | | | | | | | | | | | | __exit_signal() does important cleanups atomically under ->siglock. It is also called from copy_process's error path. This is not good, for example we can't move __unhash_process() under ->siglock for that reason. We should not mix these 2 paths, just look at ugly 'if (p->sighand)' under 'bad_fork_cleanup_sighand:' label. For copy_process() case it is sufficient to just backout copy_signal(), nothing more. Again, nobody can see this task yet. For CLONE_THREAD case we just decrement signal->count, otherwise nobody can see this ->signal and we can free it lockless. This patch assumes it is safe to do exit_thread_group_keys() without tasklist_lock. Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Acked-by: David Howells <dhowells@redhat.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] copy_process: cleanup bad_fork_cleanup_sighandOleg Nesterov2006-03-28
| | | | | | | | | | | | | | | | | | | | | | The only caller of exit_sighand(tsk) is copy_process's error path. We can call __exit_sighand() directly and kill exit_sighand(). This 'tsk' was not yet registered in pid_hash[] or init_task.tasks, it has no external references, nobody can see it, and IF (clone_flags & CLONE_SIGHAND) At least 'current' has a reference to ->sighand, this means atomic_dec_and_test(sighand->count) can't be true. ELSE Nobody can see this ->sighand, this means we can free it without any locking. Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Acked-by: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] introduce lock_task_sighand() helperOleg Nesterov2006-03-28
| | | | | | | | | | | | | | | | | | | | | | | | Add lock_task_sighand() helper and converts group_send_sig_info() to use it. Hopefully we will have more users soon. This patch also removes '!sighand->count' and '!p->usage' checks, I think they both are bogus, racy and unneeded (but probably it makes sense to restore them as BUG_ON()s). ->sighand is cleared and it's ->count is decremented in release_task() with sighand->siglock held, so it is a bug to have '!p->usage || !->count' after we already locked and verified it is the same. On the other hand, an already dead task without ->sighand can have a non-zero ->usage due to ptrace, for example. If we read the stale value of ->sighand we must see the change after spin_lock(), because that change was done while holding that same old ->sighand.siglock. Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] convert sighand_cache to use SLAB_DESTROY_BY_RCUOleg Nesterov2006-03-28
| | | | | | | | | | | | | | | | | | This patch borrows a clever Hugh's 'struct anon_vma' trick. Without tasklist_lock held we can't trust task->sighand until we locked it and re-checked that it is still the same. But this means we don't need to defer 'kmem_cache_free(sighand)'. We can return the memory to slab immediately, all we need is to be sure that sighand->siglock can't dissapear inside rcu protected section. To do so we need to initialize ->siglock inside ctor function, SLAB_DESTROY_BY_RCU does the rest. Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] pidhash: don't count idle threadsOleg Nesterov2006-03-28
| | | | | | | | | | | | | | | | | | | | | | | | | fork_idle() does unhash_process() just after copy_process(). Contrary, boot_cpu's idle thread explicitely registers itself for each pid_type with nr = 0. copy_process() already checks p->pid != 0 before process_counts++, I think we can just skip attach_pid() calls and job control inits for idle threads and kill unhash_process(). We don't need to cleanup ->proc_dentry in fork_idle() because with this patch idle threads are never hashed in kernel/pid.c:pid_hash[]. We don't need to hash pid == 0 in pidmap_init(). free_pidmap() is never called with pid == 0 arg, so it will never be reused. So it is still possible to use pid == 0 in any PIDTYPE_xxx namespace from kernel/pid.c's POV. However with this patch we don't hash pid == 0 for PIDTYPE_PID case. We still have have PIDTYPE_PGID/PIDTYPE_SID entries with pid == 0: /sbin/init and kernel threads which don't call daemonize(). Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] kill SET_LINKS/REMOVE_LINKSOleg Nesterov2006-03-28
| | | | | | | | | | | | | | Both SET_LINKS() and SET_LINKS/REMOVE_LINKS() have exactly one caller, and these callers already check thread_group_leader(). This patch kills theese macros, they mix two different things: setting process's parent and registering it in init_task.tasks list. Callers are updated to do these actions by hand. Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] remove add_parent()'s parent argumentOleg Nesterov2006-03-28
| | | | | | | | | | | | add_parent(p, parent) is always called with parent == p->parent, and it makes no sense to do it differently. This patch removes this argument. No changes in affected .o files. Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] Remove dead kill_sl prototype from sched.hEric W. Biederman2006-03-28
| | | | | | | | | The kill_sl function doesn't exist in the kernel so a prototype is completely unnecessary. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] lightweight robust futexes: compatIngo Molnar2006-03-27
| | | | | | | | | | | | 32-bit syscall compatibility support. (This patch also moves all futex related compat functionality into kernel/futex_compat.c.) Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Arjan van de Ven <arjan@infradead.org> Acked-by: Ulrich Drepper <drepper@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] lightweight robust futexes: coreIngo Molnar2006-03-27
| | | | | | | | | | | | | Add the core infrastructure for robust futexes: structure definitions, the new syscalls and the do_exit() based cleanup mechanism. Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Arjan van de Ven <arjan@infradead.org> Acked-by: Ulrich Drepper <drepper@redhat.com> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] hrtimers: remove data fieldRoman Zippel2006-03-26
| | | | | | | | | | | | The nanosleep cleanup allows to remove the data field of hrtimer. The callback function can use container_of() to get it's own data. Since the hrtimer structure is anyway embedded in other structures, this adds no overhead. Signed-off-by: Roman Zippel <zippel@linux-m68k.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] timer-irq-driven soft-watchdog, cleanupsIngo Molnar2006-03-24
| | | | | | | | | | | | | | | Make the softlockup detector purely timer-interrupt driven, removing softirq-context (timer) dependencies. This means that if the softlockup watchdog triggers, it has truly observed a longer than 10 seconds scheduling delay of a SCHED_FIFO prio 99 task. (the patch also turns off the softlockup detector during the initial bootup phase and does small style fixes) Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] cpuset memory spread slab cache optimizationsPaul Jackson2006-03-24
| | | | | | | | | | | | | | | | | | | | | | | | | | | The hooks in the slab cache allocator code path for support of NUMA mempolicies and cpuset memory spreading are in an important code path. Many systems will use neither feature. This patch optimizes those hooks down to a single check of some bits in the current tasks task_struct flags. For non NUMA systems, this hook and related code is already ifdef'd out. The optimization is done by using another task flag, set if the task is using a non-default NUMA mempolicy. Taking this flag bit along with the PF_SPREAD_PAGE and PF_SPREAD_SLAB flag bits added earlier in this 'cpuset memory spreading' patch set, one can check for the combination of any of these special case memory placement mechanisms with a single test of the current tasks task_struct flags. This patch also tightens up the code, to save a few bytes of kernel text space, and moves some of it out of line. Due to the nested inlines called from multiple places, we were ending up with three copies of this code, which once we get off the main code path (for local node allocation) seems a bit wasteful of instruction memory. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] cpuset memory spread basic implementationPaul Jackson2006-03-24
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch provides the implementation and cpuset interface for an alternative memory allocation policy that can be applied to certain kinds of memory allocations, such as the page cache (file system buffers) and some slab caches (such as inode caches). The policy is called "memory spreading." If enabled, it spreads out these kinds of memory allocations over all the nodes allowed to a task, instead of preferring to place them on the node where the task is executing. All other kinds of allocations, including anonymous pages for a tasks stack and data regions, are not affected by this policy choice, and continue to be allocated preferring the node local to execution, as modified by the NUMA mempolicy. There are two boolean flag files per cpuset that control where the kernel allocates pages for the file system buffers and related in kernel data structures. They are called 'memory_spread_page' and 'memory_spread_slab'. If the per-cpuset boolean flag file 'memory_spread_page' is set, then the kernel will spread the file system buffers (page cache) evenly over all the nodes that the faulting task is allowed to use, instead of preferring to put those pages on the node where the task is running. If the per-cpuset boolean flag file 'memory_spread_slab' is set, then the kernel will spread some file system related slab caches, such as for inodes and dentries evenly over all the nodes that the faulting task is allowed to use, instead of preferring to put those pages on the node where the task is running. The implementation is simple. Setting the cpuset flags 'memory_spread_page' or 'memory_spread_cache' turns on the per-process flags PF_SPREAD_PAGE or PF_SPREAD_SLAB, respectively, for each task that is in the cpuset or subsequently joins that cpuset. In subsequent patches, the page allocation calls for the affected page cache and slab caches are modified to perform an inline check for these flags, and if set, a call to a new routine cpuset_mem_spread_node() returns the node to prefer for the allocation. The cpuset_mem_spread_node() routine is also simple. It uses the value of a per-task rotor cpuset_mem_spread_rotor to select the next node in the current tasks mems_allowed to prefer for the allocation. This policy can provide substantial improvements for jobs that need to place thread local data on the corresponding node, but that need to access large file system data sets that need to be spread across the several nodes in the jobs cpuset in order to fit. Without this patch, especially for jobs that might have one thread reading in the data set, the memory allocation across the nodes in the jobs cpuset can become very uneven. A couple of Copyright year ranges are updated as well. And a couple of email addresses that can be found in the MAINTAINERS file are removed. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] Block queue IO tracing support (blktrace) as of 2006-03-23Jens Axboe2006-03-23
| | | | Signed-off-by: Jens Axboe <axboe@suse.de>
* [PATCH] remove __put_task_struct_cb export againChristoph Hellwig2006-03-11
| | | | | | | | | | | | | | | | | | | The patch '[PATCH] RCU signal handling' [1] added an export for __put_task_struct_cb, a put_task_struct helper newly introduced in that patch. But the put_task_struct couldn't be used modular previously as __put_task_struct wasn't exported. There are not callers of it in modular code, and it shouldn't be exported because we don't want drivers to hold references to task_structs. This patch removes the export and folds __put_task_struct into __put_task_struct_cb as there's no other caller. [1] http://www2.kernel.org/git/gitweb.cgi?p=linux/kernel/git/torvalds/linux-2.6.git;a=commit;h=e56d090310d7625ecb43a1eeebd479f04affb48b Signed-off-by: Christoph Hellwig <hch@lst.de> Acked-by: Paul E. McKenney <paulmck@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] Add mm->task_size and fix powerpc vdsoBenjamin Herrenschmidt2006-02-28
| | | | | | | | | | | | | | | This patch adds mm->task_size to keep track of the task size of a given mm and uses that to fix the powerpc vdso so that it uses the mm task size to decide what pages to fault in instead of the current thread flags (which broke when ptracing). (akpm: I expect that mm_struct.task_size will become the way in which we finally sort out the confusion between 32-bit processes and 32-bit mm's. It may need tweaks, but at this stage this patch is powerpc-only.) Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] sched: revert "filter affine wakeups"Chen, Kenneth W2006-02-14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Revert commit d7102e95b7b9c00277562c29aad421d2d521c5f6: [PATCH] sched: filter affine wakeups Apparently caused more than 10% performance regression for aim7 benchmark. The setup in use is 16-cpu HP rx8620, 64Gb of memory and 12 MSA1000s with 144 disks. Each disk is 72Gb with a single ext3 filesystem (courtesy of HP, who supplied benchmark results). The problem is, for aim7, the wake-up pattern is random, but it still needs load balancing action in the wake-up path to achieve best performance. With the above commit, lack of load balancing hurts that workload. However, for workloads like database transaction processing, the requirement is exactly opposite. In the wake up path, best performance is achieved with absolutely zero load balancing. We simply wake up the process on the CPU that it was previously run. Worst performance is obtained when we do load balancing at wake up. There isn't an easy way to auto detect the workload characteristics. Ingo's earlier patch that detects idle CPU and decide whether to load balance or not doesn't perform with aim7 either since all CPUs are busy (it causes even bigger perf. regression). Revert commit d7102e95b7b9c00277562c29aad421d2d521c5f6, which causes more than 10% performance regression with aim7. Signed-off-by: Ken Chen <kenneth.w.chen@intel.com> Acked-by: Ingo Molnar <mingo@elte.hu> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] do_sigaction: cleanup ->sa_mask manipulationOleg Nesterov2006-02-09
| | | | | | | Clear unblockable signals beforehand. Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] Generic sys_rt_sigsuspend()David Woodhouse2006-01-18
| | | | | | | | | | | | The TIF_RESTORE_SIGMASK flag allows us to have a generic implementation of sys_rt_sigsuspend() instead of duplicating it for each architecture. This provides such an implementation and makes arch/powerpc use it. It also tidies up the ppc32 sys_sigsuspend() to use TIF_RESTORE_SIGMASK. Signed-off-by: David Woodhouse <dwmw2@infradead.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] sched: add new SCHED_BATCH policyIngo Molnar2006-01-14
| | | | | | | | | | | | | | Add a new SCHED_BATCH (3) scheduling policy: such tasks are presumed CPU-intensive, and will acquire a constant +5 priority level penalty. Such policy is nice for workloads that are non-interactive, but which do not want to give up their nice levels. The policy is also useful for workloads that want a deterministic scheduling policy without interactivity causing extra preemptions (between that workload's tasks). Signed-off-by: Ingo Molnar <mingo@elte.hu> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] missing helper - task_stack_page()Al Viro2006-01-12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Patchset annotates arch/* uses of ->thread_info. Ones that really are about access of thread_info of given process are simply switched to task_thread_info(task); ones that deal with access to objects on stack are switched to new helper - task_stack_page(). A _lot_ of the latter are actually open-coded instances of "find where pt_regs are"; those are consolidated into task_pt_regs(task) (many architectures actually have such helper already). Note that these annotations are not mandatory - any code not converted to these helpers still works. However, they clean up a lot of places and have actually caught a number of bugs, so converting out of tree ports would be a good idea... As an example of breakage caught by that stuff, see i386 pt_regs mess - we used to have it open-coded in a bunch of places and when back in April Stas had fixed a bug in copy_thread(), the rest had been left out of sync. That required two followup patches (the latest - just before 2.6.15) _and_ still had left /proc/*/stat eip field broken. Try ps -eo eip on i386 and watch the junk... This patch: new helper - task_stack_page(task). Returns pointer to the memory object containing task stack; usually thread_info of task sits in the beginning of that object. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] sched: filter affine wakeupsakpm@osdl.org2006-01-12
| | | | | | | | | | | | | | | | | ) From: Nick Piggin <nickpiggin@yahoo.com.au> Track the last waker CPU, and only consider wakeup-balancing if there's a match between current waker CPU and the previous waker CPU. This ensures that there is some correlation between two subsequent wakeup events before we move the task. Should help random-wakeup workloads on large SMP systems, by reducing the migration attempts by a factor of nr_cpus. Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] scheduler cache-hot-autodetectakpm@osdl.org2006-01-12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ) From: Ingo Molnar <mingo@elte.hu> This is the latest version of the scheduler cache-hot-auto-tune patch. The first problem was that detection time scaled with O(N^2), which is unacceptable on larger SMP and NUMA systems. To solve this: - I've added a 'domain distance' function, which is used to cache measurement results. Each distance is only measured once. This means that e.g. on NUMA distances of 0, 1 and 2 might be measured, on HT distances 0 and 1, and on SMP distance 0 is measured. The code walks the domain tree to determine the distance, so it automatically follows whatever hierarchy an architecture sets up. This cuts down on the boot time significantly and removes the O(N^2) limit. The only assumption is that migration costs can be expressed as a function of domain distance - this covers the overwhelming majority of existing systems, and is a good guess even for more assymetric systems. [ People hacking systems that have assymetries that break this assumption (e.g. different CPU speeds) should experiment a bit with the cpu_distance() function. Adding a ->migration_distance factor to the domain structure would be one possible solution - but lets first see the problem systems, if they exist at all. Lets not overdesign. ] Another problem was that only a single cache-size was used for measuring the cost of migration, and most architectures didnt set that variable up. Furthermore, a single cache-size does not fit NUMA hierarchies with L3 caches and does not fit HT setups, where different CPUs will often have different 'effective cache sizes'. To solve this problem: - Instead of relying on a single cache-size provided by the platform and sticking to it, the code now auto-detects the 'effective migration cost' between two measured CPUs, via iterating through a wide range of cachesizes. The code searches for the maximum migration cost, which occurs when the working set of the test-workload falls just below the 'effective cache size'. I.e. real-life optimized search is done for the maximum migration cost, between two real CPUs. This, amongst other things, has the positive effect hat if e.g. two CPUs share a L2/L3 cache, a different (and accurate) migration cost will be found than between two CPUs on the same system that dont share any caches. (The reliable measurement of migration costs is tricky - see the source for details.) Furthermore i've added various boot-time options to override/tune migration behavior. Firstly, there's a blanket override for autodetection: migration_cost=1000,2000,3000 will override the depth 0/1/2 values with 1msec/2msec/3msec values. Secondly, there's a global factor that can be used to increase (or decrease) the autodetected values: migration_factor=120 will increase the autodetected values by 20%. This option is useful to tune things in a workload-dependent way - e.g. if a workload is cache-insensitive then CPU utilization can be maximized by specifying migration_factor=0. I've tested the autodetection code quite extensively on x86, on 3 P3/Xeon/2MB, and the autodetected values look pretty good: Dual Celeron (128K L2 cache): --------------------- migration cost matrix (max_cache_size: 131072, cpu: 467 MHz): --------------------- [00] [01] [00]: - 1.7(1) [01]: 1.7(1) - --------------------- cacheflush times [2]: 0.0 (0) 1.7 (1784008) --------------------- Here the slow memory subsystem dominates system performance, and even though caches are small, the migration cost is 1.7 msecs. Dual HT P4 (512K L2 cache): --------------------- migration cost matrix (max_cache_size: 524288, cpu: 2379 MHz): --------------------- [00] [01] [02] [03] [00]: - 0.4(1) 0.0(0) 0.4(1) [01]: 0.4(1) - 0.4(1) 0.0(0) [02]: 0.0(0) 0.4(1) - 0.4(1) [03]: 0.4(1) 0.0(0) 0.4(1) - --------------------- cacheflush times [2]: 0.0 (33900) 0.4 (448514) --------------------- Here it can be seen that there is no migration cost between two HT siblings (CPU#0/2 and CPU#1/3 are separate physical CPUs). A fast memory system makes inter-physical-CPU migration pretty cheap: 0.4 msecs. 8-way P3/Xeon [2MB L2 cache]: --------------------- migration cost matrix (max_cache_size: 2097152, cpu: 700 MHz): --------------------- [00] [01] [02] [03] [04] [05] [06] [07] [00]: - 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) [01]: 19.2(1) - 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) [02]: 19.2(1) 19.2(1) - 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) [03]: 19.2(1) 19.2(1) 19.2(1) - 19.2(1) 19.2(1) 19.2(1) 19.2(1) [04]: 19.2(1) 19.2(1) 19.2(1) 19.2(1) - 19.2(1) 19.2(1) 19.2(1) [05]: 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) - 19.2(1) 19.2(1) [06]: 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) - 19.2(1) [07]: 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) - --------------------- cacheflush times [2]: 0.0 (0) 19.2 (19281756) --------------------- This one has huge caches and a relatively slow memory subsystem - so the migration cost is 19 msecs. Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Ashok Raj <ashok.raj@intel.com> Signed-off-by: Ken Chen <kenneth.w.chen@intel.com> Cc: <wilder@us.ibm.com> Signed-off-by: John Hawkes <hawkes@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>