aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/posix-timers.h
Commit message (Collapse)AuthorAge
* posix_cpu_timer: consolidate expiry time typeFrederic Weisbecker2013-07-03
| | | | | | | | | | | | | | | | | | | | | | The posix cpu timer expiry time is stored in a union of two types: a 64 bits field if we rely on scheduler precise accounting, or a cputime_t if we rely on jiffies. This results in quite some duplicate code and special cases to handle the two types. Just unify this into a single 64 bits field. cputime_t can always fit into it. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Stanislaw Gruszka <sgruszka@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Oleg Nesterov <oleg@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com> Cc: Olivier Langlois <olivier@trillion01.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* Merge branch 'timers-nohz-for-linus' of ↵Linus Torvalds2013-05-05
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull 'full dynticks' support from Ingo Molnar: "This tree from Frederic Weisbecker adds a new, (exciting! :-) core kernel feature to the timer and scheduler subsystems: 'full dynticks', or CONFIG_NO_HZ_FULL=y. This feature extends the nohz variable-size timer tick feature from idle to busy CPUs (running at most one task) as well, potentially reducing the number of timer interrupts significantly. This feature got motivated by real-time folks and the -rt tree, but the general utility and motivation of full-dynticks runs wider than that: - HPC workloads get faster: CPUs running a single task should be able to utilize a maximum amount of CPU power. A periodic timer tick at HZ=1000 can cause a constant overhead of up to 1.0%. This feature removes that overhead - and speeds up the system by 0.5%-1.0% on typical distro configs even on modern systems. - Real-time workload latency reduction: CPUs running critical tasks should experience as little jitter as possible. The last remaining source of kernel-related jitter was the periodic timer tick. - A single task executing on a CPU is a pretty common situation, especially with an increasing number of cores/CPUs, so this feature helps desktop and mobile workloads as well. The cost of the feature is mainly related to increased timer reprogramming overhead when a CPU switches its tick period, and thus slightly longer to-idle and from-idle latency. Configuration-wise a third mode of operation is added to the existing two NOHZ kconfig modes: - CONFIG_HZ_PERIODIC: [formerly !CONFIG_NO_HZ], now explicitly named as a config option. This is the traditional Linux periodic tick design: there's a HZ tick going on all the time, regardless of whether a CPU is idle or not. - CONFIG_NO_HZ_IDLE: [formerly CONFIG_NO_HZ=y], this turns off the periodic tick when a CPU enters idle mode. - CONFIG_NO_HZ_FULL: this new mode, in addition to turning off the tick when a CPU is idle, also slows the tick down to 1 Hz (one timer interrupt per second) when only a single task is running on a CPU. The .config behavior is compatible: existing !CONFIG_NO_HZ and CONFIG_NO_HZ=y settings get translated to the new values, without the user having to configure anything. CONFIG_NO_HZ_FULL is turned off by default. This feature is based on a lot of infrastructure work that has been steadily going upstream in the last 2-3 cycles: related RCU support and non-periodic cputime support in particular is upstream already. This tree adds the final pieces and activates the feature. The pull request is marked RFC because: - it's marked 64-bit only at the moment - the 32-bit support patch is small but did not get ready in time. - it has a number of fresh commits that came in after the merge window. The overwhelming majority of commits are from before the merge window, but still some aspects of the tree are fresh and so I marked it RFC. - it's a pretty wide-reaching feature with lots of effects - and while the components have been in testing for some time, the full combination is still not very widely used. That it's default-off should reduce its regression abilities and obviously there are no known regressions with CONFIG_NO_HZ_FULL=y enabled either. - the feature is not completely idempotent: there is no 100% equivalent replacement for a periodic scheduler/timer tick. In particular there's ongoing work to map out and reduce its effects on scheduler load-balancing and statistics. This should not impact correctness though, there are no known regressions related to this feature at this point. - it's a pretty ambitious feature that with time will likely be enabled by most Linux distros, and we'd like you to make input on its design/implementation, if you dislike some aspect we missed. Without flaming us to crisp! :-) Future plans: - there's ongoing work to reduce 1Hz to 0Hz, to essentially shut off the periodic tick altogether when there's a single busy task on a CPU. We'd first like 1 Hz to be exposed more widely before we go for the 0 Hz target though. - once we reach 0 Hz we can remove the periodic tick assumption from nr_running>=2 as well, by essentially interrupting busy tasks only as frequently as the sched_latency constraints require us to do - once every 4-40 msecs, depending on nr_running. I am personally leaning towards biting the bullet and doing this in v3.10, like the -rt tree this effort has been going on for too long - but the final word is up to you as usual. More technical details can be found in Documentation/timers/NO_HZ.txt" * 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (39 commits) sched: Keep at least 1 tick per second for active dynticks tasks rcu: Fix full dynticks' dependency on wide RCU nocb mode nohz: Protect smp_processor_id() in tick_nohz_task_switch() nohz_full: Add documentation. cputime_nsecs: use math64.h for nsec resolution conversion helpers nohz: Select VIRT_CPU_ACCOUNTING_GEN from full dynticks config nohz: Reduce overhead under high-freq idling patterns nohz: Remove full dynticks' superfluous dependency on RCU tree nohz: Fix unavailable tick_stop tracepoint in dynticks idle nohz: Add basic tracing nohz: Select wide RCU nocb for full dynticks nohz: Disable the tick when irq resume in full dynticks CPU nohz: Re-evaluate the tick for the new task after a context switch nohz: Prepare to stop the tick on irq exit nohz: Implement full dynticks kick nohz: Re-evaluate the tick from the scheduler IPI sched: New helper to prevent from stopping the tick in full dynticks sched: Kick full dynticks CPU that have more than one task enqueued. perf: New helper to prevent full dynticks CPUs from stopping tick perf: Kick full dynticks CPU if events rotation is needed ...
| * posix_timers: New API to prevent from stopping the tick when timers are runningFrederic Weisbecker2013-04-19
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Bring a new helper that the full dynticks infrastructure can call in order to know if it can safely stop the tick from the posix cpu timers subsystem point of view. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Christoph Lameter <cl@linux.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Gilad Ben Yossef <gilad@benyossef.com> Cc: Hakan Akkan <hakanakkan@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Kevin Hilman <khilman@linaro.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
* | posix timers: Allocate timer id per process (v2)Pavel Emelyanov2013-04-17
|/ | | | | | | | | | | | | | | | | | | | | | Currently kernel generates IDs for posix timers in a global manner -- there's a kernel-wide IDR tree from which IDs are created. This makes it impossible to recreate a timer with a desired ID (in particular this is done by the CRIU checkpoint-restore project) -- since these IDs are global it may happen, that at the time we recreate a timer, the ID we want for it is already busy by some other timer. In order to address this, replace the IDR tree with a global hash table for timers and makes timer IDs unique per signal_struct (to which timers are linked anyway). With this, two timers belonging to different processes may have equal IDs and we can recreate either of them with the ID we want. Signed-off-by: Pavel Emelyanov <xemul@parallels.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Matthew Helsley <matt.helsley@gmail.com> Link: http://lkml.kernel.org/r/513D9FF5.9010004@parallels.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* alarmtimers: Remove period from alarm structureJohn Stultz2011-08-10
| | | | | | | | | Now that periodic alarmtimers are managed by the handler function, remove the period value from the alarm structure and let the handlers manage the interval on their own. CC: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: John Stultz <john.stultz@linaro.org>
* posix-timers: RCU conversionEric Dumazet2011-05-24
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Ben Nagy reported a scalability problem with KVM/QEMU that hit very hard a single spinlock (idr_lock) in posix-timers code, on its 48 core machine. Even on a 16 cpu machine (2x4x2), a single test can show 98% of cpu time used in ticket_spin_lock, from lock_timer Ref: http://www.spinics.net/lists/kvm/msg51526.html Switching to RCU is quite easy, IDR being already RCU ready. idr_lock should be locked only for an insert/delete, not a lookup. Benchmark on a 2x4x2 machine, 16 processes calling timer_gettime(). Before : real 1m18.669s user 0m1.346s sys 1m17.180s After : real 0m3.296s user 0m1.366s sys 0m1.926s Reported-by: Ben Nagy <ben@iagu.net> Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Tested-by: Ben Nagy <ben@iagu.net> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Avi Kivity <avi@redhat.com> Cc: John Stultz <johnstul@us.ibm.com> Cc: Richard Cochran <richard.cochran@omicron.at> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* timers: Posix interface for alarm-timersJohn Stultz2011-04-26
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch exposes alarm-timers to userland via the posix clock and timers interface, using two new clockids: CLOCK_REALTIME_ALARM and CLOCK_BOOTTIME_ALARM. Both clockids behave identically to CLOCK_REALTIME and CLOCK_BOOTTIME, respectively, but timers set against the _ALARM suffixed clockids will wake the system if it is suspended. Some background can be found here: https://lwn.net/Articles/429925/ The concept for Alarm-timers was inspired by the Android Alarm driver (by Arve Hjønnevåg) found in the Android kernel tree. See: http://android.git.kernel.org/?p=kernel/common.git;a=blob;f=drivers/rtc/alarm.c;h=1250edfbdf3302f5e4ea6194847c6ef4bb7beb1c;hb=android-2.6.36 While the in-kernel interface is pretty similar between alarm-timers and Android alarm driver, the user-space interface for the Android alarm driver is via ioctls to a new char device. As mentioned above, I've instead chosen to export this functionality via the posix interface, as it seemed a little simpler and avoids creating duplicate interfaces to things like CLOCK_REALTIME and CLOCK_MONOTONIC under alternate names (ie:ANDROID_ALARM_RTC and ANDROID_ALARM_SYSTEMTIME). The semantics of the Android alarm driver are different from what this posix interface provides. For instance, threads other then the thread waiting on the Android alarm driver are able to modify the alarm being waited on. Also this interface does not allow the same wakelock semantics that the Android driver provides (ie: kernel takes a wakelock on RTC alarm-interupt, and holds it through process wakeup, and while the process runs, until the process either closes the char device or calls back in to wait on a new alarm). One potential way to implement similar semantics may be via the timerfd infrastructure, but this needs more research. There may also need to be some sort of sysfs system level policy hooks that allow alarm timers to be disabled to keep them from firing at inappropriate times (ie: laptop in a well insulated bag, mid-flight). CC: Arve Hjønnevåg <arve@android.com> CC: Thomas Gleixner <tglx@linutronix.de> CC: Alessandro Zummo <a.zummo@towertech.it> Acked-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: John Stultz <john.stultz@linaro.org>
* posix clocks: Introduce dynamic clocksRichard Cochran2011-02-02
| | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds support for adding and removing posix clocks. The clock lifetime cycle is patterned after usb devices. Each clock is represented by a standard character device. In addition, the driver may optionally implement custom character device operations. The posix clock and timer system calls listed below now work with dynamic posix clocks, as well as the traditional static clocks. The following system calls are affected: - clock_adjtime (brand new syscall) - clock_gettime - clock_getres - clock_settime - timer_create - timer_delete - timer_gettime - timer_settime [ tglx: Adapted to the posix-timer cleanup. Moved clock_posix_dynamic to posix-clock.c and made all referenced functions static ] Signed-off-by: Richard Cochran <richard.cochran@omicron.at> Acked-by: John Stultz <johnstul@us.ibm.com> LKML-Reference: <20110201134420.164172635@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* posix-timers: Cleanup namespaceThomas Gleixner2011-02-02
| | | | | | | | | | | | Rename register_posix_clock() to posix_timers_register_clock(). That's what the function really does. As a side effect this cleans up the posix_clock namespace for the upcoming dynamic posix_clock infrastructure. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Richard Cochran <richard.cochran@omicron.at> Cc: John Stultz <johnstul@us.ibm.com> LKML-Reference: <alpine.LFD.2.00.1102021222240.31804@localhost6.localdomain6>
* posix-timers: Add support for fd based clocksRichard Cochran2011-02-02
| | | | | | | | | | | Extend the negative clockids which are currently used by posix cpu timers to encode the PID with a file descriptor based type which encodes the fd in the upper bits. Originally-from: Richard Cochran <richard.cochran@omicron.at> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: John Stultz <johnstul@us.ibm.com> LKML-Reference: <20110201134420.062860200@linutronix.de>
* posix-timers: Introduce a syscall for clock tuning.Richard Cochran2011-02-02
| | | | | | | | | | | | | | | | A new syscall is introduced that allows tuning of a POSIX clock. The new call, clock_adjtime, takes two parameters, the clock ID and a pointer to a struct timex. Any ADJTIMEX(2) operation may be requested via this system call, but various POSIX clocks may or may not support tuning. [ tglx: Adapted to the posix-timer cleanup series. Avoid copy_to_user in the error case ] Signed-off-by: Richard Cochran <richard.cochran@omicron.at> Acked-by: John Stultz <johnstul@us.ibm.com> LKML-Reference: <20110201134419.869804645@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* posix-timers: Make posix-cpu-timers functions staticThomas Gleixner2011-02-02
| | | | | | | | | All functions are accessed via clock_posix_cpu now. So make them static. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: John Stultz <johnstul@us.ibm.com> Tested-by: Richard Cochran <richard.cochran@omicron.at> LKML-Reference: <20110201134419.389755466@linutronix.de>
* posix-timers: Remove useless res field from k_clockThomas Gleixner2011-02-02
| | | | | | | | | | The res member of kclock is only used by mmtimer.c, but even there it contains redundant information. Remove the field and fixup mmtimer. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: John Stultz <johnstul@us.ibm.com> Tested-by: Richard Cochran <richard.cochran@omicron.at> LKML-Reference: <20110201134418.808714587@linutronix.de>
* posix-timers: Convert clock_settime to clockid_to_kclock()Thomas Gleixner2011-02-02
| | | | | | | | | | | Use the new kclock decoding function in clock_settime and cleanup all kclocks which use the default functions. Rename the misnomed common_clock_set() to posix_clock_realtime_set(). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: John Stultz <johnstul@us.ibm.com> Tested-by: Richard Cochran <richard.cochran@omicron.at> LKML-Reference: <20110201134418.518851246@linutronix.de>
* posix-timers: Convert clock_nanosleep to clockid_to_kclock()Thomas Gleixner2011-02-02
| | | | | | | | | | Use the new kclock decoding function in clock_nanosleep and cleanup all kclocks which use the default functions. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: John Stultz <johnstul@us.ibm.com> Tested-by: Richard Cochran <richard.cochran@omicron.at> LKML-Reference: <20110201134418.034175556@linutronix.de>
* posix-timers: Introduce clock_posix_cpuThomas Gleixner2011-02-02
| | | | | | | | | | | | | | | | | The CLOCK_DISPATCH() macro is a horrible magic. We call common functions if a function pointer is not set. That's just backwards. To support dynamic file decriptor based clocks we need to cleanup that dispatch logic. Create a k_clock struct clock_posix_cpu which has all the posix-cpu-timer functions filled in. After the cleanup the functions can be made static. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: John Stultz <johnstul@us.ibm.com> Tested-by: Richard Cochran <richard.cochran@omicron.at> LKML-Reference: <20110201134417.841974553@linutronix.de>
* time: Correct the *settime* parametersRichard Cochran2011-02-02
| | | | | | | | | | | | Both settimeofday() and clock_settime() promise with a 'const' attribute not to alter the arguments passed in. This patch adds the missing 'const' attribute into the various kernel functions implementing these calls. Signed-off-by: Richard Cochran <richard.cochran@omicron.at> Acked-by: John Stultz <johnstul@us.ibm.com> LKML-Reference: <20110201134417.545698637@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* rlimits: add task_struct to update_rlimit_cpuJiri Slaby2010-07-16
| | | | | | | | Add task_struct as a parameter to update_rlimit_cpu to be able to set rlimit_cpu of different task than current. Signed-off-by: Jiri Slaby <jirislaby@gmail.com> Acked-by: James Morris <jmorris@namei.org>
* posix-timers: use "struct pid*" instead of "struct task_struct*"Oleg Nesterov2008-12-12
| | | | | | | | | | | | | | | | | | | | | | | | | Impact: restructure, clean up code k_itimer holds the ref to the ->it_process until sys_timer_delete(). This allows to pin up to RLIMIT_SIGPENDING dead task_struct's. Change the code to use "struct pid *" instead. The patch doesn't kill ->it_process, it places ->it_pid into the union. ->it_process is still used by do_cpu_nanosleep() as before. It would be trivial to change the nanosleep code as well, but since it uses it_process in a special way I think it is better to keep this field for grep. The patch bloats the kernel by 104 bytes and it also adds the new pointer, ->it_signal, to k_itimer. It is used by lock_timer() to verify that the found timer was not created by another process. It is not clear why do we use the global database (and thus the global idr_lock) for posix timers. We still need the signal_struct->posix_timers which contains all useable timers, perhaps it is better to use some form of per-process array instead. Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* posix-timers: kill ->it_sigev_signo and ->it_sigev_valueOleg Nesterov2008-09-24
| | | | | | | | | | | With the recent changes ->it_sigev_signo and ->it_sigev_value are only used in sys_timer_create(), kill them. Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Cc: mingo@elte.hu Cc: Roland McGrath <roland@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* timers: fix itimer/many thread hangFrank Mayhar2008-09-14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Overview This patch reworks the handling of POSIX CPU timers, including the ITIMER_PROF, ITIMER_VIRT timers and rlimit handling. It was put together with the help of Roland McGrath, the owner and original writer of this code. The problem we ran into, and the reason for this rework, has to do with using a profiling timer in a process with a large number of threads. It appears that the performance of the old implementation of run_posix_cpu_timers() was at least O(n*3) (where "n" is the number of threads in a process) or worse. Everything is fine with an increasing number of threads until the time taken for that routine to run becomes the same as or greater than the tick time, at which point things degrade rather quickly. This patch fixes bug 9906, "Weird hang with NPTL and SIGPROF." Code Changes This rework corrects the implementation of run_posix_cpu_timers() to make it run in constant time for a particular machine. (Performance may vary between one machine and another depending upon whether the kernel is built as single- or multiprocessor and, in the latter case, depending upon the number of running processors.) To do this, at each tick we now update fields in signal_struct as well as task_struct. The run_posix_cpu_timers() function uses those fields to make its decisions. We define a new structure, "task_cputime," to contain user, system and scheduler times and use these in appropriate places: struct task_cputime { cputime_t utime; cputime_t stime; unsigned long long sum_exec_runtime; }; This is included in the structure "thread_group_cputime," which is a new substructure of signal_struct and which varies for uniprocessor versus multiprocessor kernels. For uniprocessor kernels, it uses "task_cputime" as a simple substructure, while for multiprocessor kernels it is a pointer: struct thread_group_cputime { struct task_cputime totals; }; struct thread_group_cputime { struct task_cputime *totals; }; We also add a new task_cputime substructure directly to signal_struct, to cache the earliest expiration of process-wide timers, and task_cputime also replaces the it_*_expires fields of task_struct (used for earliest expiration of thread timers). The "thread_group_cputime" structure contains process-wide timers that are updated via account_user_time() and friends. In the non-SMP case the structure is a simple aggregator; unfortunately in the SMP case that simplicity was not achievable due to cache-line contention between CPUs (in one measured case performance was actually _worse_ on a 16-cpu system than the same test on a 4-cpu system, due to this contention). For SMP, the thread_group_cputime counters are maintained as a per-cpu structure allocated using alloc_percpu(). The timer functions update only the timer field in the structure corresponding to the running CPU, obtained using per_cpu_ptr(). We define a set of inline functions in sched.h that we use to maintain the thread_group_cputime structure and hide the differences between UP and SMP implementations from the rest of the kernel. The thread_group_cputime_init() function initializes the thread_group_cputime structure for the given task. The thread_group_cputime_alloc() is a no-op for UP; for SMP it calls the out-of-line function thread_group_cputime_alloc_smp() to allocate and fill in the per-cpu structures and fields. The thread_group_cputime_free() function, also a no-op for UP, in SMP frees the per-cpu structures. The thread_group_cputime_clone_thread() function (also a UP no-op) for SMP calls thread_group_cputime_alloc() if the per-cpu structures haven't yet been allocated. The thread_group_cputime() function fills the task_cputime structure it is passed with the contents of the thread_group_cputime fields; in UP it's that simple but in SMP it must also safely check that tsk->signal is non-NULL (if it is it just uses the appropriate fields of task_struct) and, if so, sums the per-cpu values for each online CPU. Finally, the three functions account_group_user_time(), account_group_system_time() and account_group_exec_runtime() are used by timer functions to update the respective fields of the thread_group_cputime structure. Non-SMP operation is trivial and will not be mentioned further. The per-cpu structure is always allocated when a task creates its first new thread, via a call to thread_group_cputime_clone_thread() from copy_signal(). It is freed at process exit via a call to thread_group_cputime_free() from cleanup_signal(). All functions that formerly summed utime/stime/sum_sched_runtime values from from all threads in the thread group now use thread_group_cputime() to snapshot the values in the thread_group_cputime structure or the values in the task structure itself if the per-cpu structure hasn't been allocated. Finally, the code in kernel/posix-cpu-timers.c has changed quite a bit. The run_posix_cpu_timers() function has been split into a fast path and a slow path; the former safely checks whether there are any expired thread timers and, if not, just returns, while the slow path does the heavy lifting. With the dedicated thread group fields, timers are no longer "rebalanced" and the process_timer_rebalance() function and related code has gone away. All summing loops are gone and all code that used them now uses the thread_group_cputime() inline. When process-wide timers are set, the new task_cputime structure in signal_struct is used to cache the earliest expiration; this is checked in the fast path. Performance The fix appears not to add significant overhead to existing operations. It generally performs the same as the current code except in two cases, one in which it performs slightly worse (Case 5 below) and one in which it performs very significantly better (Case 2 below). Overall it's a wash except in those two cases. I've since done somewhat more involved testing on a dual-core Opteron system. Case 1: With no itimer running, for a test with 100,000 threads, the fixed kernel took 1428.5 seconds, 513 seconds more than the unfixed system, all of which was spent in the system. There were twice as many voluntary context switches with the fix as without it. Case 2: With an itimer running at .01 second ticks and 4000 threads (the most an unmodified kernel can handle), the fixed kernel ran the test in eight percent of the time (5.8 seconds as opposed to 70 seconds) and had better tick accuracy (.012 seconds per tick as opposed to .023 seconds per tick). Case 3: A 4000-thread test with an initial timer tick of .01 second and an interval of 10,000 seconds (i.e. a timer that ticks only once) had very nearly the same performance in both cases: 6.3 seconds elapsed for the fixed kernel versus 5.5 seconds for the unfixed kernel. With fewer threads (eight in these tests), the Case 1 test ran in essentially the same time on both the modified and unmodified kernels (5.2 seconds versus 5.8 seconds). The Case 2 test ran in about the same time as well, 5.9 seconds versus 5.4 seconds but again with much better tick accuracy, .013 seconds per tick versus .025 seconds per tick for the unmodified kernel. Since the fix affected the rlimit code, I also tested soft and hard CPU limits. Case 4: With a hard CPU limit of 20 seconds and eight threads (and an itimer running), the modified kernel was very slightly favored in that while it killed the process in 19.997 seconds of CPU time (5.002 seconds of wall time), only .003 seconds of that was system time, the rest was user time. The unmodified kernel killed the process in 20.001 seconds of CPU (5.014 seconds of wall time) of which .016 seconds was system time. Really, though, the results were too close to call. The results were essentially the same with no itimer running. Case 5: With a soft limit of 20 seconds and a hard limit of 2000 seconds (where the hard limit would never be reached) and an itimer running, the modified kernel exhibited worse tick accuracy than the unmodified kernel: .050 seconds/tick versus .028 seconds/tick. Otherwise, performance was almost indistinguishable. With no itimer running this test exhibited virtually identical behavior and times in both cases. In times past I did some limited performance testing. those results are below. On a four-cpu Opteron system without this fix, a sixteen-thread test executed in 3569.991 seconds, of which user was 3568.435s and system was 1.556s. On the same system with the fix, user and elapsed time were about the same, but system time dropped to 0.007 seconds. Performance with eight, four and one thread were comparable. Interestingly, the timer ticks with the fix seemed more accurate: The sixteen-thread test with the fix received 149543 ticks for 0.024 seconds per tick, while the same test without the fix received 58720 for 0.061 seconds per tick. Both cases were configured for an interval of 0.01 seconds. Again, the other tests were comparable. Each thread in this test computed the primes up to 25,000,000. I also did a test with a large number of threads, 100,000 threads, which is impossible without the fix. In this case each thread computed the primes only up to 10,000 (to make the runtime manageable). System time dominated, at 1546.968 seconds out of a total 2176.906 seconds (giving a user time of 629.938s). It received 147651 ticks for 0.015 seconds per tick, still quite accurate. There is obviously no comparable test without the fix. Signed-off-by: Frank Mayhar <fmayhar@google.com> Cc: Roland McGrath <roland@redhat.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* [PATCH] posix-timers: Fix clock_nanosleep() doesn't return the remaining ↵Toyo Abe2006-09-29
| | | | | | | | | | | | | | | | | | | | | | | time in compatibility mode The clock_nanosleep() function does not return the time remaining when the sleep is interrupted by a signal. This patch creates a new call out, compat_clock_nanosleep_restart(), which handles returning the remaining time after a sleep is interrupted. This patch revives clock_nanosleep_restart(). It is now accessed via the new call out. The compat_clock_nanosleep_restart() is used for compatibility access. Since this is implemented in compatibility mode the normal path is virtually unaffected - no real performance impact. Signed-off-by: Toyo Abe <toyoa@mvista.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@elte.hu> Cc: Roland McGrath <roland@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] kernel/posix-timers.c: remove do_posix_clock_notimer_create()Adrian Bunk2006-02-01
| | | | | | | | | This function is neither used nor has any real contents. Signed-off-by: Adrian Bunk <bunk@stusta.de> Acked-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] hrtimer: convert posix timers completelyThomas Gleixner2006-01-10
| | | | | | | | | | | | - convert posix-timers.c to use hrtimers - remove the now obsolete abslist code Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] hrtimer: switch clock_nanosleep to hrtimer nanosleep APIThomas Gleixner2006-01-10
| | | | | | | | | Switch clock_nanosleep to use the new nanosleep functions in hrtimer.c Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] hrtimer: coding style and white space cleanup 2Thomas Gleixner2006-01-10
| | | | | | | | | style/whitespace/macro cleanups of posix-timers.h Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] hrtimer: make clockid_t arguments constThomas Gleixner2006-01-10
| | | | | | | | | add const arguments to the posix-timers.h API functions Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* Linux-2.6.12-rc2v2.6.12-rc2Linus Torvalds2005-04-16
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!