| Commit message (Collapse) | Author | Age |
|
|
|
| |
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is the transport code for public key functionality in eCryptfs. It
manages encryption/decryption request queues with a transport mechanism.
Currently, netlink is the only implemented transport.
Each inode has a unique File Encryption Key (FEK). Under passphrase, a File
Encryption Key Encryption Key (FEKEK) is generated from a salt/passphrase
combo on mount. This FEKEK encrypts each FEK and writes it into the header of
each file using the packet format specified in RFC 2440. This is all
symmetric key encryption, so it can all be done via the kernel crypto API.
These new patches introduce public key encryption of the FEK. There is no
asymmetric key encryption support in the kernel crypto API, so eCryptfs pushes
the FEK encryption and decryption out to a userspace daemon. After
considering our requirements and determining the complexity of using various
transport mechanisms, we settled on netlink for this communication.
eCryptfs stores authentication tokens into the kernel keyring. These tokens
correlate with individual keys. For passphrase mode of operation, the
authentication token contains the symmetric FEKEK. For public key, the
authentication token contains a PKI type and an opaque data blob managed by
individual PKI modules in userspace.
Each user who opens a file under an eCryptfs partition mounted in public key
mode must be running a daemon. That daemon has the user's credentials and has
access to all of the keys to which the user should have access. The daemon,
when started, initializes the pluggable PKI modules available on the system
and registers itself with the eCryptfs kernel module. Userspace utilities
register public key authentication tokens into the user session keyring.
These authentication tokens correlate key signatures with PKI modules and PKI
blobs. The PKI blobs contain PKI-specific information necessary for the PKI
module to carry out asymmetric key encryption and decryption.
When the eCryptfs module parses the header of an existing file and finds a Tag
1 (Public Key) packet (see RFC 2440), it reads in the public key identifier
(signature). The asymmetrically encrypted FEK is in the Tag 1 packet;
eCryptfs puts together a decrypt request packet containing the signature and
the encrypted FEK, then it passes it to the daemon registered for the
current->euid via a netlink unicast to the PID of the daemon, which was
registered at the time the daemon was started by the user.
The daemon actually just makes calls to libecryptfs, which implements request
packet parsing and manages PKI modules. libecryptfs grabs the public key
authentication token for the given signature from the user session keyring.
This auth tok tells libecryptfs which PKI module should receive the request.
libecryptfs then makes a decrypt() call to the PKI module, and it passes along
the PKI block from the auth tok. The PKI uses the blob to figure out how it
should decrypt the data passed to it; it performs the decryption and passes
the decrypted data back to libecryptfs. libecryptfs then puts together a
reply packet with the decrypted FEK and passes that back to the eCryptfs
module.
The eCryptfs module manages these request callouts to userspace code via
message context structs. The module maintains an array of message context
structs and places the elements of the array on two lists: a free and an
allocated list. When eCryptfs wants to make a request, it moves a msg ctx
from the free list to the allocated list, sets its state to pending, and fires
off the message to the user's registered daemon.
When eCryptfs receives a netlink message (via the callback), it correlates the
msg ctx struct in the alloc list with the data in the message itself. The
msg->index contains the offset of the array of msg ctx structs. It verifies
that the registered daemon PID is the same as the PID of the process that sent
the message. It also validates a sequence number between the received packet
and the msg ctx. Then, it copies the contents of the message (the reply
packet) into the msg ctx struct, sets the state in the msg ctx to done, and
wakes up the process that was sleeping while waiting for the reply.
The sleeping process was whatever was performing the sys_open(). This process
originally called ecryptfs_send_message(); it is now in
ecryptfs_wait_for_response(). When it wakes up and sees that the msg ctx
state was set to done, it returns a pointer to the message contents (the reply
packet) and returns. If all went well, this packet contains the decrypted
FEK, which is then copied into the crypt_stat struct, and life continues as
normal.
The case for creation of a new file is very similar, only instead of a decrypt
request, eCryptfs sends out an encrypt request.
> - We have a great clod of key mangement code in-kernel. Why is that
> not suitable (or growable) for public key management?
eCryptfs uses Howells' keyring to store persistent key data and PKI state
information. It defers public key cryptographic transformations to userspace
code. The userspace data manipulation request really is orthogonal to key
management in and of itself. What eCryptfs basically needs is a secure way to
communicate with a particular daemon for a particular task doing a syscall,
based on the UID. Nothing running under another UID should be able to access
that channel of communication.
> - Is it appropriate that new infrastructure for public key
> management be private to a particular fs?
The messaging.c file contains a lot of code that, perhaps, could be extracted
into a separate kernel service. In essence, this would be a sort of
request/reply mechanism that would involve a userspace daemon. I am not aware
of anything that does quite what eCryptfs does, so I was not aware of any
existing tools to do just what we wanted.
> What happens if one of these daemons exits without sending a quit
> message?
There is a stale uid<->pid association in the hash table for that user. When
the user registers a new daemon, eCryptfs cleans up the old association and
generates a new one. See ecryptfs_process_helo().
> - _why_ does it use netlink?
Netlink provides the transport mechanism that would minimize the complexity of
the implementation, given that we can have multiple daemons (one per user). I
explored the possibility of using relayfs, but that would involve having to
introduce control channels and a protocol for creating and tearing down
channels for the daemons. We do not have to worry about any of that with
netlink.
Signed-off-by: Michael Halcrow <mhalcrow@us.ibm.com>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
| |
The destination PID is passed directly to netlink_unicast()
respectively netlink_multicast().
Signed-off-by: Thomas Graf <tgraf@suug.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Account for the netlink message header size directly in nlmsg_new()
instead of relying on the caller calculate it correctly.
Replaces error handling of message construction functions when
constructing notifications with bug traps since a failure implies
a bug in calculating the size of the skb.
Signed-off-by: Thomas Graf <tgraf@suug.ch>
Acked-by: Paul Moore <paul.moore@hp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
events
This patch formally adds support for the posting of FC events via netlink.
It is a followup to the original RFC at:
http://marc.theaimsgroup.com/?l=linux-scsi&m=114530667923464&w=2
and the initial posting at:
http://marc.theaimsgroup.com/?l=linux-scsi&m=115507374832500&w=2
The patch has been updated to optimize the send path, per the discussions
in the initial posting.
Per discussions at the Storage Summit and at OLS, we are to use netlink for
async events from transports. Also per discussions, to avoid a netlink
protocol per transport, I've create a single NETLINK_SCSITRANSPORT protocol,
which can then be used by all transports.
This patch:
- Creates new files scsi_netlink.c and scsi_netlink.h, which contains the
single and shared definitions for the SCSI Transport. It is tied into the
base SCSI subsystem intialization.
Contains a single interface routine, scsi_send_transport_event(), for a
transport to send an event (via multicast to a protocol specific group).
- Creates a new scsi_netlink_fc.h file, which contains the FC netlink event
messages
- Adds 3 new routines to the fc transport:
fc_get_event_number() - to get a FC event #
fc_host_post_event() - to send a simple FC event (32 bits of data)
fc_host_post_vendor_event() - to send a Vendor unique event, with
arbitrary amounts of data.
Note: the separation of event number allows for a LLD to send a standard
event, followed by vendor-specific data for the event.
Note: This patch assumes 2 prior fc transport patches have been installed:
http://marc.theaimsgroup.com/?l=linux-scsi&m=115555807316329&w=2
http://marc.theaimsgroup.com/?l=linux-scsi&m=115581614930261&w=2
Sorry - next time I'll do something like making these individual
patches of the same posting when I know they'll be posted closely
together.
Signed-off-by: James Smart <James.Smart@emulex.com>
Tidy up configuration not to make SCSI always select NET
Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
|
|
|
|
|
|
|
| |
netlink_w1 was moved to connector.
Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The below patch should be applied after the inode and ipc sid patches.
This patch is a reworking of Tim's patch that has been updated to match
the inode and ipc patches since its similar.
[updated:
> Stephen Smalley also wanted to change a variable from isec to tsec in the
> user sid patch. ]
Signed-off-by: Steve Grubb <sgrubb@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
generation
Keep a bitmask of multicast groups with subscribed listeners to let
netlink users check for listeners before generating multicast
messages.
Queries don't perform any locking, which may result in false
positives, it is guaranteed however that any new subscriptions are
visible before bind() or setsockopt() return.
Signed-off-by: Patrick McHardy <kaber@trash.net>
ACKed-by: Jamal Hadi Salim<hadi@cyberus.ca>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
netlink overrun was broken while improvement of netlink.
Destination socket is used in the place where it was meant to be source socket,
so that now overrun is never sent to user netlink sockets, when it should be,
and it even can be set on kernel socket, which results in complete deadlock
of rtnetlink.
Suggested fix is to restore status quo passing source socket as additional
argument to netlink_attachskb().
A little explanation: overrun is set on a socket, when it failed
to receive some message and sender of this messages does not or even
have no way to handle this error. This happens in two cases:
1. when kernel sends something. Kernel never retransmits and cannot
wait for buffer space.
2. when user sends a broadcast and the message was not delivered
to some recipients.
Signed-off-by: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Introduces a new type-safe interface for netlink message and
attributes handling. The interface is fully binary compatible
with the old interface towards userspace. Besides type safety,
this interface features attribute validation capabilities,
simplified message contstruction, and documentation.
The resulting netlink code should be smaller, less error prone
and easier to understand.
Signed-off-by: Thomas Graf <tgraf@suug.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
| |
- added typedef unsigned int __nocast gfp_t;
- replaced __nocast uses for gfp flags with gfp_t - it gives exactly
the same warnings as far as sparse is concerned, doesn't change
generated code (from gcc point of view we replaced unsigned int with
typedef) and documents what's going on far better.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
| |
As requested by Jamal.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Kernel connector - new userspace <-> kernel space easy to use
communication module which implements easy to use bidirectional
message bus using netlink as it's backend. Connector was created to
eliminate complex skb handling both in send and receive message bus
direction.
Connector driver adds possibility to connect various agents using as
one of it's backends netlink based network. One must register
callback and identifier. When driver receives special netlink message
with appropriate identifier, appropriate callback will be called.
From the userspace point of view it's quite straightforward:
socket();
bind();
send();
recv();
But if kernelspace want to use full power of such connections, driver
writer must create special sockets, must know about struct sk_buff
handling... Connector allows any kernelspace agents to use netlink
based networking for inter-process communication in a significantly
easier way:
int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *));
void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask);
struct cb_id
{
__u32 idx;
__u32 val;
};
idx and val are unique identifiers which must be registered in
connector.h for in-kernel usage. void (*callback) (void *) - is a
callback function which will be called when message with above idx.val
will be received by connector core.
Using connector completely hides low-level transport layer from it's
users.
Connector uses new netlink ability to have many groups in one socket.
[ Incorporating many cleanups and fixes by myself and
Andrew Morton -DaveM ]
Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
| |
Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
| |
Signed-off-by: Patrick McHardy <kaber@trash.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
| |
NETLINK_ADD_MEMBERSHIP/NETLINK_DROP_MEMBERSHIP are used to join/leave
groups, NETLINK_PKTINFO is used to enable nl_pktinfo control messages
for received packets to get the extended destination group number.
Signed-off-by: Patrick McHardy <kaber@trash.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
| |
Using the group number allows increasing the number of groups without
beeing limited by the size of the bitmask. It introduces one limitation
for netlink users: messages can't be broadcasted to multiple groups anymore,
however this feature was never used inside the kernel.
Signed-off-by: Patrick McHardy <kaber@trash.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
| |
Signed-off-by: Patrick McHardy <kaber@trash.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
| |
Next changeset will rename tcp_diag.[ch] to inet_diag.[ch].
I'm taking this longer route so as to easy review, making clear the changes
made all along the way.
Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
| |
- Remove bogus code for compiling netlink as module
- Add module refcounting support for modules implementing a netlink
protocol
- Add support for autoloading modules that implement a netlink protocol
as soon as someone opens a socket for that protocol
Signed-off-by: Harald Welte <laforge@netfilter.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
| |
NETLINK_ARPD is unused, allocate it to the Open-iSCSI folks.
NETLINK_ROUTE6 and NETLINK_TAPBASE are no longer used, delete
them.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
| |
Use the reserved by never used NETLINK_SKIP value instead.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
| |
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
| |
Signed-off-by: Patrick McHardy <kaber@trash.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
| |
net/ipv4/tcp_diag.c uses up to ->args[4]
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Below is a more generic patch to do fib_lookup via netlink. For others
we should say that we discussed this as a way to verify route selection.
It's also possible there are others uses for this.
In short the fist half of struct fib_result_nl is filled in by caller
and netlink call fills in the other half and returns it.
In case anyone is interested there is a corresponding user app to compare
the full routing table this was used to test implementation of the LC-trie.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Introduces a new macro NLMSG_NEW which extends NLMSG_PUT but takes
a flags argument. NLMSG_PUT stays there for compatibility but now
calls NLMSG_NEW with flags == 0. NLMSG_PUT_ANSWER is renamed to
NLMSG_NEW_ANSWER which now also takes a flags argument.
Also converts the users of NLMSG_PUT_ANSWER to use NLMSG_NEW_ANSWER
and fixes the two direct users of __nlmsg_put to either provide
the flags or use NLMSG_NEW(_ANSWER).
Signed-off-by: Thomas Graf <tgraf@suug.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
NLMSG_PUT_ANSWER(skb, nlcb, type, length)
Start a new netlink message as answer to a request,
returns the message header.
NLMSG_END(skb, nlh)
End a netlink message, fixes total message length,
returns skb->len.
NLMSG_CANCEL(skb, nlh)
Cancel the building process and trim whole message
from skb again, returns -1.
Signed-off-by: Thomas Graf <tgraf@suug.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
| |
Most audit control messages are sent over netlink.In order to properly
log the identity of the sender of audit control messages, we would like
to add the loginuid to the netlink_creds structure, as per the attached
patch.
Signed-off-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
|