aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/bootmem.h
Commit message (Collapse)AuthorAge
* [PATCH] x86_64: Handle empty PXMs that only contain hotplug memoryAndi Kleen2006-04-09
| | | | | | | | | | | | | | | | | | | | | | The node setup code would try to allocate the node metadata in the node itself, but that fails if there is no memory in there. This can happen with memory hotplug when the hotplug area defines an so far empty node. Now use bootmem to try to allocate the mem_map in other nodes. And if it fails don't panic, but just ignore the node. To make this work I added a new __alloc_bootmem_nopanic function that does what its name implies. TBD should try to use nearby nodes here. Currently we just use any. It's hard to do it better because bootmem doesn't have proper fallback lists yet. Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] for_each_online_pgdat: for_each_bootmemKAMEZAWA Hiroyuki2006-03-27
| | | | | | | | | | | | | | | | Add a list_head to bootmem_data_t and make bootmems use it. bootmem list is sorted by node_boot_start. Only nodes against which init_bootmem() is called are linked to the list. (i386 allocates bootmem only from one node(0) not from all online nodes.) A summary: 1. for_each_online_pgdat() traverses all *online* nodes. 2. alloc_bootmem() allocates memory only from initialized-for-bootmem nodes. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] x86_64: Try to allocate node memmap near the end of nodeAndi Kleen2006-03-25
| | | | | | | | | This fixes problems with very large nodes (over 128GB) filling up all of the first 4GB with their mem_map and not leaving enough space for the swiotlb. Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] Cleanup bootmem allocator and fix alloc_bootmem_lowRavikiran G Thirumalai2006-01-06
| | | | | | | | | | Patch cleans up the alloc_bootmem fix for swiotlb. Patch removes alloc_bootmem_*_limit api and fixes alloc_boot_*low api to do the right thing -- allocate from low32 memory. Signed-off-by: Ravikiran Thirumalai <kiran@scalex86.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] swiotlb: make sure initial DMA allocations really are in DMA memoryYasunori Goto2005-10-20
| | | | | | | | | | | | | | | | | | | | | | | This introduces a limit parameter to the core bootmem allocator; The new parameter indicates that physical memory allocated by the bootmem allocator should be within the requested limit. We also introduce alloc_bootmem_low_pages_limit, alloc_bootmem_node_limit, alloc_bootmem_low_pages_node_limit apis, but alloc_bootmem_low_pages_limit is the only api used for swiotlb. The existing alloc_bootmem_low_pages() api could instead have been changed and made to pass right limit to the core allocator. But that would make the patch more intrusive for 2.6.14, as other arches use alloc_bootmem_low_pages(). We may be done that post 2.6.14 as a cleanup. With this, swiotlb gets memory within 4G for both x86_64 and ia64 arches. Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Ravikiran G Thirumalai <kiran@scalex86.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] kdump: Retrieve saved max pfnVivek Goyal2005-06-25
| | | | | | | | | | | This patch retrieves the max_pfn being used by previous kernel and stores it in a safe location (saved_max_pfn) before it is overwritten due to user defined memory map. This pfn is used to make sure that user does not try to read the physical memory beyond saved_max_pfn. Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] sparsemem base: simple NUMA remap space allocatorDave Hansen2005-06-23
| | | | | | | | | | | | | | | | | | | Introduce a simple allocator for the NUMA remap space. This space is very scarce, used for structures which are best allocated node local. This mechanism is also used on non-NUMA ia64 systems with a vmem_map to keep the pgdat->node_mem_map initialized in a consistent place for all architectures. Issues: o alloc_remap takes a node_id where we might expect a pgdat which was intended to allow us to allocate the pgdat's using this mechanism; which we do not yet do. Could have alloc_remap_node() and alloc_remap_nid() for this purpose. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* Linux-2.6.12-rc2v2.6.12-rc2Linus Torvalds2005-04-16
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!