aboutsummaryrefslogtreecommitdiffstats
path: root/include/asm-m68k/percpu.h
Commit message (Expand)AuthorAge
* Linux-2.6.12-rc2v2.6.12-rc2Linus Torvalds2005-04-16
63'>8bc3bcc93a2b
1da177e4c3f4



55a981027fc3
1da177e4c3f4

55a981027fc3
1da177e4c3f4

55a981027fc3


1da177e4c3f4
55a981027fc3

1da177e4c3f4
55a981027fc3
1da177e4c3f4


55a981027fc3
1da177e4c3f4




55a981027fc3
1da177e4c3f4

55a981027fc3
1da177e4c3f4

55a981027fc3


1da177e4c3f4
55a981027fc3

1da177e4c3f4
55a981027fc3
1da177e4c3f4


55a981027fc3
1da177e4c3f4





55a981027fc3
1da177e4c3f4
55a981027fc3
1da177e4c3f4




55a981027fc3
1da177e4c3f4
55a981027fc3


1da177e4c3f4













55a981027fc3

1da177e4c3f4



55a981027fc3
1da177e4c3f4
55a981027fc3


1da177e4c3f4













55a981027fc3

1da177e4c3f4



55a981027fc3
1da177e4c3f4







55a981027fc3
1da177e4c3f4



55a981027fc3
1da177e4c3f4
55a981027fc3

1da177e4c3f4


55a981027fc3

1da177e4c3f4
55a981027fc3
1da177e4c3f4
55a981027fc3
1da177e4c3f4


55a981027fc3
1da177e4c3f4
55a63998b896
55a981027fc3
1da177e4c3f4


2f3243aebd8d
55a981027fc3
55a63998b896
1da177e4c3f4







55a981027fc3
1da177e4c3f4
55a981027fc3

1da177e4c3f4


55a981027fc3

1da177e4c3f4
55a981027fc3
1da177e4c3f4
55a981027fc3
1da177e4c3f4


55a981027fc3
1da177e4c3f4
55a63998b896
55a981027fc3
1da177e4c3f4


2f3243aebd8d
55a981027fc3
55a63998b896
1da177e4c3f4






55a981027fc3
1da177e4c3f4

















16c047add3ce








1da177e4c3f4
55a981027fc3
2f3243aebd8d
1da177e4c3f4
55a981027fc3
1da177e4c3f4
4c6011781117


1975e5937575
4b324126e0c6


4c6011781117
1975e5937575
2f3243aebd8d
1da177e4c3f4
55a981027fc3
4b324126e0c6
1da177e4c3f4


55a981027fc3
2f3243aebd8d
1da177e4c3f4

55a981027fc3
b945d6b2554d

1da177e4c3f4



17d9ddc72fb8
b945d6b2554d

1da177e4c3f4






b945d6b2554d































0b6bb66d1247
b945d6b2554d
























0b6bb66d1247
b945d6b2554d









0b6bb66d1247
b945d6b2554d
1da177e4c3f4


f4b477c47332
1da177e4c3f4











f4b477c47332
1da177e4c3f4











f4b477c47332
1da177e4c3f4
55a981027fc3

10fd48f2376d


1da177e4c3f4





f4b477c47332
1da177e4c3f4







55a981027fc3

1da177e4c3f4
55a981027fc3
1da177e4c3f4


f4b477c47332
1da177e4c3f4
55a981027fc3

10fd48f2376d


1da177e4c3f4





f4b477c47332
1da177e4c3f4



55a981027fc3

1da177e4c3f4
55a981027fc3
1da177e4c3f4





55a981027fc3
1da177e4c3f4










55a981027fc3
1da177e4c3f4
55a981027fc3
1da177e4c3f4




1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462






















                                                                           
                         



                                                                        
                                                 

                                              
                                                    

                              


                                     
         

                                                
                    
                                                 


                                      
                                   




                                                                         
                                                 

                                             
                                                    

                              


                                    
         

                                                
                    
                                               


                                     
                                  





                                                                
                                                               
         
                                            




                                                                                   
                                                              
                                 


                                                             













                                                               

                                             



                                                                                  
                                                              
                                 


                                                             













                                                                

                                             



                                                        
                                    







                                                                          
                                                                     



                                                 
                                             
                         

                                                    


                                                               

                                                                               
                         
                                                  
                                              
                                                         


                            
                                                                                     
                                 
                                                                     
                                                          


                                                                       
                                                                      
                                                     
                                                              







                                                               
                                             
                         

                                                    


                                                                

                                                                               
                         
                                                  
                                              
                                                         


                            
                                                                                   
                                 
                                                                      
                                                          


                                                                      
                                                                      
                                                     
                                                             






                                                                
                                   

















                                                         








                                                                
                                       
                                         
                                       
 
                                    
                                      


                                                             
                                                


                                                           
                 
 
                                                             
                                             
                                                  
 


                           
                                 
                               

                  
                                             

                   



                                                 
         

                                      






                                                      































                                                                                
                                 
























                                                                        
                                      









                                                                              
                                    
 


                                                                    
                                                    











                               
                                                   











                                
                                                   
 

                               


                                    





                                                                      
                                              







                                                                     

                                                                      
 
                      


                       
                                                   
 

                               


                                    





                                                                      
                                              



                                                                      

                                                                     
 
                      





                                                                 
                                                   










                                                                   
                                                    
                             
                                                     




                                                                         
/*
  Red Black Trees
  (C) 1999  Andrea Arcangeli <andrea@suse.de>
  (C) 2002  David Woodhouse <dwmw2@infradead.org>
  
  This program is free software; you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation; either version 2 of the License, or
  (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

  linux/lib/rbtree.c
*/

#include <linux/rbtree.h>
#include <linux/export.h>

static void __rb_rotate_left(struct rb_node *node, struct rb_root *root)
{
	struct rb_node *right = node->rb_right;
	struct rb_node *parent = rb_parent(node);

	if ((node->rb_right = right->rb_left))
		rb_set_parent(right->rb_left, node);
	right->rb_left = node;

	rb_set_parent(right, parent);

	if (parent)
	{
		if (node == parent->rb_left)
			parent->rb_left = right;
		else
			parent->rb_right = right;
	}
	else
		root->rb_node = right;
	rb_set_parent(node, right);
}

static void __rb_rotate_right(struct rb_node *node, struct rb_root *root)
{
	struct rb_node *left = node->rb_left;
	struct rb_node *parent = rb_parent(node);

	if ((node->rb_left = left->rb_right))
		rb_set_parent(left->rb_right, node);
	left->rb_right = node;

	rb_set_parent(left, parent);

	if (parent)
	{
		if (node == parent->rb_right)
			parent->rb_right = left;
		else
			parent->rb_left = left;
	}
	else
		root->rb_node = left;
	rb_set_parent(node, left);
}

void rb_insert_color(struct rb_node *node, struct rb_root *root)
{
	struct rb_node *parent, *gparent;

	while ((parent = rb_parent(node)) && rb_is_red(parent))
	{
		gparent = rb_parent(parent);

		if (parent == gparent->rb_left)
		{
			{
				register struct rb_node *uncle = gparent->rb_right;
				if (uncle && rb_is_red(uncle))
				{
					rb_set_black(uncle);
					rb_set_black(parent);
					rb_set_red(gparent);
					node = gparent;
					continue;
				}
			}

			if (parent->rb_right == node)
			{
				register struct rb_node *tmp;
				__rb_rotate_left(parent, root);
				tmp = parent;
				parent = node;
				node = tmp;
			}

			rb_set_black(parent);
			rb_set_red(gparent);
			__rb_rotate_right(gparent, root);
		} else {
			{
				register struct rb_node *uncle = gparent->rb_left;
				if (uncle && rb_is_red(uncle))
				{
					rb_set_black(uncle);
					rb_set_black(parent);
					rb_set_red(gparent);
					node = gparent;
					continue;
				}
			}

			if (parent->rb_left == node)
			{
				register struct rb_node *tmp;
				__rb_rotate_right(parent, root);
				tmp = parent;
				parent = node;
				node = tmp;
			}

			rb_set_black(parent);
			rb_set_red(gparent);
			__rb_rotate_left(gparent, root);
		}
	}

	rb_set_black(root->rb_node);
}
EXPORT_SYMBOL(rb_insert_color);

static void __rb_erase_color(struct rb_node *node, struct rb_node *parent,
			     struct rb_root *root)
{
	struct rb_node *other;

	while ((!node || rb_is_black(node)) && node != root->rb_node)
	{
		if (parent->rb_left == node)
		{
			other = parent->rb_right;
			if (rb_is_red(other))
			{
				rb_set_black(other);
				rb_set_red(parent);
				__rb_rotate_left(parent, root);
				other = parent->rb_right;
			}
			if ((!other->rb_left || rb_is_black(other->rb_left)) &&
			    (!other->rb_right || rb_is_black(other->rb_right)))
			{
				rb_set_red(other);
				node = parent;
				parent = rb_parent(node);
			}
			else
			{
				if (!other->rb_right || rb_is_black(other->rb_right))
				{
					rb_set_black(other->rb_left);
					rb_set_red(other);
					__rb_rotate_right(other, root);
					other = parent->rb_right;
				}
				rb_set_color(other, rb_color(parent));
				rb_set_black(parent);
				rb_set_black(other->rb_right);
				__rb_rotate_left(parent, root);
				node = root->rb_node;
				break;
			}
		}
		else
		{
			other = parent->rb_left;
			if (rb_is_red(other))
			{
				rb_set_black(other);
				rb_set_red(parent);
				__rb_rotate_right(parent, root);
				other = parent->rb_left;
			}
			if ((!other->rb_left || rb_is_black(other->rb_left)) &&
			    (!other->rb_right || rb_is_black(other->rb_right)))
			{
				rb_set_red(other);
				node = parent;
				parent = rb_parent(node);
			}
			else
			{
				if (!other->rb_left || rb_is_black(other->rb_left))
				{
					rb_set_black(other->rb_right);
					rb_set_red(other);
					__rb_rotate_left(other, root);
					other = parent->rb_left;
				}
				rb_set_color(other, rb_color(parent));
				rb_set_black(parent);
				rb_set_black(other->rb_left);
				__rb_rotate_right(parent, root);
				node = root->rb_node;
				break;
			}
		}
	}
	if (node)
		rb_set_black(node);
}

void rb_erase(struct rb_node *node, struct rb_root *root)
{
	struct rb_node *child, *parent;
	int color;

	if (!node->rb_left)
		child = node->rb_right;
	else if (!node->rb_right)
		child = node->rb_left;
	else
	{
		struct rb_node *old = node, *left;

		node = node->rb_right;
		while ((left = node->rb_left) != NULL)
			node = left;

		if (rb_parent(old)) {
			if (rb_parent(old)->rb_left == old)
				rb_parent(old)->rb_left = node;
			else
				rb_parent(old)->rb_right = node;
		} else
			root->rb_node = node;

		child = node->rb_right;
		parent = rb_parent(node);
		color = rb_color(node);

		if (parent == old) {
			parent = node;
		} else {
			if (child)
				rb_set_parent(child, parent);
			parent->rb_left = child;

			node->rb_right = old->rb_right;
			rb_set_parent(old->rb_right, node);
		}

		node->rb_parent_color = old->rb_parent_color;
		node->rb_left = old->rb_left;
		rb_set_parent(old->rb_left, node);

		goto color;
	}

	parent = rb_parent(node);
	color = rb_color(node);

	if (child)
		rb_set_parent(child, parent);
	if (parent)
	{
		if (parent->rb_left == node)
			parent->rb_left = child;
		else
			parent->rb_right = child;
	}
	else
		root->rb_node = child;

 color:
	if (color == RB_BLACK)
		__rb_erase_color(child, parent, root);
}
EXPORT_SYMBOL(rb_erase);

static void rb_augment_path(struct rb_node *node, rb_augment_f func, void *data)
{
	struct rb_node *parent;

up:
	func(node, data);
	parent = rb_parent(node);
	if (!parent)
		return;

	if (node == parent->rb_left && parent->rb_right)
		func(parent->rb_right, data);
	else if (parent->rb_left)
		func(parent->rb_left, data);

	node = parent;
	goto up;
}

/*
 * after inserting @node into the tree, update the tree to account for
 * both the new entry and any damage done by rebalance
 */
void rb_augment_insert(struct rb_node *node, rb_augment_f func, void *data)
{
	if (node->rb_left)
		node = node->rb_left;
	else if (node->rb_right)
		node = node->rb_right;

	rb_augment_path(node, func, data);
}
EXPORT_SYMBOL(rb_augment_insert);

/*
 * before removing the node, find the deepest node on the rebalance path
 * that will still be there after @node gets removed
 */
struct rb_node *rb_augment_erase_begin(struct rb_node *node)
{
	struct rb_node *deepest;

	if (!node->rb_right && !node->rb_left)
		deepest = rb_parent(node);
	else if (!node->rb_right)
		deepest = node->rb_left;
	else if (!node->rb_left)
		deepest = node->rb_right;
	else {
		deepest = rb_next(node);
		if (deepest->rb_right)
			deepest = deepest->rb_right;
		else if (rb_parent(deepest) != node)
			deepest = rb_parent(deepest);
	}

	return deepest;
}
EXPORT_SYMBOL(rb_augment_erase_begin);

/*
 * after removal, update the tree to account for the removed entry
 * and any rebalance damage.
 */
void rb_augment_erase_end(struct rb_node *node, rb_augment_f func, void *data)
{
	if (node)
		rb_augment_path(node, func, data);
}
EXPORT_SYMBOL(rb_augment_erase_end);

/*
 * This function returns the first node (in sort order) of the tree.
 */
struct rb_node *rb_first(const struct rb_root *root)
{
	struct rb_node	*n;

	n = root->rb_node;
	if (!n)
		return NULL;
	while (n->rb_left)
		n = n->rb_left;
	return n;
}
EXPORT_SYMBOL(rb_first);

struct rb_node *rb_last(const struct rb_root *root)
{
	struct rb_node	*n;

	n = root->rb_node;
	if (!n)
		return NULL;
	while (n->rb_right)
		n = n->rb_right;
	return n;
}
EXPORT_SYMBOL(rb_last);

struct rb_node *rb_next(const struct rb_node *node)
{
	struct rb_node *parent;

	if (rb_parent(node) == node)
		return NULL;

	/* If we have a right-hand child, go down and then left as far
	   as we can. */
	if (node->rb_right) {
		node = node->rb_right; 
		while (node->rb_left)
			node=node->rb_left;
		return (struct rb_node *)node;
	}

	/* No right-hand children.  Everything down and left is
	   smaller than us, so any 'next' node must be in the general
	   direction of our parent. Go up the tree; any time the
	   ancestor is a right-hand child of its parent, keep going
	   up. First time it's a left-hand child of its parent, said
	   parent is our 'next' node. */
	while ((parent = rb_parent(node)) && node == parent->rb_right)
		node = parent;

	return parent;
}
EXPORT_SYMBOL(rb_next);

struct rb_node *rb_prev(const struct rb_node *node)
{
	struct rb_node *parent;

	if (rb_parent(node) == node)
		return NULL;

	/* If we have a left-hand child, go down and then right as far
	   as we can. */
	if (node->rb_left) {
		node = node->rb_left; 
		while (node->rb_right)
			node=node->rb_right;
		return (struct rb_node *)node;
	}

	/* No left-hand children. Go up till we find an ancestor which
	   is a right-hand child of its parent */
	while ((parent = rb_parent(node)) && node == parent->rb_left)
		node = parent;

	return parent;
}
EXPORT_SYMBOL(rb_prev);

void rb_replace_node(struct rb_node *victim, struct rb_node *new,
		     struct rb_root *root)
{
	struct rb_node *parent = rb_parent(victim);

	/* Set the surrounding nodes to point to the replacement */
	if (parent) {
		if (victim == parent->rb_left)
			parent->rb_left = new;
		else
			parent->rb_right = new;
	} else {
		root->rb_node = new;
	}
	if (victim->rb_left)
		rb_set_parent(victim->rb_left, new);
	if (victim->rb_right)
		rb_set_parent(victim->rb_right, new);

	/* Copy the pointers/colour from the victim to the replacement */
	*new = *victim;
}
EXPORT_SYMBOL(rb_replace_node);