| Commit message (Collapse) | Author | Age |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The current "comp" crypto interface supports one-shot (de)compression only,
i.e. the whole data buffer to be (de)compressed must be passed at once, and
the whole (de)compressed data buffer will be received at once.
In several use-cases (e.g. compressed file systems that store files in big
compressed blocks), this workflow is not suitable.
Furthermore, the "comp" type doesn't provide for the configuration of
(de)compression parameters, and always allocates workspace memory for both
compression and decompression, which may waste memory.
To solve this, add a "pcomp" partial (de)compression interface that provides
the following operations:
- crypto_compress_{init,update,final}() for compression,
- crypto_decompress_{init,update,final}() for decompression,
- crypto_{,de}compress_setup(), to configure (de)compression parameters
(incl. allocating workspace memory).
The (de)compression methods take a struct comp_request, which was mimicked
after the z_stream object in zlib, and contains buffer pointer and length
pairs for input and output.
The setup methods take an opaque parameter pointer and length pair. Parameters
are supposed to be encoded using netlink attributes, whose meanings depend on
the actual (name of the) (de)compression algorithm.
Signed-off-by: Geert Uytterhoeven <Geert.Uytterhoeven@sonycom.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is based on a report and patch by Geert Uytterhoeven.
The functions crypto_alloc_tfm and create_create_tfm return a
pointer that needs to be adjusted by the caller when successful
and otherwise an error value. This means that the caller has
to check for the error and only perform the adjustment if the
pointer returned is valid.
Since all callers want to make the adjustment and we know how
to adjust it ourselves, it's much easier to just return adjusted
pointer directly.
The only caveat is that we have to return a void * instead of
struct crypto_tfm *. However, this isn't that bad because both
of these functions are for internal use only (by types code like
shash.c, not even algorithms code).
This patch also moves crypto_alloc_tfm into crypto/internal.h
(crypto_create_tfm is already there) to reflect this.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
| |
Geert Uytterhoeven pointed out that we're not zeroing all the
memory when freeing a transform. This patch fixes it by calling
ksize to ensure that we zero everything in sight.
Reported-by: Geert Uytterhoeven <Geert.Uytterhoeven@sonycom.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
| |
This patch allows shash algorithms to be used through the old hash
interface. This is a transitional measure so we can convert the
underlying algorithms to shash before converting the users across.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
|
| |
It is often useful to save the partial state of a hash function
so that it can be used as a base for two or more computations.
The most prominent example is HMAC where all hashes start from
a base determined by the key. Having an import/export interface
means that we only have to compute that base once rather than
for each message.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
| |
This patch allows shash algorithms to be used through the ahash
interface. This is required before we can convert digest algorithms
over to shash.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The shash interface replaces the current synchronous hash interface.
It improves over hash in two ways. Firstly shash is reentrant,
meaning that the same tfm may be used by two threads simultaneously
as all hashing state is stored in a local descriptor.
The other enhancement is that shash no longer takes scatter list
entries. This is because shash is specifically designed for
synchronous algorithms and as such scatter lists are unnecessary.
All existing hash users will be converted to shash once the
algorithms have been completely converted.
There is also a new finup function that combines update with final.
This will be extended to ahash once the algorithm conversion is
done.
This is also the first time that an algorithm type has their own
registration function. Existing algorithm types will be converted
to this way in due course.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch reintroduces a completely revamped crypto_alloc_tfm.
The biggest change is that we now take two crypto_type objects
when allocating a tfm, a frontend and a backend. In fact this
simply formalises what we've been doing behind the API's back.
For example, as it stands crypto_alloc_ahash may use an
actual ahash algorithm or a crypto_hash algorithm. Putting
this in the API allows us to do this much more cleanly.
The existing types will be converted across gradually.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The type exit function needs to undo any allocations done by the type
init function. However, the type init function may differ depending
on the upper-level type of the transform (e.g., a crypto_blkcipher
instantiated as a crypto_ablkcipher).
So we need to move the exit function out of the lower-level
structure and into crypto_tfm itself.
As it stands this is a no-op since nobody uses exit functions at
all. However, all cases where a lower-level type is instantiated
as a different upper-level type (such as blkcipher as ablkcipher)
will be converted such that they allocate the underlying transform
and use that instead of casting (e.g., crypto_ablkcipher casted
into crypto_blkcipher). That will need to use a different exit
function depending on the upper-level type.
This patch also allows the type init/exit functions to call (or not)
cra_init/cra_exit instead of always calling them from the top level.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds a random number generator interface as well as a
cryptographic pseudo-random number generator based on AES. It is
meant to be used in cases where a deterministic CPRNG is required.
One of the first applications will be as an input in the IPsec IV
generation process.
Signed-off-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
| |
This patch makes use of the new testing infrastructure by requiring
algorithms to pass a run-time test before they're made available to
users.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
| |
This patch moves the newly created alg_test infrastructure into
cryptomgr. This shall allow us to use it for testing at algorithm
registrations.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
| |
All new crypto interfaces should go into individual files as much
as possible in order to ensure that crypto.h does not collapse under
its own weight.
This patch moves the ahash code into crypto/hash.h and crypto/internal/hash.h
respectively.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
| |
The base field in ahash_tfm appears to have been cut-n-pasted from
ablkcipher. It isn't needed here at all. Similarly, the info field
in ahash_request also appears to have originated from its cipher
counter-part and is vestigial.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
| |
This patch adds asynchronous hash and digest support.
Signed-off-by: Loc Ho <lho@amcc.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
| |
Signed-off-by: Sebastian Siewior <sebastian@breakpoint.cc>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
| |
Thanks to David Miller for pointing out that the SLAB (or SLOB/SLUB)
cache uses the alignment of unsigned long long if the architecture
kmalloc/slab alignment macros are not defined.
This patch changes the CRYPTO_MINALIGN so that it uses the same default
value.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
| |
This patch makes crypto_alloc_aead always return algorithms that is
capable of generating their own IVs through givencrypt and givdecrypt.
All existing AEAD algorithms already do. New ones must either supply
their own or specify a generic IV generator with the geniv field.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
| |
This patch creates the infrastructure to help the construction of IV
generator templates that wrap around AEAD algorithms by adding an IV
generator to them. This is useful for AEAD algorithms with no built-in
IV generator or to replace their built-in generator.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds the underlying givcrypt operations for aead and associated
support elements. The rationale is identical to that of the skcipher
givcrypt operations, i.e., sometimes only the algorithm knows how the
IV should be generated.
A new request type aead_givcrypt_request is added which contains an
embedded aead_request structure with two new elements to support this
operation. The new elements are seq and giv. The seq field should
contain a strictly increasing 64-bit integer which may be used by
certain IV generators as an input value. The giv field will be used
to store the generated IV. It does not need to obey the alignment
requirements of the algorithm because it's not used during the operation.
The existing iv field must still be available as it will be used to store
intermediate IVs and the output IV if chaining is desired.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch makes crypto_alloc_ablkcipher/crypto_grab_skcipher always
return algorithms that are capable of generating their own IVs through
givencrypt and givdecrypt. Each algorithm may specify its default IV
generator through the geniv field.
For algorithms that do not set the geniv field, the blkcipher layer will
pick a default. Currently it's chainiv for synchronous algorithms and
eseqiv for asynchronous algorithms. Note that if these wrappers do not
work on an algorithm then that algorithm must specify its own geniv or
it can't be used at all.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
| |
This patch creates the infrastructure to help the construction of givcipher
templates that wrap around existing blkcipher/ablkcipher algorithms by adding
an IV generator to them.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
| |
This patch introduces the geniv field which indicates the default IV
generator for each algorithm. It should point to a string that is not
freed as long as the algorithm is registered.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Different block cipher modes have different requirements for intialisation
vectors. For example, CBC can use a simple randomly generated IV while
modes such as CTR must use an IV generation mechanisms that give a stronger
guarantee on the lack of collisions. Furthermore, disk encryption modes
have their own IV generation algorithms.
Up until now IV generation has been left to the users of the symmetric
key cipher API. This is inconvenient as the number of block cipher modes
increase because the user needs to be aware of which mode is supposed to
be paired with which IV generation algorithm.
Therefore it makes sense to integrate the IV generation into the crypto
API. This patch takes the first step in that direction by creating two
new ablkcipher operations, givencrypt and givdecrypt that generates an
IV before performing the actual encryption or decryption.
The operations are currently not exposed to the user. That will be done
once the underlying functionality has actually been implemented.
It also creates the underlying givcipher type. Algorithms that directly
generate IVs would use it instead of ablkcipher. All other algorithms
(including all existing ones) would generate a givcipher algorithm upon
registration. This givcipher algorithm will be constructed from the geniv
string that's stored in every algorithm. That string will locate a template
which is instantiated by the blkcipher/ablkcipher algorithm in question to
give a givcipher algorithm.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Note: From now on the collective of ablkcipher/blkcipher/givcipher will
be known as skcipher, i.e., symmetric key cipher. The name blkcipher has
always been much of a misnomer since it supports stream ciphers too.
This patch adds the function crypto_grab_skcipher as a new way of getting
an ablkcipher spawn. The problem is that previously we did this in two
steps, first getting the algorithm and then calling crypto_init_spawn.
This meant that each spawn user had to be aware of what type and mask to
use for these two steps. This is difficult and also presents a problem
when the type/mask changes as they're about to be for IV generators.
The new interface does both steps together just like crypto_alloc_ablkcipher.
As a side-effect this also allows us to be stronger on type enforcement
for spawns. For now this is only done for ablkcipher but it's trivial
to extend for other types.
This patch also moves the type/mask logic for skcipher into the helpers
crypto_skcipher_type and crypto_skcipher_mask.
Finally this patch introduces the function crypto_require_sync to determine
whether the user is specifically requesting a sync algorithm.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
| |
When allocating ablkcipher/hash objects, we use a mask that's wider than
the usual type mask. This patch sanitises the mask supplied by the user
so we don't end up using a narrower mask which may lead to unintended
results.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As it is authsize is an algorithm paramter which cannot be changed at
run-time. This is inconvenient because hardware that implements such
algorithms would have to register each authsize that they support
separately.
Since authsize is a property common to all AEAD algorithms, we can add
a function setauthsize that sets it at run-time, just like setkey.
This patch does exactly that and also changes authenc so that authsize
is no longer a parameter of its template.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Up until now we have ablkcipher algorithms have been identified as
type BLKCIPHER with the ASYNC bit set. This is suboptimal because
ablkcipher refers to two things. On the one hand it refers to the
top-level ablkcipher interface with requests. On the other hand it
refers to and algorithm type underneath.
As it is you cannot request a synchronous block cipher algorithm
with the ablkcipher interface on top. This is a problem because
we want to be able to eventually phase out the blkcipher top-level
interface.
This patch fixes this by making ABLKCIPHER its own type, just as
we have distinct types for HASH and DIGEST. The type it associated
with the algorithm implementation only.
Which top-level interface is used for synchronous block ciphers is
then determined by the mask that's used. If it's a specific mask
then the old blkcipher interface is given, otherwise we go with the
new ablkcipher interface.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
| |
Convert the encoding of <include/linux/crypto.h> from ISO-8859-1 to UTF-8.
Signed-off-by: John Anthony Kazos Jr. <jakj@j-a-k-j.com>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
|
|
|
|
|
|
|
|
| |
This patch changes the return type of crypto_*_reqsize from int to
unsigned int which matches what the underlying type is (and should
be).
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
| |
Since not everyone needs a queue pointer and those who need it can
always get it from the context anyway the queue pointer in the
common alg object is redundant.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds support for having multiple parameters to
a template, separated by a comma. It also adds support
for integer parameters in addition to the current algorithm
parameter type.
This will be used by the authenc template which will have
four parameters: the authentication algorithm, the encryption
algorithm, the authentication size and the encryption key
length.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds crypto_aead which is the interface for AEAD
(Authenticated Encryption with Associated Data) algorithms.
AEAD algorithms perform authentication and encryption in one
step. Traditionally users (such as IPsec) would use two
different crypto algorithms to perform these. With AEAD
this comes down to one algorithm and one operation.
Of course if traditional algorithms were used we'd still
be doing two operations underneath. However, real AEAD
algorithms may allow the underlying operations to be
optimised as well.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
| |
This removes all the unused block cipher fields from cipher_tfm.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
| |
This patch adds ablkcipher_request_set_tfm for those users that need
to manage the memory for ablkcipher requests directly.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
| |
This patch adds the mid-level interface for asynchronous block ciphers.
It also includes a generic queueing mechanism that can be used by other
asynchronous crypto operations in future.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch passes the type/mask along when constructing instances of
templates. This is in preparation for templates that may support
multiple types of instances depending on what is requested. For example,
the planned software async crypto driver will use this construct.
For the moment this allows us to check whether the instance constructed
is of the correct type and avoid returning success if the type does not
match.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds the frontend interface for asynchronous block ciphers.
In addition to the usual block cipher parameters, there is a callback
function pointer and a data pointer. The callback will be invoked only
if the encrypt/decrypt handlers return -EINPROGRESS. In other words,
if the return value of zero the completion handler (or the equivalent
code) needs to be invoked by the caller.
The request structure is allocated and freed by the caller. Its size
is determined by calling crypto_ablkcipher_reqsize(). The helpers
ablkcipher_request_alloc/ablkcipher_request_free can be used to manage
the memory for a request.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
| |
Now that all cipher/compression users have switched over to the new
allocation scheme, we can get rid of the compatility defines and use
proper structs for them.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
| |
This patch removes the old cipher interface and related code.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch removes the following no longer used functions:
- api.c: crypto_alg_available()
- digest.c: crypto_digest_init()
- digest.c: crypto_digest_update()
- digest.c: crypto_digest_final()
- digest.c: crypto_digest_digest()
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
| |
This patch has removed one too many semicolon in crypto.h.
Signed-off-by: Yoichi Yuasa <yoichi_yuasa@tripeaks.co.jp>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
| |
This patch marks the crypto_digest_* functions and crypto_alg_available
as deprecated. They've been replaced by crypto_hash_* and crypto_has_*
respectively.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
| |
This patch converts padlock-sha to use crypto_hash for its fallback.
It also changes the fallback selection to use selection by type instead
of name. This is done through the new CRYPTO_ALG_NEED_FALLBACK bit,
which is set if and only if an algorithm needs a fallback of the same
type.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
| |
This patch converts all users to use the new crypto_comp type and the
crypto_has_* functions.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
| |
This patch adds the crypto_comp type to complete the compile-time checking
conversion. The functions crypto_has_alg and crypto_has_cipher, etc. are
also added to replace crypto_alg_available.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
| |
This patch removes the old HMAC implementation now that nobody uses it
anymore.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The existing digest user interface is inadequate for support asynchronous
operations. For one it doesn't return a value to indicate success or
failure, nor does it take a per-operation descriptor which is essential
for the issuing of requests while other requests are still outstanding.
This patch is the first in a series of steps to remodel the interface
for asynchronous operations.
For the ease of transition the new interface will be known as "hash"
while the old one will remain as "digest".
This patch also changes sg_next to allow chaining.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
| |
Mark the parts of the cipher interface that have been replaced by
block ciphers as deprecated. Thanks to Andrew Morton for suggesting
doing this before removing them completely.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds the new type of block ciphers. Unlike current cipher
algorithms which operate on a single block at a time, block ciphers
operate on an arbitrarily long linear area of data. As it is block-based,
it will skip any data remaining at the end which cannot form a block.
The block cipher has one major difference when compared to the existing
block cipher implementation. The sg walking is now performed by the
algorithm rather than the cipher mid-layer. This is needed for drivers
that directly support sg lists. It also improves performance for all
algorithms as it reduces the total number of indirect calls by one.
In future the existing cipher algorithm will be converted to only have
a single-block interface. This will be done after all existing users
have switched over to the new block cipher type.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|